


The Weather and Climate:
Emergent Laws and
Multifractal Cascades

Turbulent and turbulent-like systems are ubiquitous in the atmosphere, but
there is a gap between classical models and reality. Advances in nonlinear
dynamics, especially modern multifractal cascade models, allow us to close
the gap, to investigate the weather and climate at unprecedented levels of
accuracy, comparing theories, models and experiments over huge ranges of
space-time scales.

Using new stochastic modelling and data analysis techniques, this book
provides an overview of the nonclassical, multifractal statistics. The authors
demonstrate that by generalizing the classical turbulence laws it is possible to
obtain emergent laws of atmospheric dynamics. These higher-level laws are
empirically validated from weather and macroweather scales to climate
scales, and over length scales of millimetres to the size of the planet. By
generalizing the notion of scale, atmospheric complexity is reduced to a
manageable scale-invariant hierarchy of processes, thus providing a new
perspective for modelling and understanding the atmosphere. This new
synthesis of state-of-the-art data and nonlinear dynamics is systematically
compared with other analyses and global circulation model outputs.
Applications of the theory are graphically demonstrated with many original
multifractal simulations.

This thorough presentation of the application of nonlinear dynamics to
the atmosphere is an important resource for atmospheric science researchers
new to multifractal theory. It will also be of use to graduate students in
atmospheric dynamics and physics, meteorology, oceanography and
climatology.
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Preface

Few would argue that quantum and statistical
mechanics do not apply to ordinary fluid flows, yet
the latter involve such huge numbers of particles that
these fundamental theories are rarely useful for solv-
ing practical – or even theoretical – fluid problems.
Instead, one typically exploits the fact that when the
number of particles is large enough, new continuum
properties and notions such as fluid particle, fluid
temperature and fluid velocity emerge which are
governed by the higher-level equations of continuum
mechanics and thermodynamics. While the latter can
perhaps be obtained from the former, the derivations
are not mathematically rigorous and the foundations
of continuum mechanics are still actively researched.
The continuum laws that emerge are indeed qualita-
tively new.

In a similar way, one expects new higher-level laws
to emerge from the chaos of sufficiently strong hydro-
dynamic turbulence. While the latter presumably con-
tinue to obey the laws of continuum mechanics, their
direct application is impractical and one searches for
the emergence of new, even higher-level laws. Indeed
“developed turbulence as a new macroscopic state
of matter” (Manneville, 2010), appearing at high
Reynolds number (Re), has been considered as a
form of matter with properties that cannot simply
be reduced to – nor simply deduced from – the
governing Navier–Stokes equations. Consequently, it
is not surprising that over the years new types of
models and new symmetry principles have been
developed in order to directly study, model and
understand this hypothetical emergent state. Of par-
ticular relevance to this book are cascade models and
(anisotropic) scale invariance symmetries.

The study of fully developed turbulence remains
largely academic and has only had a rather peripheral
impact on atmospheric science. This is ironic, since
the atmosphere provides an unrivalled strongly non-
linear natural laboratory with the ratio of nonlinear to
linear terms – given by the Reynolds number – that is

typically � 1012. Although the atmosphere certainly
differs from incompressible hydrodynamics in several
important ways, we may nevertheless expect higher-
level laws to emerge. Furthermore, it is reasonable to
expect that they will share at least some of the features
of fully developed turbulence. This was indeed the
belief of many of the pioneers of classical turbulence:
L. F. Richardson, A. N. Kolmogorov, A. Obukhov,
S. Corrsin and R. Bolgiano.

While the pioneers’ eponymous laws were in
many ways highly successful, when applied to the
atmosphere they faced two basic obstacles: the atmos-
phere’s extreme intermittency and its strong stratifi-
cation, which increases systematically at larger and
larger scales. As usual in physics, when one faces such
a situation there are two choices. Either one abandons
the old law and moves on to something different, or
else one generalizes the law so that it is able to fully fit
the facts. On several occasions during its develop-
ment, the law of conservation of energy was faced
with such a choice: either treat it as no more than a
(sometimes) poor approximation, or else extend the
notion of energy beyond mechanical energy to heat
energy, to chemical energy, to electrical energy and
eventually to mass energy. In this book we follow the
latter choice with respect to the classical laws of tur-
bulence: we argue that these obstacles of stratification
and intermittency can be overcome with appropriate
generalizations. For weather, the key generalizations
are from isotropic to anisotropic notions of scale
and from smooth, quasi-Gaussian variability to
strong, cascade-generated multifractal intermittency.
Together, this leads to a model of atmospheric
dynamics as a system of coupled anisotropic cascade
processes.

An initial application of this model takes us up to
the limits of the weather domain: in space to the size
of the planet, in time to the lifetime of planetary-sized
structures (tw � 10 days), after which there is a
drastic change in the behaviour of all the atmospheric
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fields. It turns out that whereas at shorter time scales
fluctuations tend to grow with scale – the weather is
perceived as unstable – at longer time scales the
average fluctuations tend to decrease, giving on the
contrary the impression of stability. It is tempting to
identify this new regime with the climate, but we
argue that this would be a mistake, that the climate
is not just the long-term behaviour of the weather.
The reason is that it turns out that the same aniso-
tropic cascade that explains the weather variability
can be extended to much lower frequencies. When
this is done, there is indeed a “dimensional transition”
at tw but the model continues to accurately reproduce
the lower-frequency variability beyond the transition.
It turns out that this is also true of unforced global
climate models (GCMs), so that the label “low-fre-
quency weather,” or “macroweather,” is appropriate.
To paraphrase a popular dictum, “macroweather is
what you expect, the weather is what you get.” From a
stochastic perspective, the climate is unexpected in
much the same way as the weather, with analogous
consequences for its prediction.

In order to find something really new that corres-
ponds to our usual notion of “climate,”we have to wait
quite a long time – about tc � 10–30 years – until we
find that the mean fluctuations again start to increase
with scale – a behaviour which apparently continues
to tlc � 30–50 kyr. Yet even this true climate regime –
where genuinely new processes and/or forcings are
dominant – shares features (including scaling) with
the weather/macroweather regime. We show how a
single overall weather/macroweather/climate process
emerges, and we derive its statistics and estimate its
exponents and other parameters.

In these pages, we therefore show how to consid-
erably generalize the classical turbulence laws and to
obtain emergent laws of atmospheric dynamics.
Empirically, we show that they apply from millisec-
onds to decades to tens of millennia, from millimetres
to the size of the planet. In more detail, we argue (a)
that the atmosphere is a strongly nonlinear system
with a large number of degrees of freedom, (b) that it
nevertheless respects an (anisotropic) scale-invariance
symmetry, (c) that this leads to new emergent prop-
erties, new dynamical laws. These new laws are statis-
tical, and physically they imply that the variability
builds up scale by scale in a cascade-like manner. This
variability sports many nonclassical statistical charac-
teristics including long-range statistical dependencies
and nonclassical extreme values (“heavy”-tailed,

algebraic probability distributions). Finally, they can
be exploited to understand and to forecast atmos-
pheric fields.

The basic ingredients needed to effect this gener-
alization are multifractals, cascades and generalized
scale invariance. The development of these notions
was largely motivated by atmospheric applications
and arose in the 1980s, a period when nonlinear
dynamics was generating excitement in many areas
of science. Although a book comprehensively treating
multifractals is still lacking (see however Schertzer
and Lovejoy, 2011), they are not the focus here. For
our purposes, they are rather the tools needed to
generalize the classical turbulent laws to the atmos-
phere. In the last five years or so, the scope of these
applications has dramatically increased, thanks to the
existence and accessibility of massive global-scale
databases of all kinds. Whereas only ten years ago we
were still speculating on the ranges and types of scaling
of atmospheric fields, today we can already be confi-
dent about a great deal. This confidence is due partly
to the qualitative – and in many cases quantitative –

agreement between quite different databases over wide
ranges of scale, but also to the surmounting of several
obstacles in the interpretation of the data (in particular
of aircraft data). We therefore place much emphasis
on the empirical underpinnings of the new laws.
Although over the meteorological scales we exten-
sively analyze the traditional sources of satellite, lidar,
drop-sonde and aircraft data, we also investigate at
length reanalysis fields that are hybrid products some-
where between the data and the models, as well as the
outputs of the models themselves.

Therefore, although many of the ideas in this book
have been around since the 1980s, most (perhaps
90%) of the examples are from research performed
in only the last five years. It is thanks to these new
global datasets that the original 1980s models of 23/9
D anisotropic scaling dynamics, and of three scaling
regimes from weather to climate, can be convincingly
validated and a new, comprehensive view of atmos-
pheric variability established. Beyond new results on
global spatial scales, there are also new results on the
space-time variability, including the emergence of
waves (Chapter 9). The last two chapters – the
research for which was largely undertaken specifically
for this book – include the generalization of the
emergent weather laws into the macroweather
regime (Chapter 10), i.e. between the � 10-day life-
time of planetary structures out to 10–100 years

Preface

x



where the true climate regime begins. These longer
climate scales are mostly beyond the instrumental
range, so in Chapter 11 we analyze various surrogates
including multiproxies, paleotemperatures and cli-
mate forcings (including solar, volcanic and orbital)
as well as GCMs (unforced and forced climate “recon-
structions”). We show how the space-time climate
variability can be understood by a further extension
of the weather/macroweather space-time scaling
framework. By quantifying the natural variability as
a function of space and time scale, this provides the
information necessary to construct statistical tests for
assessing anthropogenic influences on the climate.
This approach is complementary to the current
GCM approach but has the advantage of being largely
data rather than model-driven.

Although long in gestation, this book comes at a
critical moment for atmospheric science. While ever
bigger computers, ever higher resolution devices and
ever larger quantities of data have resulted in our
present golden age, it has come at a price: they have
gobbled up most of our resources. Sometimes, it
seems that there are only barely enough left over to
support a narrow focus on applications to numerical
weather and climate modelling. One can easily get the
impression that a basic understanding of the atmos-
phere’s variability in space and in time is a luxury
that we cannot afford. Yet today’s continuing lack of
consensus about these questions is increasingly
hampering the development of the numerical models
themselves. For example, without knowledge of the
effective dimension of atmospheric motions it will not
be possible to place the currently ad hoc “stochastic
parametrizations” in modern Ensemble Forecasting
Systems on a solid theoretical basis. As we argue here,
this new synthesis – which is remarkably simple –

provides a compelling and consistent picture of
atmospheric variability and dynamics from weather
through climate scales and suggests numerous ways
forward, including the possibility of direct stochastic
forecasting (Chapter 9).

From the above, the reader may correctly infer
that this book is squarely oriented towards practising
atmospheric scientists (especially meteorologists and
climatologists) and that it includes a (hopefully)
accessible exposition of the necessary nonlinear tools.
Occasionally, when a topic is a bit too technical but
nevertheless important either for applications or for
the theory, details are given in appendices. Similarly,
advanced or optional sections are indicated by

asterixes. In addition, at the end of each chapter,
under the rubric Summary of emergent laws in Chap-
ter . . ., we give a succinct summary of the develop-
ments in the chapter that are important for
developing the main theory. These summaries will
allow readers to skip details that are unimportant
while maintaining the basic thread of the argument.
Finally, to highlight them, the more important for-
mulae have been placed in boxes. Let the reader be
warned, however, that this is neither a textbook nor a
conventional monograph. It is rather a systematic
presentation of arguments and evidence for a new
framework for understanding atmospheric dynamics.

In order to make the material as accessible as
possible, the basic philosophy has been to first present
empirical analyses demonstrating the existence of
wide-range scaling: an overview in Chapter 1, the
horizontal wind in Chapter 2, the state variables and
radiances in the horizontal in Chapter 4, in the verti-
cal in Chapter 6, and in time in Chapters 8, 10 and 11.
The analyses proceed from the (familiar) Fourier
(power) spectra applicable to essentially any field, to
trace moments in Chapter 3 needed to analyse cas-
cades, followed by further related analysis techniques
(generalized structure functions, wavelets, the prob-
ability distribution multiple scaling technique etc.) in
Chapter 5. For readers primarily interested in the
longer time scales, Chapters 10 and 11 are to some
degree independent of the preceding, making only
light use of the formalism and relying extensively on
the use of Haar fluctuations (wavelets). However, this
underexploited technique is actually quite straightfor-
ward – even intuitive – and allows systematic com-
parisons to be made of different types of data and
over different and large scale ranges. It gives a far
clearer picture of the macroweather and climate vari-
ability than is otherwise possible, so that any effort
expended to understand this analysis technique will
be rewarded.

Following the empirical motivation, the theory
is introduced gradually and as needed: first the
basic elements of turbulence theory (Chapter 2),
then elementary (discrete in scale) cascades
(moment statistics, Chapter 3), with the more gen-
eral treatment of multifractals including probabil-
ities and continuous in scale simulations reserved
for Chapter 5. In Chapter 6 we go beyond isotropy,
by introducing generalized scale invariance, but
only in the simplest self-affine form needed to
handle scaling different in two orthogonal
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directions: atmospheric stratification. Only in
Chapter 7 do we treat the more general case needed
for cloud and other morphologies whose anisotro-
pies vary both with scale and with position. Going
beyond space to space-time involves extra compli-
cations, if only because causality must be taken into
account, and this is why its introduction is delayed
until Chapter 8, where we give both an empirical
overview and the basic theory needed to understand
the space-time scaling in the weather regime. In
Chapter 9 we extend this to an explicit treatment
of causality, to turbulence-driven waves as an emer-
gent scaling process, to predictability and (stochas-
tic) forecasting. In Chapter 10 we extend the space-
time weather model into the macroweather regime,
showing that it not only predicts the observed sharp
“dimensional transition” between weather and
macroweather at about 10 days (the lifetime of
planetary structures), but that it does remarkably

well up to scales of decades and centuries. At scales
below the transition in the weather regime, fluctu-
ations generally grow with increasing scale, but at
larger scales, in the macroweather regime, on the
contrary they diminish with scale – the atmosphere
appears “stable.” However, this is not the full story.
In Chapter 11 we show – with the help of instru-
mental, multiproxy and paleodata – how the macro-
weather regime eventually gives way to a new
climate regime where fluctuations once again grow
with scale, and attempt to address the question as to
whether or not GCMs predict the climate or merely
macroweather.

DS thanks his students and colleagues, in particu-
lar those of his laboratory (LEESU, Laboratory Water,
Environment and Water Systems), as well as his pro-
ject partners, for having kept him busy with many
stimulating problems that require new methodologies
and paradigm changes.
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Chapter

1
Introduction

1.1 A new synthesis

1.1.1 Two (irreconcilable?) approaches
to understanding the atmosphere
In the last 20 years there has been a quiet revolution
in atmospheric modelling. It’s not just that computers
and numerical algorithms have continued their rapid
development, but rather that the very goal of the
modelling has profoundly changed. Whereas 20 years
ago, the goal was to determine the (supposedly)
unique state of the atmosphere, today with the advent
in Ensemble Forecasting Systems (EFS), the aim is to
determine the possible future atmospheric states
including their relative probabilities of occurrence:
this new goal is stochastic. A stochastic process is a
set of random variables indexed by time (Kolmo-
gorov, 1933), and this definition includes that of
deterministic processes as a special case.

At present, the EFS are really hybrids in the sense
that they operate by first generating an initial ensem-
ble of atmospheric states compatible with the obser-
vations and then use conventional deterministic
forecasting techniques to advance each member in
time to produce a distribution of future states. Once
the leap was taken to go beyond the forecasting of a
unique state to forecasting an ensemble, the next step
was to make the subgrid parametrizations themselves
stochastic (e.g. Buizza et al., 1999; Palmer, 2001;
Palmer and Williams, 2010). This is an attempt to
take into account the variability of different possible
subgrid circulations. The artificial deterministic/
stochastic nature of these hybrids suggests that the
development or pure stochastic forecasts would be
advantageous, a possibility we explore in Chapter 9.

Interestingly, the tension between determinism and
stochasticity has been around pretty much since the
beginning, although for most of the (still brief) history
of atmospheric science the deterministic approaches
have been in the ascendancy and the stochastic ones

left in the wings. To see this, let us recall the important
developments. Drawing on the classical (deterministic)
laws of fluid mechanics, Bjerknes (1904) and
Richardson (1922) extended these to the atmosphere
in the now familiar form of a closed set of nonlinear
partial differential governing equations. From a mathe-
matical point of view, their deterministic character is
evident from the absence of probability spaces; from a
conceptual point of view, it is associated with classical
Newtonian thinking. In physics, Newtonian determi-
nism began to disappear with the advent of statistical
mechanics (starting with the “Maxwellian” distribution
of molecular velocities: Maxwell, 1890), which showed
that physical theories could indeed be stochastic. The
break with determinism was consecrated with the
development of quantum mechanics, which is a funda-
mental yet stochastic theory where the key physical
variable – the wavefunction – determines probabilities.

At roughly the same time as the basis of modern
deterministic numerical weather prediction was being
laid, an alternative stochastic “turbulent” approach
was being developed by G. I. Taylor, L. F. Richardson,
A. N.Kolmogorov and others. Just as in statisticalmech-
anics, where huge numbers of degrees of freedom exist
butwhere only certain “emergent”macroscopic qualities
(temperature, pressure etc.) are of interest, in the corres-
ponding turbulent systems the new theories sought to
discover new emergent statistical turbulence laws.

The first of these emergent turbulent laws was
the Richardson “4/3 law” of atmospheric diffusion:
n(L) � KL4/3, where n(L) is the effective viscosity at
scale L and K is a constant to which we return
(Richardson, 1926): see Fig. 1.1. This law is famous
not only as the precursor of the Kolmogorov (1941)
law of 3D isotropic homogeneous turbulence (the
“5/3” law for the spectrum – or, if expressed for the
fluctuation Dv(L), the “1/3” law: Dv(L) ¼ e1/3L1/3

where Dv is the velocity fluctuation and e is the
energy flux), but it is also celebrated thanks to the
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ingenious way that Richardson experimentally con-
firmed his theory with the help of balloons and
later even with parsnips and thistledown (Richardson
and Stommel, 1948)! While this attention is all well
deserved, the law was perhaps even more remarkable
for something else: that Richardson had the audacity to
conceive that a unique scaling (power) law – i.e. a law
without characteristic length scales – could operate over
the range from millimetres to thousands of kilometres,
i.e. over essentially the entire meteorologically signifi-
cant range. In accordwith this, Richardson believed that
the corresponding diffusing particles had “Weierstrass
function-like” (i.e. fractal) trajectories. Nor was the 4/3
law an isolated result. In the very same pioneering book,
Weather Prediction by Numerical Process (Richardson,
1922), in which he wrote down essentially the modern
equations of the atmosphere (Lynch, 2006) and even
attempted a manual integration, he slyly inserted:

Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to
viscosity – in the molecular sense.

Thanks to this now iconic poem, Richardson is often
considered the grandfather of the modern cascade
theories that we discuss at length in this book.

Had Richardson been encumbered by later notions
of the meso-scale – or of isotropic turbulence in either
two or three dimensions – he might never have dis-
covered his law. Already, 15 years after he proposed it,

Kolmogorov (1941) humbly claimed only a relatively
small range of validity of the stringent “inertial range”
assumptions of statistical isotropy and homogeneity
which he believed were required for the operation
of his eponymous law (which was also discovered,
apparently independently, by Obukhov, 1941b, 1941a;
Onsager 1945; Heisenberg, 1948; and von Weizacker,
1948) – and this even though it has strong common
roots with Richardson’s law. Indeed, it implies that
Richardson’s proportionality constant depends on the
energy flux e: n(L) ¼ LDv(L) ¼ e1/3L4/3; in this sense
Kolmogorov’s contribution was to find K ¼ e1/3.
Echoing Kolmogorov’s reservations, Batchelor (1953)
speculated that the Kolmogorov law should only hold
in the atmosphere over the range 100 m to 0.2 cm!
Even in Monin’s influential book Weather Forecasting
as a Problem in Physics (1972), the contradiction
between the small and wide ranges of validity of
the Kolmogorov and Richardson 4/3 laws is pushed
surprisingly far, since on the one hand Monin confines
the range of validity of the Dv(L) ¼ e1/3L1/3 law to
“micrometerological oscillations . . . up to � 600 m in
extent,” while on the other hand publishing (on the
opposite page!) a reworked copy of Richardson’s
figure demonstrating the validity of the n(L) � L4/3

up to thousands of kilometres (Fig. 1.1). For the latter,
he comments that it “is valid for nearly the entire
spectrum of scales of atmospheric motion from milli-
meters to thousands of kilometres,” in accord with
Richardson. In Monin and Yaglom (1975), the con-
tradiction is noted with the following mysterious
explanation: “in the high frequency region one finds
unexpectedly, that relationships similar to those valid
in the inertial subrange of the microturbulence spec-
trum are again valid.” In Chapter 6 we argue on the
basis of modern reanalyses and other data that the law
Dv(L) ¼ e1/3L1/3 does indeed hold up to near planetary
scales in the horizontal, but paradoxically that, even at
scales as small as 5 m, it does not hold in the vertical
(and hence 3D isotropic turbulence does not seem to
hold anywhere in the atmosphere)! By proposing a
theory of anisotropic but scaling turbulence, we
attempt to explain how it is possible that Kolmogorov
was simultaneously both so much more accurate (the
horizontal) and yet so much less accurate (the vertical)
than anyone expected. This was achieved with the help
of a generalized notion of scaling (Schertzer and Love-
joy, 1985a, 1985b) which ironically led to an effective
“in between” dimension of atmospheric turbulence
D ¼ 23/9 ¼ 2.55. . . and enables the Fractal Geometry

Fig. 1.1 Effective viscosity as a function of scale, reproduced from
Monin (1972), adapted from (Richardson, 1926). The text (inserted
by Monin) should read “region of free turbulence”(!)
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to at last (!) escape from the Euclideanmetric (Schertzer
and Lovejoy, 2006).

Facing colossal mathematical difficulties, turbu-
lence theorists, starting with Taylor (1935), concen-
trated their attentions on the simplest turbulence
paradigm: turbulence that is statistically isotropic,
first in 3D, and then – following Fjortoft (1953) and
Kraichnan (1967) – on the special isotropic 2D case.
While Charney did extend Kraichnan’s 2D theory to
the atmosphere in his seminal paper “Geostrophic
turbulence” (1971), meteorologists had already begun
focusing on numerical modelling. By the end of the
1970s, there had thus developed a wide divergence
between, on the one hand, the turbulence community
with its focus on statistical closures and statistical
models of intermittency (especially cascades) and,
on the other hand, the meteorology community with
its focus on practical forecasting and which treated
turbulence primarily as a subgrid parametrization
problem.

1.1.2 Which chaos for geophysics, for
atmospheric science: deterministic or
stochastic?
The divergence between statistical and deterministic
approaches was brought into sharp relief thanks to
advances in the study of nonlinear systems with few
degrees of freedom. The new science of “deterministic
chaos” can be traced back to the pioneering paper
“Deterministic nonperiodic flow” (Lorenz, 1963)
(and has antecedents in Poincaré, 1892). Lorenz’s
1963 paper caused excitement by showing that three
degrees of freedom were sufficient to generate chaotic
(random-like) behaviour in a purely deterministic
system. At the time, it was widely believed (following
Landau, 1944) that on the contrary, random-like
behaviour was a consequence of a very large number
of degrees of freedom, so that as the nonlinearity
increased (e.g. the Reynolds number) a fluid became
fully turbulent only after successively going through a
very large (even infinite) number of instabilities. By
showing that as few as three degrees of freedom were
necessary for chaotic behaviour, Lorenz’s paper
opened the door to the possibility that turbulence
could have a relatively low-dimensional “strange
attractor” so that effectively only a few degrees of
freedom might matter. However, Lorenz’s observa-
tion did not immediately lead to practical applications

because theorists can readily invent nonlinear models,
and at the same time it appeared that each model
would require its own in-depth study in order to
understand its behaviour. The problem of apparent
lack of commonality in different nonlinear systems
is the now familiar problem of “universality” which
Fischer, Kadanoff and Wilson were only then success-
fully understanding and exploiting in the physics of
critical phenomena; we shall revisit universality later
in this book (Chapter 3). It is therefore not surprising
that the turning point for deterministic chaos was
precisely the discovery of “metric” (i.e. quantitative)
“universality” by Grossman and Thomae (1977) and
Feigenbaum (1978): the famous Feigenbaum constant
in period doubling maps. Soon, with the help of
theorems such as the extension of the Whitney
embedding theorem (Whitney, 1936) and the prac-
tical “Grassberger–Procaccia algorithm” (Grassberger
and Procaccia, 1983a, 1983b), all manner of time series
were subjected to nonlinear analysis in the hope of
“reconstructing the attractor” and of determining its
dimension, which was interpreted as an upper bound
on the number of degrees of freedom needed to
reproduce the system’s behaviour. In fact – as argued
by Schertzer et al. (2002), Schertzer and Lovejoy
(2003) – the mathematics do not support such a
statement: they showed that indeed a stochastic cascade
process may yield a finite correlation dimension,
whereas the process itself has an infinite dimension!
They therefore raised the question “which chaos?” For
climate models essentially the same question was
asked by Lorenz (1975), and more recently Palmer
(2012) has strongly defended stochastic approaches.

Other developments in the 1980s helped to trans-
form the “deterministic chaos revolution” into a more
general “nonlinear revolution.” Of particular import-
ance for this book was the idea that many geosystems
were fractal (scale invariant) (Mandelbrot, 1977,
1983) and later, that they commonly displayed “self-
organized criticality” (SOC) (Bak et al., 1987; Bak,
1996), implying that many real-world systems could
be “avalanche-like.” Indeed, SOC is so extreme that
even “typical” structures are determined by extreme
events (see Chapter 5 for the connection between
SOC and turbulent cascades).

The success of the apparently opposed paradigms
of deterministic chaos and (stochastic) fractal systems
thus sharply posed the question “which chaos for
atmospheric science: deterministic or stochastic?”
The question was not the philosophical one of

1.1 A new synthesis
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whether or not the world is deterministic or stochas-
tic, but rather whether deterministic or stochastic
models are the most fruitful: which is the closest to
reality (Lovejoy and Schertzer, 1998)? The answer
to this question essentially depends on the number
of degrees of freedom that are important: since
stochastic systems are usually defined on infinite
dimensional probability spaces they are good approx-
imations to systems with large numbers of degrees of
freedom. As applied to the atmosphere, the classical
estimate of that number is essentially the number of
dissipation scale fluid elements in the atmosphere,
roughly 1027–1030 (see Chapter 2 for this estimate).
However, at any given moment clearly many of these
degrees of freedom are inactive, and indeed we shall
see that multifractals (via the codimension function
c(g), Chapter 5) provide a precise estimate of the
fraction of those at any given level of activity and at
any space-time scale.

1.2 The Golden Age, resolution,
revolution and paradox: an up-to-date
empirical tour of atmospheric variability

1.2.1 The basic form of the emergent
laws and spectral analysis
Without further mathematical or physical restrictions,
the high number of degrees of freedom paradigm of
stochastic chaos is too general to be practical. But with
the help of a scale-invariant symmetry such that in some
generalized sense the dynamics repeat scale after scale, it
becomes tractable and even seductive. It turns out that
the equations of the atmosphere are indeed formally
scale-invariant (Chapter 2), and even fields for which no
theoretically “clean” equations exist (such as for precipi-
tation) still apparently respect such scale symmetries.
However, even if the equations respect a scaling sym-
metry, the solutions (i.e. the real atmospheric motions)
would not be scaling were it not for the scale invariance
of the relevant boundary conditions.

We have briefly mentioned the Kolmogorov law as
being an example of an emergent law. Indeed, all the
emergent laws discussed in this book are of the form:

Fluctuations � ðturbulent fluxÞa � ðscaleÞH ð1:1Þ

The Kolmogorov law mentioned in the previous
section is recovered as a special case if the velocity

difference Dv across a fluid structure of a given scale
(L) is used for the fluctuations and we take the scaling
exponent H ¼ 1/3 and the turbulent flux is e and
a ¼ 1/3. The book is structured around a series of
generalizations of this basic equation. For example,
rather than considering smooth or weakly varying
(for example quasi-Gaussian) fluxes, we show in
Chapters 3 and 5 how to treat wildly variable fluxes
that are the results of multiplicative (and multifractal)
cascades (this involves interpreting the equality in
Eqn. (1.1) in the sense of random variables). Then
in Chapters 6 and 7 we generalize the notion of
“scale” to include strong anisotropy – needed in
particular for handling atmospheric stratification
(“generalized scale invariance”). In Chapters 8 and 9
this is further generalized from anisotropic space to
anisotropic space-time (including causality). Finally
in Chapter 10 we show how the long-time behav-
iours of space-time cascades involve “dimensional
transitions” and low-frequency weather fluctuations
with H < 0. According to Eqn. (1.1), since the mean
of the turbulent flux is independent of scale this
“macroweather” regime is characterized by mean
fluctuations that decrease with scale. This contrasts
with the higher-frequency “weather” regime in which
typically H> 0 so that, on the contrary, mean weather
fluctuations increasewith scale. Box 1.1 (below) discusses
the typical types of variability associated with different
H values.

We now proceed to give an empirical tour of some
of the fields relevant either directly or indirectly to
atmospheric dynamics. This overview is not exhaust-
ive, and it partly reflects the availability of relevant
analyses and partly the significance of the fields in
question. Our aim is to exploit the current “golden
age” of geophysical observations so as to demonstrate
as simply as possible the ubiquity ofwide-range scaling –
even up to planetary scales – and hence the fundamental
relevance of scaling symmetries for understanding the
atmosphere. However, before setting out to empirically
test Eqn. (1.1) on atmospheric fields, a word about
fluctuations. Often, the definition of a fluctuation as
simply a difference is adequate (strictly speaking when
0<H< 1), but sometimes other definitions are needed.
Indeed, there has arisen an entire field – wavelets –

centred essentially around systematic ways of defining
and handling fluctuations. For most of the following,
thinking of fluctuations as differences is adequate,
but some mathematical formalism is developed in
Section 5.5, and as a practical matter, differences are
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not adequate in Chapter 10, where we treat
macroweather which has H < 0 and requires other
definitions of fluctuations (we recommend the simple
Haar fluctuation, but others are possible).

In the following scaling overview, it will therefore
be convenient to use the Fourier (spectral) domain
version of Eqn. (1.1), which avoids these technical
issues. In Fourier space, Eqn. (1.1) reads:

Varianceobservables

wavenumber

� �

¼
Variancefluxa

wavenumber

� �

ðwavenumberÞ�2H

ð1:2Þ

Consider a random field f(r) where r is a position vector.
Its “variance/wavenumber” or “spectral density” E(k) is
the total contribution to the variance of the process due
to structures with wavenumber between k and k þ dk,
i.e. due to structures of size l ¼ 2p/k where l is the
corresponding spatial scale and k ¼ jkj (the modulus
of the wavevector); we postpone a more formal defin-
ition to Chapter 2. The spectral density thus satisfies:

h f ð�rÞ
2i ¼

ð

1

0

EðkÞdk ð1:3Þ

where h f ð�rÞ
2i is the total variance (assumed to be

independent of position; the angular brackets “<·>”

indicate statistical averaging).
In the following examples we demonstrate the

ubiquity of power law spectra:

EðkÞ � k�b ð1:4Þ

If we now consider the real space (isotropic) reduction
in scale by factor l we obtain:�r ! l�1

�r corresponding
to a “blow up” in wavenumbers: k ! lk; power law
spectra E(k) (Eqn. (1.4)) maintain their form under this
transformation: E ! l�bE so that E is “scaling” and
the (absolute) “spectral slope” β is “scale-invariant.” If
empirically we find E of the form Eqn. (1.4), we take this
as evidence for the scaling of the field f. For themoment,
we consider only scaling and scale invariance under
such conventional isotropic scale changes; in Chapter
6 we extend this to anisotropic scale changes.

1.2.2 Atmospheric data in a Golden Age
As little as 25 years ago, few atmospheric datasets
spanned more than two orders of magnitude in scale;

yet they were challenging even to visualize. Global
models had even lower resolutions, yet required
heroic computer efforts. The atmosphere was seen
through a low-resolution lens. Today, in-situ and
remote data routinely span scale ratios of 103–104

in space and/or time scales, and operational models
are not far behind. We are now beginning to per-
ceive the true complexity of atmospheric fields
which span ratios of over 1010 in spatial scales (the
planet scale to the dissipation scale). One of the
difficulties in establishing the statistical properties
of atmospheric fields is that it is impossible to esti-
mate spatial fields without making important
assumptions about their statistical properties. We
now survey the main data types, indicating some of
their limitations, and briefly discuss the various rele-
vant data sources.

In-situ networks

In-situ measurements have the advantage of directly
measuring the quantities of greatest interest, the vari-
ables of state: pressure, temperature, wind, humidity
etc. However, at the outset, these fields are rarely
sampled on uniform grids; more typically they are
sampled on sparse fractal networks (see Fig. 3.6a for
an example). In addition, standard geostatistical tech-
niques such as Kriging require various regularity and
uniformity assumptions which are unlikely to be sat-
isfied by the data (as we shall see, the latter are more
accurately densities of measures which are singular
with respect to the usual Lebesgue measures). This
means that the results will depend in power law ways
on their resolutions.

At first sight, an in-situ measurement might appear
to be a “point” measurement, but this is misleading
since while their spatial extents may be tiny compared
to the analysis grids, what is relevant is rather their
space-time resolutions, and in practice this is never
point-like – nontrivial amounts of either spatial or
temporal averaging are required. The main exceptions
would be measurements simultaneously near 10 kHz
in time and at 0.1–1 mm in space, which would allow
one to approach the typical viscous dissipation (and
hence true homogeneity) space and time scales.

In-situ measurements: aircraft, sondes

In-situ measurement techniques such as aircraft
(horizontal) or sondes (vertical) have other prob-
lems, some of which we detail in later chapters.
Aircraft data are particularly important. In many

1.2 The Golden Age, resolution, revolution and paradox

5



cases they provide our only direct measurements of
the horizontal statistics. Unfortunately aircraft don’t
fly in perfectly flat straight trajectories; due to the
very turbulence that they attempt to measure, the
trajectories turn out to be more nearly fractal and –

this turns out to be even more important – their
average slopes with respect to the vertical are typic-
ally nonnegligible. If one assumes that the turbulence
is isotropic (or at least has the same statistical expo-
nents in the horizontal as in the vertical), then this
issue is of little importance: if one measures a scaling
exponent, then by the isotropy assumption it is unique
so that the exponent estimate is assumed to be correct.
However, it turns out that if the turbulence is strongly
anisotropic, with different exponents in the horizontal
and vertical directions, then (as we show in Chapter 6)
the interpretation of the measurements is fraught with
difficulties and one will generally observe a break in the
spectrum/scaling. For the smaller scales the statistics
are dominated by the horizontal fluctuations, while at
the larger scales they are dominated by the vertical
fluctuations. In Chapter 2 we see that naive use of
isotropy assumptions has commonly led researchers
to misinterpret this spurious transition from horizon-
tal to vertical scaling as a signature of a real physical
transition from an isotropic 3D turbulence regime at
small scales to an isotropic 2D turbulence regime at
large scales.

Remote sensing

One way of overcoming the problems of in-situ sam-
pling is to use remotely sensed radiances. There is a
long history of using radiances in “inversion
algorithms” in an attempt to directly estimate atmos-
pheric parameters (Rodgers, 1976). However, to be
useful in numerical weather models, the data extracted
from the inversions must generally be of high accur-
acy. This is because models typically require gradients
of wind, temperature, humidity etc., and taking the
gradients greatly amplifies errors. The fundamental
problem is that classical inversion techniques aim to
estimate the traditional numerical model inputs (vari-
ables of state) and they rely on unrealistic subsensor
resolution homogeneity assumptions to relate these
parameters to the measured radiances. Since the
heterogeneity is generally very strong (scaling, multi-
fractal) there are systematic power law dependencies
on the resolution of the measurements (a consequence
of the cascades structure, Section 5.3). Therefore,

new resolution-independent algorithms are needed
(Lovejoy et al., 2001).

Reanalyses

Having recognized that in-situ measurements
have frequent “holes,” and that the inversion of remote
measurements is error-prone, one can attempt to com-
bine all the available data as well as the theoretical
constraints implied by the governing atmospheric
equations to obtain an “optimum estimate” of the state
of the atmosphere; these are the meteorological “reana-
lyses.” Reanalyses are effectively attempts to provide the
most accurate set of fields consistent with the data and
with the numerical dynamical models, themselves
believed to embody the relevant physical laws. The data
are integrated in space with the help of a variational
algorithm either at regular intervals (“3D var”); or – in
the more sophisticated “4D var” – both in space and
time (see e.g. Kalnay, 2003). In these frameworks,
remotely sensed data can also be used, but in a forward
rather than an inverse model: one simply calculates
theoretically the radiances from the guess fields of the
traditional atmospheric variables. Once all the guess
fields are calculated at the observation times and places,
then the two are combined by weighting each guess and
measurement pair according to pre-established uncer-
tainties. While these sophisticated data assimilation
techniques are elegant, one should not forget that they
are predicated on various smoothness and regularity
assumptions which are in fact not satisfied because of
the very singular scaling effects discussed in this book.
These resolution effects introduce nonnegligible uncer-
tainties and possible biases on the reanalyzed fields.

1.2.3 The horizontal scaling
of atmospheric fields
We start our tour by considering global-scale satellite
radiances, since they are quite straightforward to inter-
pret. Fig. 1.2 shows the “along track” 1D spectra from
the Visible Infrared Sounder (VIRS) instrument of the
Tropical Rainfall Measurement Mission (TRMM) at
wavelengths of 0.630, 1.60, 3.75, 10.8, 12.0 mm, i.e. for
visible, near infrared and (the last two) thermal infra-
red. Each channel was recorded at a nominal reso-
lution of 2.2 km and was scanned over a “swath” 780
km wide, and � 1000 orbits were used in the analysis.
The scaling apparently continues from the largest
scales (20 000 km) to the smallest available. At scales
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below about 10 km, there is a more rapid fall-off but
this is likely to be an artefact of the instrument, whose
sensitivity starts to drop off at scales a little larger than
the nominal resolution. The scaling observed in the
visible channel (1) and the thermal IR channels (4, 5)
are particularly significant since they are representa-
tive respectively of the energy-containing short- and
long-wave radiation fields which dominate the earth’s
energy budget. One sees that thanks to the effects of
cloud modulation, the radiances are very accurately
scaling. This result is incompatible with classical
turbulence cascade models which assume well-defined
energy flux sources and sinks with a source and sink-
free “inertial” range in between (see Section 2.6.6).

Also of interest is the fact that the spectral slope β is
close (but a little lower) than the value β¼ 5/3 expected
for passive scalars in the classical Corrsin–Obukhov
theory discussed in Chapter 2. This result is consistent
with theoretical studies of radiative transfer through
passive scalar clouds (Watson et al., 2009; Lovejoy
et al., 2009a). Although we cannot directly interpret
the radiance spectra in terms of the wind, humidity or
other atmospheric fields, they are strongly nonlinearly
coupled to these fields so that the scaling of the radi-
ances are prima facie evidence for the scaling of the
variables of state. To put it the other way around: if the
dynamics were such that it predominantly produced
structures at a characteristic scale L, then it is hard to
see how this scale would not be clearly visible in the
associated cloud radiances.

To bolster this interpretation, we can also consider
the corresponding images at microwave channels
(corresponding to black body thermal emission with
wavelengths in the range 0.351–3.0 cm) (Fig. 1.3). In
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Fig. 1.2 Spectra from � 1000 orbits of the Visible Infrared
Sounder (VIRS) instrument on the TRMM satellite channels 1–5
(at wavelengths of 0.630, 1.60, 3.75, 10.8, 12.0 μm from top to
bottom, displaced in the vertical for clarity). The data are for the
period January through March 1998 and have nominal resolutions
of 2.2 km. The straight regression lines have spectral exponents
β ¼ 1.35, 1.29, 1.41, 1.47, 1.49 respectively, close to the value
β ¼ 1.53 corresponding to the spectrum of passive scalars
(¼ 5/3 minus intermittency corrections: see Chapter 3). The units are
such that k ¼ 1 is the wavenumber corresponding to the size of the
planet (20 000 km)–1. Channels 1, 2 are reflected solar radiation so
that only the 15 600 km sections of orbits with maximum solar
radiation were used. The high-wavenumber fall-off is due to the
finite resolution of the instruments. To understand the figure we
note that the VIRS bands 1, 2 are essentially reflected sunlight
(with very little emission and absorption), so that for thin clouds the
signal comes from variations in the surface albedo (influenced by
the topography and other factors), while for thicker clouds it
comes from nearer the cloud top via (multiple) geometric and Mie
scattering. As the wavelength increases into the thermal IR, the
radiances are increasingly due to black body emission and
absorption with very little multiple scattering. Whereas at the visible
wavelengths we would expect the signal to be influenced by the
statistics of cloud liquid water density, for the thermal IR
wavelengths it would rather be dominated by the statistics of
temperature variations – themselves also close to those of passive
scalars. Adapted from Lovejoy et al. (2008).
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Fig. 1.3 Spectra of radiances from the TRMMMicrowave Imager (TMI)
from the TRMM satellite, � 1000 orbits from January through March
1998. From bottom to top, the data are from channels 1, 3, 5, 6, 8
(vertical polarizations, 2.8, 1.55, 1.41, 0.81, 0.351 cm) with spectral
exponents β¼ 1.68, 1.65, 1.75, 1.65, 1.46 respectively at resolutions 117,
65, 26, 26, 13 km (hence the highwavenumber cutoffs), each separated
by one order of magnitude for clarity. To understand these thermal
microwave results, recall that they have contributions from surface
reflectance, water vapour and cloud and rain. Since the particles are
smaller than thewavelengths this is the Rayleigh scattering regime and
as the wavelength increases from 3.5 mm to 2.8 cm the emissivity/
absorbtivity due to cloud and precipitation decreases so thatmore and
more of the signal originates in the lower reaches of clouds and
underlying surface. Also, the ratio of scattering to absorption increases
with increasingwavelength so that at 2.8 cmmultiple scattering can be
important in raining regions. The overall result is that the horizontal
gradients –which will influence the spectrum –will increasingly reflect
large internal liquid water gradients.
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order to extend these results to smaller scales, we can
use either finer-resolution satellites such MODIS,
SPOT or LANDSAT, or we can turn to ground-based
photography (Figs. 1.4a, 1.4b). Again, we see no evi-
dence for a scale break. Interestingly, the average expo-
nent β � 2 indicates that the downward radiances
captured here (with near-uniform background sky)
are smoother (larger β) than for the upward radiances
analysed in Figs. 1.2 and 1.3 (the variability falls off
more rapidly with wavenumber since β is larger).

The remotely sensed data analyzed above give
strong direct evidence of the wide-range scaling of
the radiances and hence indirectly for the usual
meteorological variables of state. For more direct
analyses, we therefore turn our attention to reana-
lyses. Fig. 1.5a shows representative reanalyses taken
from the European Medium Range Weather Fore-
casting Centre (ECMWF) “interim” reanalysis

products, the zonal and meridional wind, the geopo-
tential height, the specific humidity, the temperature,
vertical wind. The ECMWF interim reanalyses are
the successor products to the ECMWF 40-year
reanalysis (ERA40) and are publicly available at
1.5� resolution in the horizontal and at 37 constant
pressure surfaces (every 25 mb in the lower atmos-
phere). At the time of writing, the fields were avail-
able every 6 hours from 1989 to the present. The
data in Fig. 1.5a were taken from the 700 mb level.
The 700 mb level was chosen since it is near the
data-rich surface level, but suffers little from the
extrapolations necessary to obtain global 1000 mb
fields (which is especially problematic in mountain-
ous regions); it gives a better representation of the
“free” atmosphere (see Section 4.2.2 for more infor-
mation and analyses, and Berrisford et al., 2009, for
complete reanalysis details).
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Fig. 1.4 (a) A sample of cloud pictures taken looking
upward from the ground near midday, Montreal,
Quebec. To get a useful resolution of several thousand
pixels on a side, the standard 8 bit imagery of
commercial digital cameras is not adequate. In the
figure it was necessary to scan black and white
negatives (with effectively 13–14 bit dynamical range);
the figure shows typical results in the latter case using
large-format (60 � 60 mm) negatives to resolutions (for
low-lying clouds) down to 50 cm or so. Reproduced
from Sachs et al. (2002). (b) The spectra of the 19 (of 38)
highest-resolution clouds analyzed in with a spectral
slope β � 2; see Fig. 1.4a for 12 of the samples.
Reproduced from Sachs et al. (2002).
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The data analyzed were daily data for the year
2006 with only the band between � 45� latitude
used (with a cylindrical projection). The reason for
this choice was twofold: first, this region is fairly
data-rich compared to the more extreme latitudes;
second, it allows us to conveniently compare the
statistics in the east–west and north–south direc-
tions in order to study the statistical anisotropies
between the two. In addition, the east–west direc-
tion was similarly broken up into two sections, one

from 0� to 180� and the other from 180� to 0�

longitude. For technical reasons (discussed in Chap-
ter 6), the spectrum was estimated by performing
integrals around ellipses with aspect ratios 2 : 1
(EW : NS). The wavenumber scale in Fig. 1.5b
indicates the east–west scale; a full discussion of
the anisotropy is postponed to Chapter 6.

From the figure we can see that the scaling is
convincing (with generally only small deviations at
the largest scales, � 5000 km), although for the
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Fig. 1.5 (a) Comparison of various reanalysis fields for January 1
2006, 0Z, ECMWF interim. This shows the specific humidity (top left),
temperature (top right), zonal, meridional wind (middle left and right),
and vertical wind and geopotential height (bottom left and right).
All fields are at 700 mb. Reproduced from Lovejoy and Schertzer
(2011). (b) Comparisons of the spectra of different atmospheric fields
from the ECMWF interim reanalysis. Top is the geopotential (β¼ 3.35),
second from the top is the zonal wind (β¼ 2.40), third from the top is the
meridional wind (β ¼ 2.40), fourth from the top is the temperature
(β¼ 2.40), fifth from the top is the vertical wind (β¼ 0.4), at the bottom is
the specific humidity (β¼ 1.6). All are at 700 mb and between � 45�

latitude, every day in 2006 at 0GMT. The scale at the far left corresponds to
20 000 km in the east–west direction, at the far right to 660 km. Note that
for these 2D spectra, Gaussian white noise would yield β ¼ –1 (i.e. a
positive slope ¼ þ1). Reproduced from Lovejoy and Schertzer (2011).
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geopotential the deviations begin nearer to 2500 km.
In spite of this generally excellent scaling, the values
of the exponents are not “classical” in the sense that
they do not correspond to the values predicted by
any accepted turbulence theory. An exception is the
value β � 1.6 for the humidity, which is only a bit
bigger than the Corrsin–Obukhov passive scalar
value 5/3 (minus intermittency corrections, which
for this are of the order of 0.15; see Chapter 3),
although in any case classical (isotropic) turbulence
theory would certainly not be expected to apply at
these scales. We could also mention that classically
the atmosphere is “thin” at these scales (since the
horizontal resolution � 166 km is much greater
than the exponential “scale height” � 10 km), and
hence according to the classical isotropic 3D/2D
theory one would expect 2D isotropic turbulence
to apply. For the horizontal wind field this leads
to the predictions β ¼ 3 (a downscale enstrophy
cascade) and β ¼ 5/3 (an upscale energy cascade;
see Chapter 2). In comparison, we see that the
actual value for the zonal wind (β ¼ 2.35) is in
between the two. In Chapter 6 we argue that this
is an artefact of using gradually sloping isobars
(rather than isoheights) in a strongly anisotropic
(stratified) turbulence. These spectra already cau-
tion us that in spite of the intentions of their cre-
ators, the reanalyses should not be mistaken for
real-world fields. Indeed, it is only by comparing
the reanalysis statistics (especially the scaling expo-
nents) with those from other (e.g. aircraft) sources
that they can be validated through scale-by-scale
statistical comparisons.

Satellite imagery and reanalyses are the only
sources of gridded global scale fields, and we have
mentioned some of the limitations of each. We there-
fore now turn our attention to in-situ aircraft
data. First consider the 12 m resolution data from
an experimental campaign over the Sea of China
(Figs. 1.6a, 1.6b). We see that the scaling for both
the temperature and horizontal wind is excellent. In
both cases, the value β � 1.7 (near the Kolmogorov
value 5/3) is reasonable, although in the case of
the temperature we have added reference slopes with
β ¼ 1.9, which seems closer to those of the more
recent data analyzed in Fig. 1.6c over the larger range
560 m to 1140 km. Once again, the scaling is excellent.
We have deliberately postponed discussion of the
larger-scale wind field to Chapters 2 and 6, since
somewhere between � 30 and 200 km (i.e. a bit
beyond the range of Fig. 1.6b) it displays what is
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Fig. 1.6 (a) Aircraft temperature spectra. Grey slopes are 1.9,
black 1.7. The bottom three curves are averages of 10 samples and
each curve is taken at roughly a one-year interval; the top curve is the
overall ensemble average. The curves are displaced in the vertical for
clarity. Adapted fromChigirinskaya et al. (1994). (b) The same as Fig. 1.6a
but for the horizontal wind spectrum; slopes of 1.68 are indicated.
Adapted from Chigirinskaya et al. (1994). (c) Aircraft spectra of
temperature (bottom), humidity (middle), log potential temperature
(top); reference lines β¼ 2. These are averages over 24 isobaric aircraft
“legs” near 200 mb taken over the Pacific Ocean during the Pacific
Winter Storms 2004 experiment; the resolution was 280 m; Nyquist
wavenumber¼ (560 m)�1. Adapted from Lovejoy et al. (2010).
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apparently a spurious break due to the aircraft flying
on isobars at nontrivial slopes.

1.2.4 The atmosphere in the vertical
In spite of the fact that gravity acts strongly at all
scales, the classical theories of atmospheric turbulence
have all been quasi-isotropic in either two or three
dimensions. While a few models tentatively predict
possible transitions in the horizontal (for example
between k�5/3 and k�3 spectra for a 3D to 2D transi-
tion for the wind), in contrast, in the vertical any
3D/2D “dimensional transition” would be even
more drastic (Schertzer and Lovejoy, 1985b). This is
also true for passive scalars: if a passive scalar variance
flux is injected at wavenumbers ki, then we expect
E(k) � kþ1 if k < ki and k�5/3 for k > ki (see e.g.
Lesieur, 1987). It is therefore significant that wind
spectra from relatively low-resolution (50 m) radio-
sondes (Fig. 1.7a, taken as part of the same experi-
ment as the horizontal data analysed in Figs. 1.6a,
1.6b) are scaling over nearly the entire troposphere
(up to 13.3 km). The slope is near (but a little larger
than) that predicted by Bolgiano and Obukhov (11/5),
a fact we discuss in Chapter 6. In any case, the
empirical vertical spectral slope value βv � 2.4 is
greater than the horizontal spectral slope value βh �
5/3 (Fig. 1.6b). Although it is not obvious, this implies
in fact that the atmosphere is more and more strati-
fied at larger and larger scales. Let us mention that the
analysis of another radiosonde dataset (Schertzer and
Lovejoy, 1985b; see Fig. 5.19a) convinced the authors
that the dimensional transition does not occur along
the vertical and hence would not occur along the
horizontal either; this was evidence for the existence
of a new type of scaling. This differential stratification
can be observed directly by eye in Figs. 1.7b and 1.7c,
which are vertical cross-sections of state-of-the-art
lidar aerosol backscatter fields with resolutions down
to 3 m in the vertical. Starting at the low-resolution
image (Fig. 1.7b), we see that structures are generally
highly stratified. However, zooming in closer (Fig. 1.7c),
we can already make out waves and other vertically
(rather than horizontally) oriented structures. In
Fig. 1.7d we confirm – by direct spectral analysis – that
the fields are scaling in both the horizontal and the
vertical directions, and that the exponents are indeed
different in both directions: the critical exponent ratio
(βh – 1)/(βv – 1)¼ Hz is quite near the theoretical value
5/9 discussed in Chapter 6.

1.2.5 The smallest scales
Conventional turbulence theory has primarily been
applied at small scales, and there are a great many
published spectra showing that they are scaling with
various exponents over various ranges. Indeed, clas-
sical turbulence theory predicts that viscosity becomes
dominant (and breaks the scaling) when the turbulent
viscosity from Richardson’s 4/3 law equals the
molecular viscosity (equivalently, when the turbulent
Reynolds number is unity), i.e. at scales L � (n3/e)1/4,
where n � 10�5 m2/s is the kinematic viscosity of air
and e � 10�3 m2/s3 is the typical energy flux to
smaller scales (see discussion in Chapter 8); this leads
to the estimate L � 0.1–1 mm. Also classically, the
number of degrees of freedom is roughly the number
of these 0.1–1 mm sized cubes contained in the
troposphere, therefore a number somewhere around
1027–1030 (for an atmosphere of 104 km of horizontal
and 10 km vertical extent).

Up until now, rather than survey the abundant
literature on small-scale scaling of turbulence, we
have deliberately concentrated on the far less nume-
rous (and more controversial) large-scale analyses
showing the little-known fact that scaling applies not
only at the smallest but also to the largest scales.
However, an interesting nonclassical exception to this
is the case of rain, where the interdrop distances even
in fairly heavy rain are of the order of 10 cm and
hence much larger than the turbulent dissipation
scales. In addition, at large enough scales, rain clearly
follows the wind field (except for a superposed mean
drop-fall speed), so that it is important to determine
the scale where the turbulence and raindrops effect-
ively decouple. Unfortunately, up until now the study
of rain and turbulence have been almost entirely
divorced from each other, so it is only very recently,
with the help of stereophotography of individual
drops, that this question can finally be answered.
Fig. 1.8a shows a representative 3D “drop reconstruc-
tion” in which the positions and sizes of roughly
20 000 drops in a 2 � 2 � 2 m volume were deter-
mined (for clarity only the largest 10% are shown).
Ninety percent of the drops larger than 0.2 mm in
diameter were identified, and the positional accuracy
is of the order of � 4 cm (depth) and � 2 cm (left to
right). The drop liquid water volumes were binned
to this accuracy (i.e. on 4 cm cubes) and the 3D
isotropic spectrum estimated (using spherical shells
in Fourier space, Appendix 2A). The result is shown
in Fig. 1.8b for five storms (a total of 18
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reconstructions from sets of three images (“triplets”)
taken a slightly different angles in 3D). We see a
clear transition from the white noise spectrum
E(k) � k2 at small scales corresponding to the usual
“homogeneous” assumption (Poisson drop statistics),
to the form E(k) � k–5/3 at scales larger than 30–
50 cm (depending somewhat on the rain), which is
the spectrum predicted for passive scalars in Corr-
sin–Obukhov theory. Interestingly, the introduction

of cascades for the rainfall (Schertzer and Lovejoy,
1987) was argued on the basis of coupled cascades of
dynamics and of passive scalar. As detailed in Love-
joy and Schertzer (2008), the transition occurs where
the mean turbulent Stokes number is of order unity;
this is effectively the scale at which the turbulence
and drops decouple due to the drop inertia. Down to
this homogeneous “patch” scale, rain is a thoroughly
turbulent field.
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Fig. 1.7 (a) Adapted from Lazarev et al. (1994), slope –2.4 indicated (287 radiosondes, 50 m resolution, dropped from 13.3 km altitude).
(b) Typical vertical–horizontal lidar cross-section acquired on August 14 2001. The scale (bottom) is logarithmic: darker is for smaller backscatter
(aerosol density surrogate), lighter is for larger backscatter. The black shapes along the bottom are mountains in the British Columbia region of
Canada. The line at 4.6 km altitude shows the aircraft trajectory. The aspect ratio is 1 : 96. Reproduced from Lilley et al. (2004). See colour plate
section. (c) Zoom of Fig. 1.7b showing that at the small scales, structures are beginning to show vertical (rather than horizontal) “stratification”
(even though the visual impression is magnified by the 1 : 40 aspect ratio, the change in stratification at smaller and smaller scales is visually
obvious). Reproduced from Lilley et al. (2004). See colour plate section. (d) The lower curve is the power spectrum for the fluctuations in the
lidar backscatter ratio, a surrogate for the aerosol density (B) as a function of horizontal wavenumber k (in m�1) with a line of best fit with slope
βh ¼ 1.61. The upper trace is the power spectrum for the fluctuations in B as a function of vertical number k with a line of best fit with
slope βv ¼ 2.15. Adapted from Lilley et al. (2004).
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1.2.6 Temporal scaling, weather,
macroweather and the climate
If the wind field is scaling in space, then atmospheric
fields are likely to be scaling in time – at least up to
scales of the order of the lifetime of the largest eddies/
structures in the wind field. This is because physically
the wind transports the fields and dimensionally a
velocity is all that is needed to convert spatial fluctu-
ations into temporal ones. A typical example of tem-
poral scaling is shown in Fig. 1.9a; the mean of hourly
temperature spectra from four years and four stations
from the northwestern USA from the US Climato-
logical Reference Network. We can already note two
key features: the division of the spectrum into two
scaling ranges with a transition frequency roughly
ow ¼ (7 days)–1, and the very sharp diurnal (and
harmonic) “spikes” roughly three orders of magni-
tude above an otherwise scaling “background.”

Fig. 1.9b gives more justification for the existence
of a straightforward space-time relation. It is based
on two months of hourly 30 km resolution thermal
IR data over the west Pacific from 30� S to 40�

N from the geostationary MTSAT satellite. One can
see that if the time scales are converted to space
using a fixed speed of � 900 km/day then the 1D
spatial (zonal, meridional) and temporal spectra
are nearly identical. Although at the largest scales
(corresponding to � 5000 km), the spectrum is
slightly curved, the curvature for both space and
time are virtually identical, so that even over the full
range, time and space are statistically connected
by this constant speed. In addition, much of this
small curvature can be explained by the spectral
anisotropy and the finite range of wavenumbers
empirically available. In Chapters 8 and 9 we discuss
this in more detail and argue that the same data
show evidence that atmospheric waves also display
emergent scaling laws.

But what about the transition and the behaviour at
frequencies below ow? As we discuss in detail in
Chapters 8 and 10, this transition scale is roughly
the lifetime of planetary-sized structures, and the
break is a “dimensional transition” whose mechanism
is fairly obvious. The high frequencies where both
spatial and temporal interactions are important are
statistically quite different from the lower frequencies
where (almost) only temporal interactions are import-
ant. In the former case, this means interactions between
neighbouring structures of all sizes and at their various
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Fig. 1.8 (a) An example of a 3D drop reconstruction. For clarity only
the 10% largest drops are shown, only the relative sizes and positions of
the drops are correct, the colours code the size of the drops. The
boundaries are defined by the flash lamps used for lighting the drops
and by the depth of field of the photographs. Adapted from Lovejoy
and Schertzer (2008). See colour plate section. (b) The angle averaged
drop spectra for five storms, 18 image triplets and, for reference,
Corsin–Obukhov passive scalar theory lines (rain has statistics like a
tracer). This shows the 3D isotropic (angle-integrated) spectrum of the
19 stereophotographic drop reconstructions for r, the particle mass
density. Each of the five storms had 3–7 “scenes” (from matched
stereographic triplets) with 5000�40 000 drops, each taken over a
15–30 minute period. The data were taken from regions roughly 4.4�
4.4 � 9.2 m3 in extent (slight changes in the geometry were made
between storms). The region was broken into 1283 cells (3.4 � 3.4 �
7.2 cm3, geometric mean ¼ 4.4 cm); we used the approximation that
the extreme low wavenumber (log10k ¼ 0) corresponds to the
geometric mean (i.e. 5.6 m, the minimum in the plot corresponds to
about 40–70 cm). The single lowest wavenumbers (k ¼ 1) are not
shown since the largest scales are nonuniformdue topoor lighting and
focus on the edges. The reference lines have slopes �5/3, þ2, i.e. the
theoretical values for the Corrsin–Obukhov (l1/3) law and white noise,
respectively. Adapted from Lovejoy and Schertzer (2008).

1.2 The Golden Age, resolution, revolution and paradox

13



stages of development, whereas in the latter case only
interactions between very large structures at various
stages in their development are important. This break –
which is universally observed (see Chapters 8 and 10
for many examples) – provides an objective basis for
determining the low-frequency limit of the weather
regime.

It turns out that this lower-frequency regime is at
least roughly scaling down to the beginning of a third
new even lower-frequency oc � (10 yr)–1 – (100 yr)–1

regime; see Fig. 1.9c for an instrumental/paleotem-
perature composite spectrum of the “three scaling
regime” model (the figure is a modern update of that
originally proposed in Lovejoy and Schertzer, 1986).
Box 1.1 discusses the corresponding types of
variability.

Although we are used to the idea that “the climate
is what you expect,” i.e. that the climate is simply the
long-term statistics of the weather, Fig. 1.9c shows
that this idea is both vague and misleading. To start
with, as shown graphically in Fig. 1.9d, the intermedi-
ate regime ow < o < oc has statistics which are very
close to those predicted by simply extending the
weather scale models to low frequencies. This
includes the stochastic fractionally integrated flux
(FIF) model developed below (Chapter 5), which pre-
dicts a realistic dimensional transition as well as
standard global climate models (GCMs) when these
are run without special anthropogenic, solar, orbital
or other “climate forcings”: i.e. in “control runs.” This
regime is therefore no more than low-frequency
“macroweather,” without any new internal dynamical
element, or any new forcing mechanism. Although
the three scaling regime picture seems quite realistic,
the transition frequency oc varies from place to place
and even from epoch to epoch, with the Greenland
Holocene series exceptional in having particularly
small values corresponding to very stable (weakly
variable) conditions (see Chapter 10).

On the contrary, the lowest frequencies o < oc,
corresponding to multidecadal, multicentennial, mul-
timillennial variability, correspond to our usual ideas
about “climate.” At these really long time scales – in
addition to various “climate forcings,” all kinds of
complex deep ocean, land, ice and other internal
mechanisms become important – and these may also
be expected to be scale-invariant: in effect the synergy
between nonlinearly interacting parts of the “climate
system” result in the emergence of a unique scaling
regime; in this case between about 10–100 years and
100 kyr (see Fig. 1.9c). At the really low frequencies
below this, the spectrum decreases; this defines the
pseudo-periodicity of the interglacials. Note that the
spectral spikes corresponding to the Milankovitch
(orbital) forcing mechanism are at fairly narrow bands
near the precessional (� (19 kyr)�1, (23 kyr)�1) and
obliquity frequencies (41 kyr)�1, and the “wobbling” of
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Fig. 1.9 (a) The scaling of hourly surface temperatures from four
stations in the northwest USA, for four years (2005–2008) from the
US Climate Reference Network. The data are discussed more fully
in Section 8.1.2. To reduce noise the data were divided into sections
of 112 days and the 48 spectra averaged (the rise at the extreme
low frequency is connected with the annual cycle; see Fig. 8.3c for
the full four-year spectra and discussion of detrending). One can see
that in spite of the strong diurnal cycle (and harmonics) the basic
scaling extends to about 7 days. The reference lines (with absolute
slopes 0.2, 2) are theoretically motivated: see Chapter 10. (b) 1D
spectra from the thermal infrared over the Pacific Ocean (MTSAT).
Analyzed in time (with diurnal peak), in the east–west direction
(bottom at right), and in the north–south direction. Units are such
that the highest wavenumber is (60 km)�1 and highest frequency is
(2 hours)�1 (i.e. the Nyquist wavenumber and frequency of data at
30 km and 1 hour resolutions). In Chapter 8 we show that the low-
frequency/wavenumber curvature is an artefact of the finite
geometry of the MTSAT scene coupled with some horizontal and
space-time anisotropy. The reference line has slope ¼ 1.5.
Reproduced from Pinel (2012).
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the eccentricity at around (100 kyr)�1 is apparently
quite weak: almost all of the variability is due to the
scaling “background,” presumably to internal non-
linear (and apparently scaling) variability.

1.2.7 The scaling of the atmospheric
boundary conditions
In Chapter 2 we shall see that the basic equations of
the atmosphere are scaling, so that solutions can
potentially also be scaling. However, for this to be

true, the boundary conditions must be scaling. We
will therefore now take a quick tour of some of
these.

One of the lower boundary conditions is the
topography, which is of prime importance for
surface hydrology and oceanography, and therefore
for hydrosphere–atmosphere interactions. The issue
of scaling has an even longer history in topography
than in atmospheric science, going back almost
100 years to when Perrin (1913) eloquently argued
that the coast of Brittany was nondifferentiable.
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Fig. 1.9 (c) A composite spectrum of
the GRIP (summit) ice-core δ18O (a
temperature proxy, low resolutions (and
the first 91 kyr at high resolution at left),
with the spectrum of the (mean) 75�

N Twentieth Century Reanalysis (20CR)
temperature spectrum, at 6-hour
resolution, from 1871 to 2008, at 700 mb
(right). The overlap (from 10-year to 138-
year scales) is used for calibrating the
former (moving them vertically on the
log-log plot). All spectra are averaged over
logarithmically spaced bins, 10 per order
ofmagnitude in frequency. Three regimes
are shown corresponding to the weather
regime (which apparently extends down
to turbulent dissipation scales� 1 ms, i.e.
another seven orders ofmagnitude to the
right), with βw ¼ 2; note that the diurnal
variation and subharmonic at 12 hours are
visible at the extreme right. The central
low-frequency macroweather “plateau” is
shown along with the theoretically
predicted βMW¼ 0.2 – 0.4 regime; see
Chapter 10. Finally, at longer time scales
(left), a new scaling climate regime with
exponentβc� 1.4 continues to about 100
kyr. This composite uses a single
instrumental and single paleodata source:
data from the 138-year-long 20CR at 75�

N. This is roughly the same latitude as the
paleotemperatures from δ18O proxy
temperature series from the famous GRIP
Greenland summit ice core (Greenland Ice
Core Project, 1993). More details on these
data are given in Chapters 8 and 10.
Reproduced from Lovejoy and Schertzer
(2012). (d) Similar to Fig. 1.9c, but showing
only the high-resolution paleo spectrum
(GRIP 90 kyr, the average of nine
consecutive 10 kyr sections at 5.2-year
resolution, left), the daily resolution,
annually detrended 20CR spectrum at 75�

N. These empirical spectra are compared
with model spectra: the stochastic (FIF:
fractionally integrated flux model, daily
resolution) and the control run of the IPSL
GCM at monthly resolution, both dashed.
Reproduced from Lovejoy and Schertzer
(2012).
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Later, Steinhaus (1954) expounded on the nonin-
tegrability of the River Vistula, while Richardson
(1961) quantified both aspects using scaling expo-
nents and Mandelbrot (1967) interpreted the expo-
nents in terms of fractal dimensions. Indeed, scaling
in the earth’s surface is so prevalent that there are
entire scientific specializations such as river hydrol-
ogy and geomorphology that abound in scaling laws
of all types, and these virtually require the topog-
raphy to be scaling (see Rodriguez-Iturbe and

Rinaldo, 1997, for a review; and Tchiguirinskaia
et al., 2002, for a comparison of multifractal and
fractal analysis of basins).

The first spectrum of the topography was the
very-low-resolution one computed by Venig-Meinesz
(1951), who noted that it was nearly a power law with
β � 2. After this pioneering work, Balmino et al.
(1973) made similar analyses on more modern data
and confirmed Venig-Meinesz’s results. Bell (1975)
followed, combining various data (including those of

Box 1.1 Characterizing the dynamics by the type of statistical variability

Based on the “spectral slope” in Fig. 1.9c (the negative spectral power law exponent β), we divided atmos-

pheric dynamics into weather, macroweather and climate regimes; we see that each regime primarily displays

a continuous “background” spectrum. Indeed, the annual cycle and its subharmonic at six months are the

only nonscaling features that stand out after the spectrum is averaged over 10 logarithmically spaced bins per

order of magnitude. Each scaling regime can therefore be considered as the outcome of different dynamical

processes, each of which is effectively a (scaling) synergy of nonlinear mechanisms repeating scale after scale

over a wide range. Although Fig. 1.9c characterizes the regimes by β, in Chapter 3 we see how a whole

hierarchy of exponents are needed for full statistical characterizations, and we also show how the hierarchy

can usually be reduced to two additional parameters (“universal multifractals”: see Table 11.7 for the parameters

for the temperature field).

Another way of looking at this is that the dynamics

in each regime generate different types of variability so

that a statistical characterization of the variability and

dynamics are essentially equivalent (although for this to

be fully true, the variability must be characterized in

space-time and it must include any relevant anisotropy;

furthermore, the joint variability of all the dynamically

significant fields must be specified, not just the

temperature).

Fig. 1.9e shows typical examples of series of

temperature data in each regime. In order to make the

comparison clear, each series is shown with both

smallest resolutions and largest scales in the corres-

ponding scaling regimes and each has the same

number of points (720). Perhaps the most obvious

feature is that in the top and bottom series the signal

has a tendency to “wander” whereas in the middle

(the macroweather regime) successive fluctuations

have a tendency to cancel each other out. Indeed,

we shall see that temperature fluctuations DT � DtH

(at lag Dt; see Eqn. (1.1)), and in the weather and

climate regimes H � 0.4 (growing) whereas in the

macroweather H � –0.4. Another feature displayed

by the series is the abruptness of the changes, which

are largest in the weather regime, a bit smaller in the

climate regime and relatively minor in the macro-

weather regime; this feature roughly corresponds to

the intermittency parameter C1.
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Fig. 1.9 (e) In this book, we associate different regimes with different
dynamics on the basis of their types of scaling variability. This figure
gives a visual comparison displaying representative temperature
series from each of the scaling regimes shown in Fig. 1.9c. Bottom to
top: weather, macroweather, climate. To make the comparison as fair as
possible, in each case the sample is 720 points long and each series has
its mean removed and is normalized by its standard deviation (4.49 � K,
2.59� K, 1.39� K, respectively); the two upper series have been displaced in
the vertical by four units for clarity. The resolutions are 1 hour, 20 days and 1
century respectively. The data are from a weather station in Lander,
Wyoming (one of the stations used in Fig. 1.9a), the Twentieth Century
Reanalysis (20CR) and the Vostok Antarctic station, respectively. The scaling
exponents characterizing the regimes are discussed in the book and are
summarized in Table 11.7. Note the similarity between the typeof variability
in the weather and climate regimes (reflected in their scaling exponents).
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abyssal hills) to produce a composite power spectrum
that was scaling over approximately four orders of
magnitude in scale (also with β � 2). More recent
spectral studies of bathymetry over scale ranges from
0.1 km to 1000 km can be found in Berkson and
Matthews (1983) (β � 1.6�1.8), (Fox and Hayes
(1985) (β � 2.5), Gilbert (1989) (β � 2.1�2.3) and
Balmino (1993) (β � 2). Attempts were even made to
generalize this to many natural and artificial surfaces
(Sayles and Thomas, 1978). The resulting spectrum
exhibited scaling over eight orders of magnitude with

β � 2; see, however, the critique by Berry and Hannay
(1978) and Gagnon et al. (2006).

In Fig. 1.10a we show a grey-scale rendition of
the modern ETOPO5 dataset which is the earth’s
topography (including bathymetry) at 5 minutes of
arc, roughly 10 km, and in Fig. 1.10b we show the
corresponding spectrum along with those of other
higher-resolution but regional digital elevation models
(DEMs). These includeGTOPO30 (the continentalUSA
at� 1 km) as well as two other DEMs: the USA at 90 m
resolution and part of Saxony in Germany at 50 cm
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Fig. 1.10 (a) ETOPO5 topography dataset at 5 minutes of arc
resolution (roughly 10 km). The squares delineate regions that
were subject to a special comparison of continental versus
bathymetric/oceanic regions (the H exponents were found to
be a bit different, � 0.4 and 0.7 respectively: see Chapter 5).
Reproduced from Gagnon et al. (2006). (b) A log-log plot of the
spectral power as a function of wavenumber for four digital
elevation models (DEMs). From right to left: Lower Saxony (all,
i.e. with and without trees, top; a section without trees, bottom),
USA (in grey), GTOPO30 and ETOPO5 (top). A reference line
of slope –2.10 is shown for comparison. The small arrows
show the frequency at which the spectra are not well
estimated due to their limited dynamical range (for this
and scale-dependent corrections, see Gagnon et al., 2006).

1.2 The Golden Age, resolution, revolution and paradox
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resolution. Overall, the spectrum follows a scaling
form with β � 2.1 down to at least � 40 m in scale.
The remarkable thing about the spectra is that the
only obvious breaks are near the small-scale end of
each dataset. In Gagnon et al. (2006) it is theoretically
shown that starting from the arrows (which are
always near the high-wavenumber end of the scaling
part), the data are corrupted by an inadequate
dynamical range. For example, the DEM at 90 m
spatial resolution had an altitude resolution of only
1 m, implying that huge swaths of the country had
nominally zero gradients and hence overly smooth
spectra. We shall see later that such power law spectra
imply fractal isoheight contours, and that the topog-
raphy itself (the altitude as a function of horizontal
position) is multifractal, since each isoheight contour
has a different fractal dimension.

The ocean surface is particularly important for
its exchanges with the atmosphere, and Fig. 1.11
shows a particularly striking wide-range scaling
result: a swath over 200 km long at 7 m resolution
over the St. Lawrence estuary in eight different
narrow visible wavelength channels from the air-
borne MIES sensor. The use of different channels
allows one to determine “ocean colour,” which itself
can be used as a proxy for phytoplankton concen-
tration. For example the channels fourth and eighth
from the top in this figure exhibit nearly perfect
scaling over the entire range: these are the channels
which are insensitive to the presence of chlorophyll,
and they give us an indication that over the corres-
ponding range ocean turbulence itself is scaling. In
comparison, other channels show a break in the

neighbourhood of � 200 m in scale: these are sensi-
tive to phytoplankton. The latter are “active scalars”
undergoing exponential growth phases (“blooms”)
as well as being victim to grazing by zooplankton;
in Lovejoy et al. (2000) a turbulence theory is
developed to explain the break with a zooplankton
grazing mechanism. Other important ocean surface
fields that have been found to be scaling over various
ranges include the sea surface temperature field (SST).
The scaling of ocean currents and SST is discussed at
length in Section 8.1.4.

Finally, many surface fields are scaling over wide
ranges, particularly as revealed by remote sensing.
Fig. 1.12 shows 6 MODIS channels at 250 m reso-
lution over Spain (a 512 � 512 pixel “scene”). The
scaling is again excellent except for the single lowest
wavenumber, which is probably an artefact of the
contrast enhancement algorithm that was applied to
each image before analysis. These channels are used
to yield vegetation and surface moisture indices by
dividing channel pair differences by their means, so
that the scaling is evidence that both vegetation and
soil moisture is also scaling. In-situ measurements
show not only that underground flows are also
scaling, but that the hydraulic conductivity is
extremely variable and strongly anisotropic (Tchi-
guirinskaia, 2002).
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Fig. 1.11 The ocean: channels 1–8 offset for clarity, eight visible
channels, 210 km long swath, 28 500 � 1024 pixels, 7 m resolution.
The extreme high wavenumber is (14 m)�1. Adapted from Lovejoy
et al. (2001).
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Fig. 1.12 Spectra of six bands of MODIS radiances over a 512 �
512 pixel region of Spain (at 250 m resolution; k ¼ 1 corresponds to
128 km): E(k) as a function of the modulus of the wave vector. In
order from top to bottom at the point log10k ¼ 0.7, the curves are:
band 6, band 1, band 7, band 2, band 4, band 3. Reference lines have
slopes –1.3. The band wavelengths are (in nm): channel 1: 620–670;
2: 841–876; 3: 459–479; 4: 545–565; 5: 1230–1250; 6: 1628–1652;
7: 2105–2155. These data are used for determining both vegetation
and soil moisture indices. Adapted from Lovejoy et al. (2007).
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1.3 The phenomenological fallacy
We have presented a series of striking wide-range
scaling spectra covering most of the meteorologically
significant fields as well as for several important atmos-
pheric boundary conditions. In this “tour” of the scaling
we have exclusively used a common statistical analysis
technique (the power spectrum). The conclusion that
scaling is a fundamental symmetry principle of wide
applicability is hard to escape, although it is still greeted
with deep scepticism by some. Part of the difficulty
probably stems from the feeling that “the real world
can’t be so simple,” or that “wide-range scaling must
imply that the morphologies of all clouds or all land-
scapes are basically the same at all scales, and this is
absurd” etc. Such reactions illustrate the “phenomeno-
logical fallacy” (Lovejoy and Schertzer, 2007), which
arises when phenomenological approaches are only
based onmorphologies, rather than underlying dynam-
ics. This fallacy has two aspects. First, form and mech-
anism are confounded so that different morphologies
are taken as prima facie evidence for the existence of

different dynamical mechanisms. Second, scaling is
reduced to its special isotropic “self-similar” special case
in which small and large scales are statistically related by
an isotropic “zoom”/“blow-up.” In fact, as we explore
later in this book, scaling is a much more general sym-
metry: it suffices for small and large scales to be related
in a way that does not introduce a characteristic scale,
and the relation between scales can involve differential
squashing, rotation etc. so that small and large scales can
share the same dynamical mechanism yet nevertheless
have quite different appearances.

In order to illustrate how morphologies can
change with scale when the scaling is anisotropic,
consider Fig. 1.13. This is a multifractal simulation
of a rough surface (with the parameters estimated
for the topography); its anisotropy is in fact rather
simple in the framework of the generalized scale
invariance (GSI) that we will discuss in various
chapters. More precisely, it is an example of linear
GSI (with a diagonal generator) or “self-affine”
scaling. The technical complexity with respect to
self-similarity is that the exponents are different in
orthogonal directions, which are the eigenspaces of
the generator, so that structures are systematically
“squashed” (stratified) at larger and larger scales.
The underlying epistemological difficulty, which was
not so simple to overcome and which still puzzles
phenomenologists, corresponds to a deep change in
the underlying symmetries. The top image in the figure
illustrates the morphology at a “geologist’s scale” as
indicated by the traditional lens-cap reference. If these
were the only data available, one might invoke a mech-
anism capable of producing strong left–right striations.
However, if one only had the bottom image available
(at a scale 64 times larger), then the explanation (even
“model”) of this would probably be rather different. In
actual fact, we know by construction that there is a
unique mechanism responsible for the morphology
over the entire range.

Fig. 1.14 gives another example of the phenom-
enological fallacy, this time with the help of multi-
fractal simulations of clouds. Again (roughly) the
observed cascade parameters were used, but each
with a vertical “sphero-scale” (this is the scale where
structures have roundish vertical cross-sections)
decreasing by factors of four, corresponding to
zooming out at random locations. One can see from
the vertical cross-section (bottom row) that the
degree of vertical stratification increases from left
to right. These passive scalar cloud simulations

Fig. 1.13 A self-affine simulation illustrating the
“phenomenological fallacy”: upper and lower images look quite
different while having the same generators of the scale-changing
operator G (see Chapter 6; G is diagonal with elements 0.8, 1.2)
and the same (anisotropic) statistics at scales differing by a factor
of 64 (top and bottom blow-up). The figure shows the proverbial
geologist’s lens cap at two resolutions differing by a factor of 64.
Seen from afar (top), the structures seem to be composed of
left-to-right ridges, but closer inspection (bottom) shows that in
fact this is not the case at the smaller scales. Reproduced from
Lovejoy and Schertzer (2007). See colour plate section.
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(liquid water density, bottom two rows; single scat-
tering radiative transfer, top row) show that by
zooming out (left to right) diverse morphologies
appear. Although a phenomenologist might be tempted
to introduce more than one mechanism to explain the
morphologies at different scales in the figure, we are
simply seeing the consequence of a single underlying

mechanism repeating scale after scale. The phenomeno-
logical fallacy can undermine many classical ideas. For
example, in Lovejoy et al. (2009b) (see Box 6.1) it is
argued that the classical two-scale theories of convection
are incompatible with the data which are scaling, and
that the division into qualitatively distinct small and
large regimes is unwarranted.

Fig. 1.14 Examples of continuous in scale anisotropic multifractals in 3D (256 � 256 � 64). The effect of changing the sphero-scale
(ls, see Chapter 6) on multifractal models of clouds with Hz ¼ 5/9. The cloud statistical parameters are: α ¼ 1.8, C1 ¼ 0.1, H ¼ 1/3 (see Chapter 3;
similar to CloudSat and aerosols, see Chapter 6). From left to right we decrease ls (corresponding to zooming out by factors of 4) so that we
see the initially vertically aligned structures (bottom left) becoming quite flat at scales 64 times larger (right). At the same time, the horizontal
structures have anisotropy characterized by the (matrix) generator G ¼ ((0.8, �0.02), (0.02, 1.2)) so that they too change orientation, elongation
(the horizontal sphero-scale starts at 1 pixel, far left; see Chapters 6 and 7 for this “generalized scale invariance”). The middle row shows a
false-colour rendition of the liquid water density field, the bottom row shows the corresponding vertical sections (side view), the top row
shows the corresponding single scatter visible radiation; the mean optical thickness is 2, isotropic scattering phase function, sun incident at
45� to the right. Reproduced from Lovejoy et al. (2009b).
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Chapter

2
Classical turbulence, modern evidence

2.1 Complexity or simplicity?
Richardson’s dreams and the
emergence of the laws of turbulence

2.1.1 Numerical weather prediction and
statistical theories of turbulence
We have discussed the apparent dichotomy present
at the birth of modern meteorology between the
brute-force numerical integration of (deterministic)
nonlinear partial differential equations, and turbu-
lence approaches seeking emergent (stochastic)
turbulent laws. Interestingly, both approaches coex-
isted within the person of one of its founders,
L. F. Richardson. At first both were rather speculative:
on the one hand, Richardson’s “dream” (Lynch, 2006)
of numerical weather prediction was at least in some
quarters considered to be no more than wishful think-
ing. To appreciate how far advanced it was for its
time, only a few years earlier, Max Margules had even
speculated on the “impossibility” of forecasting
(see the discussion in Lynch, 2006). As for his largely
forgotten other dream of discovering emergent
turbulent laws, for many years this amounted to little
more than the empirical Richardson 4/3 law.

In order to understand the atmosphere, both
deterministic and stochastic approaches have largely
concentrated on analytical approximations. In the
absence of computers, meteorologists developed
barotropic, quasi-geostrophic, hydrostatic and other
approximations. The discipline of “dynamical
meteorology” focused on the stability of various
strongly idealized prototypical flows such as jets and
fronts. In turbulence, with the help of the simplifying
paradigms of isotropic turbulence (Taylor, 1935)
and statistical stationarity, some progress was initially
made, notably through the Karmen-Howarth (1938)
equations. These equations are directly or indirectly a
cornerstone for a large part of analytic “closure”

approximations that occupied theorists through the
1980s and which persist today.

By the end of the 1970s the relative success of the
brute-force numerical approach had essentially rele-
gated the use of many simplified sets of equations to
the status of research tools, whereas real forecasting
had reverted to the numerical integration of “primitive
equations” (the name is not quite accurate since they
still make approximations – such as the hydrostatic
approximation – and these may still have serious
consequences). In the parallel turbulence approach,
much effort was directed at statistical closure
techniques. These were initially appealing due to their
ability to reach high Reynolds numbers and their rela-
tive simplicity (e.g. the quasi-normal approximation:
Millionshtchikov, 1941). Over time, a series of
improvements were introduced – for example to
obtain statistical models that respected random
Galilean invariance (the “test field” and subsequent
models: Kraichnan, 1971). They gave some deep
insights into the dynamics, e.g. the role of nonlocal
interactions (Kraichnan, 1971; Lesieur and Schertzer,
1978) and into the delicate balance between renorma-
lized forcing and viscosity (Schertzer et al., 1998). One
may note that the renormalized forcing that emerges
from the nonlocal small- to large-scale interactions has
since become a practical issue for atmospheric model-
ling: “backscatter” (Palmer andWilliams, 2010). How-
ever, these advances only made it more obvious that
closures could not address the fundamental question
of intermittency (e.g. Frisch and Morf, 1981). In the
last decade, the limitations of closures and kindred
analytical approaches has led to an increasing use of
brute-force “direct numerical simulations” (DNS) in
hydrodyamical turbulence.

In comparison, the classical “emergent” turbulent
laws – the Kolmogorov law for the wind, the Corrsin–
Obukhov law for passive scalar advection, and
the Bolgiano–Obukhov law for buoyancy forced
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turbulence – all assumed a priori the turbulence to be
isotropic in three dimensions, and to be relatively
homogeneous, calm (e.g. quasi-Gaussian). These limi-
tations implied that their range of applicability was
strongly circumscribed. However, as we shall see in the
next chapter, thanks to the development of multiplica-
tive cascade models, since the 1980s their generaliza-
tions have been quite successful at handling
intermittency, and in Chapters 6 and 7 we show how

their generalization to anisotropic turbulence has
enabled us to apply them up to planetary
scales. However, these developments are still not widely
known or appreciated, so that for the moment the
brute-force approach has triumphed but at the cost of
complex codes based on nontrivial numerical trunca-
tions, smoothness, and regularity assumptions. In the
process the goal of understanding has often been sacri-
ficed on the altar of expediency.

Box 2.1 Richardson and Moore’s law

To close the circle, we could mention that it is ironic that even in his brute-force approach Richardson was not just a

dreamer, but a pioneer having spent – by his own admission – six weeks manually integrating the equations to obtain

a 12-hour forecast at two grid points. Indeed, he could perhaps be considered the founder of Moore’s law of

computing technology (Fig. 2.1)!
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Fig. 2.1 Was Richardson the founding point of Moore’s law? The progress of computer power in flops. Two lines are shown: the top is
for the fastest computers, the lower for computers used for operational weather forecasting. Extrapolated from Lynch (2006).
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2.1.2 The nonlinear revolution: complex
or simple?
From this historical overview, it would seem that both
numerical and turbulence approaches have increas-
ingly reinforced the idea that the atmosphere is such
a highly complex system that it defies simple
approaches and frameworks. But the history of science
is replete with examples where apparent complexity at
one level has given way to simplicity at another. Even
continuum mechanics itself could be regarded as an
emergent paradigm with respect to more fundamental
theories which operate at the atomic level, such as
statistical mechanics: the Boltzmann equations. In the
same way, classical statistical physics itself consists of a
set of macroscopic laws which emerge when Newton’s
laws are applied to large numbers of particles, and
similarly quantum statistical physics emerges from
the application of quantum mechanics to the same.

The “nonlinear revolution” in the 1980s resusci-
tated hope that emergent turbulent laws that would
simplify our understanding were within reach. At the
time, enthusiasm was sometimes so strong that it
waxed lyrical:

The discovery was that large classes of non-linear
systems exhibit transitions to chaos which are universal
and quantitativelymeasureable . . . But the breakthrough
consists not so much in discovering a new set of scaling
numbers, as in developing a new way to do physics.
Traditionally we use regular motions (harmonic
oscilliators, plane waves, free particles, etc.) as zeroth
order approximations to physical systems, and account
for weak non-linearities perturbatively. We think of a
dynamical system as a smooth system whose evolution
we can follow by integrating a set of differential
equations. The universality theory seems to tell us that
the zeroth-order approximations to strongly non-linear
systems should be quite different. They show an
amazingly rich structure which is not at all apparent in
their formulation in terms of differential equations.
However, these systems do show self-similar structures
which can be encoded by universal equations. . . To put
it more succinctly, junk your old equations and look for
guidance in clouds’ repeating patterns.

(P. Cvitanovic, discussing low-dimensional
deterministic chaos in the introduction to his book

Universality in Chaos, 1984)

Consider Fig. 2.2, an illustration of the Mandelbrot
set. While this has been termed “the most complicated
object in mathematics” (Dewdney, 1985), it could
nevertheless be considered on the contrary to be one

of the simplest, since it is generated by the simplest
possible nonlinear dynamics: a quadratic map on the
complex plane. Indeed, one can define “algorithmic
complexity” (e.g. Goldreich and Wigderson, 2008) in
terms of the minimal number of bits needed in a
computational algorithm. With this definition, the
Mandelbrot set is on the contrary exceedingly simple.
Of more relevance to our present discussion is the
drunkard’s walk or “Brownian motion” (Fig 2.3). On
the one hand the actual path of the drunkard is highly
complex. On the other hand, after enough steps, the
statistics become very simple. For example, as long as
the variance of each step is finite (and each is inde-
pendent), and the drunkard uses the same rule to
choose the direction and length of each step, the
variance of the distance from the starting point is
simply proportional to the number of steps. Indeed,
there is an even stronger result: under still fairly wide
conditions, the limiting probability distribution is
Gaussian, i.e. independent of the rule for choosing
the steps. The simple behaviour of the random walk
illustrates another important aspect of the emergence
of simplicity from chaos: it can often be robust, with
the same emergent behaviour arising irrespective of
many of the otherwise complicated details. As an
illustration, Fig. 2.3 shows two different rules for
choosing a step – yet after enough steps they lead to
the same Gaussian statistics. This is a classical and
familiar example of “universality.” When generalized
from finite variance (Laplace, 1886) to infinite vari-
ance (Lévy, 1925), we will see in Chapter 3 that this
universality in the form of a generalized additive
“central limit theorem” is the basis for a generaliza-
tion applicable to multiplicative cascade processes,
and is relevant to turbulence.

The dichotomy of the simple versus the complex
is more relevant to the atmosphere than it might first
appear. Consider the 1 s trace of a component of the
wind shown in Fig. 2.4 (left). Is this simple or is this
complex? In considering data of this sort, Richardson
(1926) was led to ask “Does the wind possess a
velocity?”, continuing, “this question, at first sight
foolish, improves upon acquaintance.” Indeed, he
already proposed that “we may really have to describe
the position x of an air particle by something rather
like Weierstrass’s function”: i.e. a nondifferentiable
fractal (Fig. 2.4, right). It is significant that one thing
that all these examples have in common is their scale
invariance: in the case of the Mandelbrot set, it is only
approximate but becomes more and more exact at

2.1 Complexity or simplicity?
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–0.75104<Re(C)<–0.7408

0.10511<Im(C)<0.11536
Parameters for blow up:

If Z1= 0 , the Mandelbrot set is those

complex C values such that:

...Or simple?

The Mandelbrot set:

Z∞ < ∞

Zn +1 = Z
n

2 
+ C

Complex?

Z, C are complex numbers

Fig 2.2 The Mandelbrot set: lower left is at lowest resolution; the upper left is an enlargement of the section in the small box. The right-hand
side is the enlargement of the small box on the upper left. Adapted from Peitgen and Richter (1986).

Fig. 2.3 The drunkard’s walk: simple or complex? In the boxes on the right, two different walk rules are shown: in the left column, the drunk
moves one step, choosing one of the orthogonal directions at random. Moving from top to bottom, the number of steps increases, approaching
asymptotic statistics at the bottom. In the right column, the directions are again chosen uniformly at randombut some steps are long (5 units) and
some are short (1 unit) with probabilities chosen so that the variance is the same as in the left column. This assures that the limiting walk (lower
right) has the same statistics as at left. This is an example of central limit theorem universality: since the variance is finite, the distributions are
Gaussian in the limit even though the distributions for individual steps are different. Adapted from Schertzer and Lovejoy (1993).
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smaller and smaller scales (see Fig. 2.1 for several
magnifications), while in the drunkard’s walk, after a
large number of steps it is also statistically scale
invariant. Similarly, analysis of the turbulent wind
trace (Fig. 2.4, left) shows that it appears to follow
the (statistically) scale-invariant (Kolmorogov) spec-
trum o�5/3 where o is the frequency. In comparison,
the Weierstrass function W(t)

WðtÞ ¼
X

1

n¼0

b�Hne2pib
nt ; b > 1; 0 < H < 1 ð2:1Þ

is deterministic; by inspection, its Fourier transform
has only discrete frequencies bn decreasing with amp-
litude bH. Each term in the expansion is invariant if
t! t/b and the amplitude ! amplitude/bH. The set of
points on the graph (t, W(t)) is therefore already an
example of anisotropic scaling since unless H ¼ 1 the
amplitudes must be rescaled by a different factor than
the time scales, so that for a small part of the graph to
be identical to a larger part the horizontal and vertical
axes must be “blown up” by different factors.

Finally, we can easily verify the property for which
the Weierstrass function is famous: it is everywhere
continuous and nowhere differentiable. This can be
checked by noting that for 0 < H< 1, the moduli of
the complex amplitudes of each term in Eqn. (2.1)
decrease in geometric progression and hence the
series unconditionally converges. However on the
contrary, the series of the derivatives

W
0
ðtÞ ¼ 2pið1� b�2HÞ�1=2

X

1

n¼0

bð1�HÞne2pib
nt ! 1;

b > 1; 0 < H < 1 ð2:2Þ

will have terms geometrically increasing in amplitude
and will therefore unconditionally diverge, pointing
out that the derivative is almost everywhere not defined!
A glance at the example in Fig. 2.4 (right) shows
graphically what happens: the hierarchical zigzagging
structures continue down to infinitely small scales, pre-
venting the small-scale convergence. This highly irregu-
lar (singular) small-scale behaviour is indeed a hallmark
of fractal processes, although the more interesting cas-
cades lead to something rather different: to multifractals
which are the densities of singularmeasures (Chapter 5).

2.2 The equations of the atmosphere
and their scale symmetries

2.2.1 The cascade alternative
Throughout this book, we argue that at high enough
levels of turbulence (e.g. large enough Reynolds
number, nonlinear variability over a wide enough range
of scales) new, simpler statistics emerge: those of multi-
plicative cascades. Let’s see how these statistics emerge
from the original equations with the help of three basic
cascade properties each satisfied by the equations: (i)
scale invariance, (ii) a scale-by-scale conserved quantity
and (iii) Fourier “locality”: the fact that the interactions
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Fig. 2.4 Left: wind data at 2 kHz. Right: the Weierstrass function with parameters H ¼ 1/3, b ¼ 2. In both cases, the graph is roughly self-affine.

For example the turbulent signal, jhΔvðΔtÞij / ΔtH so that jhΔvðl�1ΔtÞij ¼ l�H jhΔvðΔtÞij (empirically, H � 1/3 here, the Kolmogorov value).
In comparison,

WðtÞ /
X

1

n¼0

AnðtÞ and consecutive terms have the same scaling property: Anþ1ðb
�1tÞ ¼ b�HAnðtÞ where AnðtÞ¼b�nHe2pib

nt (see Eqn. (2.1)).

However the data are multifractal whereas the Weierstrass function is monofractal.
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are strongest between structures of neighbouring size.
Scale invariance implies that the basic dynamical mech-
anism repeats scale after scale, while the locality in scale
property means that large structures do not spontan-
eously break up into much smaller structures without
first passing through intermediate-sized ones. Note that
this latter property, while presumably necessary for the
existence of multiplicative cascades, may not exclude
other types of cascade. For example, 2D enstrophy
cascades are presumably nonlocal (Section 2.5),
although to our knowledge the existence of multiplic-
ative cascades in them has yet to be investigated.

2.2.2 Scaling
Consider incompressible (and constant-density) hydro-
dynamic turbulence with energy injection at large scales
(the forcing), and with dissipation due to viscosity n at
small scales. In between there is a scaling (“inertial”)
range. Strictly speaking, the inertial range (so-called
because it is dominated by the nonlinear, “inertial”
terms) is a scale range with no sources or sinks of energy
flux. However in the atmosphere, this is unrealistic –

and in any case, as long as the latter are scaling, the
assumption is unnecessary.

To see the origin of scaling, let us first consider the
equations of incompressible (and dry) hydrodynam-
ics, the Navier–Stokes equations. These can be con-
sidered to be the basic equations of the atmosphere
and oceans; they are:

@v

@t
þ ð�v�rÞ�v ¼ �

rp

ra
þ nr2

�vþ f
�

ð2:3Þ

r��v ¼ 0 ð2:4Þ

where v is the velocity, t is the time, p is the pressure, ra is
the (fluid) air density, n is the kinematic viscosity, and
f

�
represents the body forces (per unit volume) due to

stirring, gravity. Eqn. (2.3) expresses conservation of
momentum, whereas Eqn. (2.4) expresses
conservation of mass in an incompressible fluid:
mathematically it can be considered simply as a con-
straint used to eliminate p.

These equations are known to be formally invari-
ant under isotropic “zooms” �x ¼ l�x

0, as long as one
rescales the other variables as:
v ¼ lgv v0

t ¼ l�gvþ1t0

n ¼ lgvþ1n0

f ¼ l2gv�1 f 0
ð2:5Þ

gv is an arbitrary scaling exponent (singularity); hence
the possibility of “multiple scaling” discussed below; we

do not consider the pressure since, as noted, it is easy to
eliminate with Eqn. (2.4). The rescaling of the viscosity
may at first glance seem odd, but it may be understood
as a rescaling of the eddy-viscosity or renormalized
viscosity; similar remarks can be made for the forcing
(Schertzer et al., 1998). The rescaling of these equations,
although seemingly straightforward, may have various
meanings, ranging from deterministic to statistical. A
more systematic scaling analysis of differential equa-
tions is obtained with the help of the “pullback trans-
forms” (Schertzer et al., 2010, 2012; Schertzer and
Lovejoy, 2011). We will return to this later; for the
moment, we only note that as far as the scaling con-
straint is concerned, gv can be fairly arbitrary. However,
if we impose a condition such as the conservation of the
energy flux (not the energy: see below) the constraint
will be enough to determine its value. Indeed, consider-
ing the energy flux ε ¼ �@v2=@t, we find:

x ¼ l1x0

ε ¼ l�1þ3gvε0
ð2:6Þ

If it is scale invariant, we obtain gv ¼ 1/3; hence, for
fluctuations in the velocity Dv over distances (lags)
Dx, we obtain for the mean shear:

Dx ¼ l1Dx0

Dv ¼ l1=3Dv0
ð2:7Þ

If we eliminate l this is perhaps more familiar:

Dv ¼
Dx

Dx
0

� �1=3

Dv0 ð2:8Þ

or in dimensional form:

Dv � ε1=3DxHv ; Hv ¼ gv ¼ 1=3 ð2:9Þ

which was first derived by Kolmogorov (1941). A simi-
lar scaling argument in Fourier space yields the famous
k�5/3 energy spectrum first derived by Obukhov (1941):

EðkÞ ¼ ε2=3k�5=3 ð2:10Þ

Since the two are essentially equivalent, both are
sometimes referred to as the “Kolmogorov–Obu-
khov law” (see Section 3.1 for more discussion on
this). Both real and Fourier space results can also be
derived by dimensional analyses on ε(m2/s3), and
one can pass from one to the other if one squares
both sides of Eqn. (2.9), taking ensemble averages
followed by Fourier transforms (see Section 2.4.2).
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The Kolmogorov law is the prototype for the emer-
gent turbulent laws. In the rest of the book we
discuss its limitations as well as its generalizations.

In the following, the exponent H characterizing
the scaling of the fluctuations will appear regularly.
Although the symbol H was chosen in honour of
Edwin Hurst, who was a pioneer in studying long-
range statistical dependency, it is not identical to the
Hurst exponent (the latter has no simple general
expression in multifractal processes).

Although the Kolmogorov law in both real space
and Fourier space forms are often presented as
though they are almost trivially equivalent, in fact
this equivalence is not so obvious. For example,
the Fourier space version shown in Eqn. (2.10)
is a statement relating the variability (variance/
wavenumber, E(k)) to the scale (1/k), whereas the
meaning of the equality in Eqn. (2.9) is less clear. In
accord with the Fourier interpretation, it can be
read as a relation between a “typical” velocity
difference Dv, the scale (“lag” Dx) over which the
difference is estimated and the “typical” energy
flux ε in the corresponding region. However,
the Fourier product in the Obukhov spectral
version of the law corresponds to a real space
convolution (and vice versa), suggesting that the
product ε1=3DxHv should be interpreted instead as a
convolution between ε

1=3 and a power of Dx.
More precisely – and this is the basis of the
“fractionally integrated flux” model which we
describe in Chapter 5 – ε

1=3DxHv is interpreted as a
fractional integration of the highly variable cascade
process ε

1/3 order Hv ¼ 1/3 (integrals of fractional
orders are indeed convolutions with power laws).

As with the Weierstrass function, Eqn. (2.1), this
already implies nondifferentiability:

@v

@x
¼ lim

Dx!0

Dv

Dx
� Dx�2=3 ! 1 ð2:11Þ

Even though at small enough scales Eqn. (2.9) breaks
down (due to viscosity) and the derivatives converge,
the limit will depend on the dissipation scale details.
Similarly, at large scales, the forcing term breaks the
scaling symmetry. However, since in the atmosphere
the “outer” scale is roughly the size of the planet
and the inner “viscous” scale is typically 0.1–1 mm
(although it will vary considerably due to
intermittency – see below), this leaves a potential
scaling range of factor 104 km/10�3 m � 1010.

2.2.3 Conservation of turbulent fluxes
from one scale to another
We have seen that at least formally, the equations of
hydrodynamic turbulence are scaling under isotropic
scale changes. We now consider the energy flux whose
density is:

ε ¼ �
1

2

@v2

@t
ð2:12Þ

The term “flux”may appear odd; it refers to an energy
per mass per time that passes through a spherical shell
in Fourier space – it is a Fourier space flux – see
Section 2.4.2. Shortly, we give a (classical) demonstra-
tion that it is indeed conserved by the nonlinear
“inertial” terms. This is important, because we are
interested in strongly nonlinear situations where these
terms are dominant. The ratio of the nonlinear term
to the dissipative (viscous) term in the Navier–Stokes
equation can be estimated using the Reynolds
number:

Re 	
Nonlinear terms

Linear damping
¼

jv�rvj

njr2vj
	

V �L

n
ð2:13Þ

where V is a “typical” velocity of the largest-scale
motions L (the “outer” scale). In the atmosphere, Re
is usually estimated by taking V � 10 m/s or struc-
tures size 104 km (see Chapter 8 for more precision
and discussion). At standard temperature and
pressure the viscosity of air is n ¼ 10�5 m2/s, hence
Re � 1012. The Reynolds number is the nonlinear
“coupling constant” for the problem – so in this
strong coupling limit we may anticipate that many
standard methods such as perturbation techniques
(which work by solving the easy linear problem and
treating the nonlinear term as a perturbation) will not
converge. Even so, attempts are still regularly made to
find clever “closure” or “renormalization” methods
that might succeed in correctly summing the contri-
butions from all the nonlinear effects.

In the atmosphere, we are therefore interested in
the limit Re ! 1. Note that putting n ¼ 0 reduces
the Navier–Stokes equations to the “Euler equations”
(discovered 100 years earlier in 1754), but the latter is
presumably not the same as taking the limit
Re ! 1ðn ! 0Þ, since putting n ¼ 0 reduces the
order of the equation (from 2nd to 1st); hence
the limit n ! 0 is a singular perturbation problem.
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We now show that under certain conditions of
mathematical regularity, the integral of the energy
rate density ε of a fluid parcel is conserved by the
nonlinear terms of the Navier–Stokes equation.
Starting with the equation of an inviscid fluid
(i.e. n ¼ 0; Euler equation) with no forcing term at
constant fluid density:

@v

@t
¼ �ðv�rÞv�r

p

rf

 !

ð2:14Þ

Multiplying both sides by v:

ε ¼ �
1

2

@v2

@t
¼ �v�ðv�rÞv� ðv�rÞ

p

rf

 !

ð2:15Þ

Because of incompressibility (i.e.r��v ¼ 0), Eqn. (2.15)
can be written:

ε ¼ �r�
1

2
v2 þ

p

rf

 !

v

" #

ð2:16Þ

Integrating over a volume of space V, it yields
(due to Gauss’s divergence theorem that trans-
forms volume integrals of divergences to surface
integrals):
ð

V

ε dV ¼ �

ð

V

r�
1

2
v2 þ

p

rf

 !

v

" #

dV ¼ �

þ

S

1

2
v2 þ

p

rf

 !

v�dS

ð2:17Þ

where the right-hand integral is over the enclosing
surface only. The first term in the surface integral
represents the transfer of kinetic energy across the
surface, the second is the work done by pressure forces;
there is no net source or sink of ε inside the volume.

We now consider the dissipation term nr2v.
Multiplying by v, ignoring the surface term, we
obtain:
ð

V

ε dV ¼ vv�

ð

V

r2v dV ð2:18Þ

Now, using vector identities, we have:

v�r2v ¼ �jr � vj2 �r�½ðr � vÞ � v
 ð2:19Þ

The second term on the right-hand side is a diver-
gence, and when integrated over a volume it can
be rewritten as a surface integral (Gauss’s theorem):

ð

V

ε dV ¼ �n

ð

V

�

�

�

�

r� v

�

�

�

�

2

dV � n

þ

S

�

ðr � vÞ � v

�

� dS

ð2:20Þ

Since the surface integral vanishes if S is a current
surface ðdS⊥vÞ or a rigid boundary (v ¼ 0), it can be
ignored if we take it to infinity. In these cases, the
right-hand side integrand is a positive definite quan-
tity, n > 0, and hence the viscosity is always dissipa-
tive (decreases the total energy). Conversely, if n ¼ 0,
then ε is “conserved” by the nonlinear terms, and even
when n > 0, the dissipation will only be important at
small scales where the derivatives r��v (i.e. the
vorticity) are important.

2.3 Extensions to passive scalars, to
the atmospheric primitive equations

2.3.1 Passive scalars, conservation of
passive scalar variance flux
If we include the concentration r of a passive scalar
quantity (i.e. a quantity such as an inert dye or in
atmospheric experiments chaff, which is advected,
transported by the wind without influencing the
wind), we obtain the additional equation:

@r

@t
¼ �v�rr� kr2rþ fr ð2:21Þ

where k is the molecular diffusivity of the fluid.
Equations (2.3), (2.4), (2.21) are also formally

invariant under the following scale-changing
operations:

x ¼ l1x0; v ¼ lgvv0; t ¼ l1�gv t0;
r ¼ lgrr0; f ¼ l1þ2gv f 0; fr ¼ l1þ2gv f 0r;

v ¼ l1þgvv0; k¼ l1þgrk0
ð2:22Þ

where gv, gr are arbitrary. This arbitrariness allows
the possibility of multiple scaling (i.e. weak and
intense turbulent regions which scale differently, and
have different fractal dimensions); hence the solutions
can in principle be multifractals.

By repeating arguments similar to the above for r2

rather than v2, one can check that the scalar variance
flux:

w ¼ �
1

2

@r2

@t
ð2:23Þ
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analogous to ε is conserved by the nonlinear terms
v�rr. Putting k ¼ 0 and recalling r�v ¼ 0:

w ¼ �
1

2

@r2

@t
¼ �rv�rr ¼ �

1

2
r�ðvr2Þ ð2:24Þ

hence:
ð

V

w dV ¼ �
1

2

þ

S

r2v�dS ð2:25Þ

This shows that there is no volume contribution to the
passive scalar variance; it will be conserved by the
nonlinear �v�rr term.

Using the conservation of w one obtains gr ¼ (1 –

gv)/2, and since from Eqn. (2.9) (from the conservation
of ε) gv ¼ 1/3, we find gr ¼ 1/3. This yields the
result analogous to the Kolmogorov law: the
“Corrsin–Obukhov law of passive scalar advection”
(Obukhov, 1949; Corrsin, 1951), which in dimensional
form is:

Dr ¼ w1=2ε�1=6DxHr ; Hr ¼ gr ¼ 1=3 ð2:26aÞ

i.e. with the same exponent H as the Kolmogorov law.
Similarly, the Fourier space version is:

ErðkÞ ¼ wε�1=3k�5=3 ð2:26bÞ

2.3.2* The scale invariance of the
equations of the atmosphere: an anisotropic
scaling analysis of the “primitive equations”
We can also try the same approach to the scaling of
the equations of the atmosphere. However, we will see
that the effect of gravity and Coriolis forces make the
analysis much more complex. We have seen that the
dissipation terms can be either neglected (by con-
sidering large enough scales much larger than the
dissipation scales), or “rescaled” by changing the
values of the viscosity and diffusivity; we therefore
neglect them for simplicity. We also neglect water in
all of its phases. The basic equations for the velocity,
energy, continuity and equation of state are:

@v

@t
¼ �ðv�rvÞ � 2O� v�

1

r
rp� g þ F ð2:27Þ

@T

@t
¼ �ðv�rÞT �

p

rcv
r�vþ

Q

cv
ð2:28Þ

@r

@t
¼ �ðv�rÞr� rr�v ð2:29Þ

p ¼ rRT ð2:30Þ

whereO is the earth rotation vector, g is the acceleration
of gravity, Q represents sources and sinks of energy, R
is the universal gas constant, cV is the specific heat at
constant volume and T is the temperature. To bring
out the key differences with the scaling arguments in
pure hydrodynamics discussed above, we split the
velocity equation into horizontal and vertical com-
ponents and use the ideal gas law to replace p/r by RT
in the energy equation. Finally, also for simplicity, we
omit the forcing terms whose scaling can be treated in
the same way as for the hydrodynamic equations
discussed above. The system now becomes:

D

Dt
¼ vh�rh þ w

@

@z
ð2:31Þ

Dvh

Dt
¼ �2f i

z � vh �
1

r
rp� g i

z ð2:32Þ

DT

Dt
¼ �

RT

cv
r�v ð2:33Þ

Dr

Dt
¼ �rr�v ð2:34Þ

where we have introduced the unit vector ẑ in
the vertical (z) direction and the horizontal
components are indicated with the subscript h so that

vh ¼ ðu, vÞ; rh ¼

�

@

@x
,
@

@y

�

with the full 3D

wind vector v ¼ ðu, v, wÞ. We now take into account
the vertical stratification by allowing for an
anisotropic scale transformation:

rh ¼ l1rh
0; z ¼ lHzz0 ; rh ¼ ðx, yÞ ð2:35Þ

vh ¼ lgvvh
0 ; w ¼ lgwwh

0 ; t ¼ l1�gv t0;

r ¼ lgrr0; T ¼ lgTT 0
ð2:36Þ

The key point now is that if:

gv � 1 ¼ gw � Hz ð2:37Þ

then the advection operator D/Dt and velocity diver-
gence will have a uniform scaling (i.e. each term will
transform the same way with scale):

D

Dt
¼ lgv�1 D0

Dt0
; r�v ¼ lgv�1r0�v ð2:38Þ
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Hence we require:

h ¼ gv � gw; h ¼ 1� Hz ð2:39Þ

where the exponent h (equivalently Hz) determines
the stratification (Schertzer et al., 2012).

An indication that this is reasonable comes from the
empirical estimates discussed in Chapters 4 and 6,
where we find for the mean fluctuations: Hv � 1/3,
Hz� 0.44 – 0.56, gw� –0.2 –�0.1 (although the vertical
wind is notoriously difficult to measure, so that the
parameter gw is not well known; see the corresponding
statistical parameter Hw in Table 4.1 for an empirical
estimate). If this (anisotropic) scaling of the advection
operator holds, then the energy and continuity equa-
tions above show that gT and gr may be arbitrary.

The analysis of the velocity equations is more
involved; we follow Schertzer et al. (2012), who find
it convenient to consider the vorticity equation
obtained by taking the curl of the velocity equation:

Do

Dt
¼ ðo�rÞvþ b; b ¼

1

r2
rr�rp ð2:40Þ

where we have kept the compressibility and the
baroclinic term b but (temporarily) dropped the
Coriolis term. We now find that under anisotropic
scale changes (Eqn. (2.35)):
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We can see that things are a little more complicated
because there are effectively three different scaling
exponents (1 þ gv, 1 þ gv � h). Finally, consider
the vortex stretching term:

while the baroclinic term scales as:
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We can now see that if gp � gr ¼ 2gv, then, by
equating terms with the same scaling exponents, we
obtain three equations.

To understand this most clearly, we drop the
baroclinic term and introduce the following notation
for the horizontal (h) and vertical (v) wind and gradient
operator components: v ¼ vh þ vv; r ¼ rh þrv .
The corresponding decomposition of the vorticity is:

o ¼ ov þ oh; oh ¼ sþ t; ov ¼ rh � vh

s ¼ rh � vv; t ¼ rv � vh ð2:44Þ

where oh and ov are the horizontal and vertical com-
ponents of the vorticity. By assuming that oh is negli-
gible at large scales where the (almost vertical) earth
rotation vector O is assumed to be dominant, then
the barotropic vorticity equation (i.e. Eqn. (2.40)) with
(b ¼ 0) then splits into three equations:

Ds

Dt
¼ s�rhvh

Dt

Dt
¼ ðt�rh þ ov�rvÞvh

Dov

Dt
¼ ðt�rh þ ov�rvÞvv

ð2:45Þ

These equations, together with the large-scale condi-
tion ov � O, allow both anisotropic scaling – such as

ðo�rÞv ¼ l2ð1þgvÞ
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that displayed in Eqn. (2.41) to (2.43) – and nonlinear
growth of the horizontal vorticity. We note that the
latter mechanism is absent from the quasi-geo-
strophic (QG) approximation which corresponds to
s¼t ¼ 0 and the approximation Dov=Dt � Ov�rv�vv.
Contrary to the QG equations, the fractional vorticity
equations (2.45) are not approximations to the vorti-
city equation because the former are also solutions of
the latter. Instead, they correspond to selecting rele-
vant interactions which yield solutions with the aniso-
tropic scaling prescribed by Eqn. (2.35) (all this can be
done rigorously using “pullback transforms”: see
Schertzer et al., 2012). This explains the extreme
contrast between Eqn. (2.45), which has 3D nonlinear
vorticity stretching, and the linear stretching in the
QG approximation: Dov=Dt � Ov�rv�vv.

Overall, the solutions of Eqn. (2.45) (and the corres-
ponding equations for the other components) are the
solutions of the vorticity equation that statistically
respect the anisotropic scaling prescribed by Eqn.
(2.35), and statistically break the isotropic scaling of
Eqn. (2.40). These solutions correspond to an alterna-
tive to QG turbulence: they share the common bound-
ary condition that vorticity is dominated by the earth’s
rotation at large scales, but the transfer of the vorticity to
smaller scales is obtained with the help of a nonlinear
stretching term, contrary to the QG approximation. If
we include theCoriolis force, then the vorticity equation
is the same except for the absolute rather than relative
vorticity (Schertzer et al., 2012).

2.4 Classical isotropic 3D turbulence
phenomenology: Kolmogorov
turbulence and energy cascades

2.4.1 Fourier locality, energy transfer
and cascade phenomenology
We have gone through the classical demonstration
that the governing equations are formally isotropic-
ally scale invariant, that the nonlinear terms conserve
the energy and passive scalar variance fluxes, and we
have updated the scaling argument to take into
account anisotropy. We will now study under which
conditions the cascade is local, i.e. the energy trans-
fer is most efficient between neighbouring scales:
that it is “local” in Fourier space. To demonstrate
this, it is usual (e.g. Rose and Sulem, 1978) to use a
discrete hierarchy of eddies, broadly defined as fluid

“coherent” structures. The dynamically important
quantities for this type of analysis are: vn
(an appropriate characteristic velocity difference, see
below); tn (the time scale called the “eddy turnover
time,” which is the typical time necessary for the
dynamics to pass energy fluxes from one scale to
another); and ln, the length scale (size of the eddy).
It is the shear that is important, because the Navier–
Stokes equations are Galilean invariant; it is the
difference of velocity across an eddy which inter-
venes, not the “mean” velocity of an eddy. The sub-
script n refers to the number of octaves from the
largest “outer scale”; thus ln refers to all values of l in

the interval ln
ffiffi

2
p ,

ffiffiffi

2
p

ln

h i

. Since we consider energy

transfer from one scale to another, only motions
which can distort the eddies are dynamically important.
Any overall large-scale motion (i.e. translation) will not
affect the transfer of energy from one scale to another
(by Galilean invariance, we can always move to a refer-
ence frame where the mean velocity is zero). Similarly,
any very small-scale motions within the eddy will be
ineffective at distorting the eddy. This leads us to expect
that only velocity gradients over distances approxi-
mately ln will come into play (in Appendix 2A we show
this more rigorously on condition that the spectral
exponent satisfies 1 < b < 3). We therefore expect the
dynamically important velocity vn at scale ln to be a
typical gradient across the eddy, i.e.:

vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjvðrÞ � vðr þ l nÞj
2i

q

ð2:46Þ

The h� � �i is the ensemble statistical average. Likewise
tn
e

ln=vn, the “eddy turnover time,” is the typical
time scale of the transfer process. Finally (again using
dimensional analysis) the viscous time scale corres-
ponding to the nth octave is:

tn, dis ¼
ln
2

n
ð2:47Þ

Viscosity can be ignored if tn, dis >> tn (i.e. the
viscosity is too slow to affect the dynamics).

2.4.2 The Kolmogorov–Obukhov
spectrum
Denote by

Q

n the rate at which energy is transferred
out of a low wavenumber octave (kn=

ffiffiffi

2
p

� k �
ffiffiffi

2
p

kn) into a higher octave (
ffiffiffi

2
p

kn � k � 2
ffiffiffi

2
p

kn).
This is a Fourier-space energy flux. It is given by the
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energy per unit mass in the octave (En) divided by the
typical time scale of the transfer, the eddy turnover time:

Y

n �
En

tn
ð2:48Þ

Now assume that the cascade is local, so that the domin-
ant contribution to En comes from the velocity gradient
at the same scale, i.e. vn. This implies En

e

vn
2 (recall

that due to incompressibility all energies are taken per
unit mass) and that tvis, n >> tn so that there is no
energy dissipation in this wavenumber band. If the
energy injection rate ε (e.g. by stirring) at large scale is
balanced by viscous dissipation at small scale then it is
possible that the system is stationary (statistically
invariant under translations in time) then

Y

n
e

constant, i.e. there are no viscous losses and no sinks
or sources. This is assumed to be a quasi-steady state:
energy flows through the nth octave at a rate ε which
is on average equal to the large-scale injection rate
and to the small-scale dissipation (as we will see, such
statistical stationarity is quite compatible with violent
fluctuations):

ε ¼
Y

n 	
En

tn
	

vn
2

ln
vn

� 	 	
vn

3

ln
	 constant ð2:49Þ

(assuming that the injection rate is constant).
Y

n is
therefore a scale-invariant quantity (it is independent
of n). This yields Kolmogorov’s law (1941):

vn 	 ε
1=3ln

1=3 ð2:50Þ

Since the fluctuation vn is a scaling power law func-
tion of size ln, we expect that the spectrum will also be
a power law (see Box 2.2 for more details on
Tauberian theorems that relate real space and Fourier
space scaling). For wavenumber p, we therefore seek
the spectral exponent b:

EðpÞ 	 p�b ð2:51Þ

corresponding to the real space exponent 1/3 in
Eqn. 2.50. Assuming b > 1 we get the following
expression for the total variance due to all the wave-
numbers in the nth band:

vn
2 � ln

2

ð

ffiffi

2
p

kn

kn=
ffiffi

2
p
dp p2 EðpÞ ð2:52Þ

(since the variance in a spherical shell between p and
p þ dp is 4p p2dp, and we ignore the constant factor).
We thus obtain:

vn
2 � ln

2 kn
3�b 	 ln

2�3þb ð2:53Þ

(since ln 	 kn
�1). Comparing this with Eqn. (2.50), we

obtain 2 – 3 þ b ¼ 2/3, or:

b ¼
5

3
ð2:54Þ

The Kolmogorov–Obukhov spectrum is thus derived:

EðkÞ 	 ε2=3kn
�5=3 ð2:55Þ

A schematic diagram of the 3D cascade is shown in
Fig. 2.5. The slope of the spectrum on the low-frequency
side of the injection wavenumber is of the form
E(k)	 k2. This follows since using statisticalmechanical
arguments, one expects that there is a low-frequency
“equilibrium” range where each mode has roughly
the same energy (equipartition). The spectral form
E(k) 	 k2 then follows, since there are k2dk modes
between wavenumbers k and k þ dk.

2.4.3 Vortex stretching, the break-up of
eddies and the cascade direction
It is easy to identify each term in the vorticity equa-
tion (2.40): Do=Dt is the convective (total) derivative
of the vorticity (remembering that the total derivative
operator is just D

Dt
¼ @

@t
þ v�r, it represents the change

in a quantity that moves with the flow; it is also called
a Lagrangian derivative), the term vr2o (ignored in
Eqn. (2.40)) represents the molecular dissipation, the
term ðr�vÞo is the compressibility term; we consider
here the simplest incompressible case, r�v ¼ 0. The
all-important “vortex stretching” contribution
ðo�rÞv is so named because its component is only
positive when the gradient of v is parallel to o, in

Log10E(k)

Log10k

ε

k–5/3

ki kdiss

k2

Fig. 2.5 Schematic diagram of 3D energy cascade showing the
equipartition (“equilibrium”) range at low wavenumbers, the energy
flux injection wavenumber ki, the “inertial” k�5/3 range and the
dissipation range k> kdiss dominated by viscous β dissipation.
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which case vortex lines are “stretched” by the velocity
field (Fig. 2.6: a vortex line is like a line of electric or
magnetic field – its tangent is everywhere parallel to
the field lines; the analogous line for the velocity field
is called a “streamline”).

However, a more important property of vorticity
is that – ignoring viscosity – vortex lines are material
lines. To see this, let dr represent the vector between
particles A and B (Fig. 2.6). Then the equation of
evolution of dr is:

DðdrÞ

Dt
¼

DðrAÞ

Dt
�
DðrBÞ

Dt
¼ vA � vB ¼ dv ð2:56Þ

and to first order in dr:

dv ¼ ðdr �rÞv ð2:57Þ

then:

Ddr

Dt
¼ dv ¼ ðdr�rÞv ð2:58Þ

which is identical to the (incompressible) vorticity
equation if dr is taken parallel to o (recall we are
considering negligible viscosity, n ¼ 0). This shows
that if at some initial time a vortex line is composed of
a given set of fluid particles then at any later time the
(evolved) vortex line will still be composed of
the same particles. Vortex lines are therefore material
lines.

Now apply this to the evolution of vortex tubes
(these are the surfaces bounded by vortex lines): the
volumes enclosed by the tubes are constant, since the
fluid is incompressible and vortex lines are material
lines. As the system evolves, the ends of the tubes
move apart on average (this is a statistical effect: in a
turbulent fluid, the ends of the tube will execute a
convoluted random walk; on average, they will move
apart). Since the volumes of the tube are

incompressible, this implies that as the lengths of
the tubes increase the cross-sectional areas tend to
decrease. Hence there will be “pinching” of the tube
at certain regions where there is a high stretching,
leading locally to extremely high gradients of �v. The
nr2

�v term will become large and viscosity will tend to
smooth the high gradients and break (smooth out)
the vortex tubes. This stretching–pinching mechan-
ism means that a fat (large) vortex tube “slims”
(cross-sections become smaller) and then gets broken
up, the energy flux being conserved throughout the
process, except for the final viscous smoothing/dissi-
pation at very small scales. If we now imagine a
complex turbulent flow as a “spaghetti” of vortex
tubes evolving in time, we can see that ends of tubes
which are far apart will tend to move further apart
(just as a drunkard tends to move away from his
starting bar), and hence the tubes will be generally
stretched and then pinched (Fig. 2.7). Since this
causes tubes with initially large cross-sections to tend
to evolve into tubes with small cross-sections, this
gives a simple explanation for the downscale direction
of energy cascades in three-dimensional turbulence,
and indeed whenever vortex stretching is important.

2.4.4* The vorticity spectrum
In homogeneous isotropic turbulence E(k) contains a
lot (but by no means all!) of the statistical information
about the turbulent flow (it is still only a second-order
moment depending on only the separation �r of the
two points �x and �x þ �r ; it is a “two-point” statistic).
We now derive the relation between E(k) and the
spectrum of the vorticity, which will be important in
considering two-dimensional turbulence. First we use
the vector identity:

�A�ðr � �BÞ ¼ �B�ðr � �AÞ � r�ð�A� �BÞ ð2:59Þ

If �A and �B are functions of �v, and if we assume that
the statistical properties of �v are independent of pos-
ition (statistical homogeneity) then hA� Bi is a con-
stant and it follows that the expectation of the last
term is zero (i.e. r�constant � 0). Now, using

�A ¼ r��v ¼ o and �B ¼ v, we obtain:

ho2i ¼ h�A�ðr � �BÞi ¼ h�B�ðr � �AÞi ¼ h�v�ðr � ðr ��vÞÞi

ð2:60Þ

Finally, using the following vector identity for incom-
pressible flows:

A

δr

B

Fig. 2.6 Schematic showing an infinitesimal segment of a vortex
line.
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r� ðr ��vÞ ¼ �r2
�v ð2:61Þ

we obtain:

ho2i ¼ �h�v�r
2
�vi ð2:62Þ

Therefore, since spectra are Fourier transforms of
correlations and since the Laplacian corresponds to

multiplication by (ik)2 in Fourier space, we have the
following relationship between the vorticity spectrum
Eo and velocity spectrum E:

EoðkÞ ¼ k2EðkÞ ð2:63Þ

3D: Vortex stretching,“spaghetti”
2D: No vortex stretching,

vortices are vertically aligned

(limited vortex stretching is possible in

“quasi-geostrophic” turbulence)

1 quadratic invariant: E (k ) ≈ k – 3

E (k )  ≈ k – 5/3

1 scaling regime  downscaleE (k ) ≈ k – 5/3

2 quadratic

 invariants:

�v
2 �ω2

�t�t

�v
2

�t

2 scaling 

regimes

Large scales,

upscale

Small scales,

downscale

z

x

y

ε = η =

ε =

Fig. 2.7 A schematic showing the “spaghetti plate” view of vortices stretching and tangling in 3D turbulence (the left-hand side) compared
with the vortex-stretching free dynamics in 2D turbulence (the right-hand side). Spaghetti of vortex tubes thanks to numerical simulations by
M. Wilczek, thanks to http://www.vapor.ucar.edu/ software.

Box 2.2 Scaling and Fourier transforms: correlation functions, structure functions and Tauberian theorems

In the following we will use both real-space and Fourier-space statistics, so it is useful to consider the general

relation between real- and Fourier-space scaling. First define the Fourier transform and its inverse (note that o in this

section no longer denotes the vorticity but the angular frequency, i.e. the Fourier conjugate of the time t):

evðoÞ ¼ FðvÞ ¼

ð1

�1

dt e
�iot

vðtÞ ð2:64Þ

vðtÞ ¼ F
�1ð~v Þ ¼

ð1

�1

doe
iot
evðoÞ ð2:65Þ

We recall two fundamental properties of Fourier transforms:

F
d
n
v

dtn

� �

¼ ðioÞn evðoÞ ð2:66Þ

Fðv  wÞ ¼ evðoÞewðoÞ ð2:67Þ

where v * w is the convolution of v and w :
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Box 2.2 (cont.)

v  w ¼

ð1

�1

dt
0
vðt � t

0Þwðt0Þ ð2:68Þ

We have the “Tauberian theorems” (see Feller, 1972, for the Laplace transform), we have slightly extended it to the

Fourier transform (Schertzer and Lovejoy, 1991). For l >> 1:

v
t

l

� �

!
vðtÞ

ls
, evðloÞ !

evðoÞ

lsþ1
ð2:69Þ

which are rather obvious results of the combined transformations t ! t=ls and o ! lo (hence e
iot remains

unchanged). This relation will be of fundamental importance in relating scaling behaviours in physical space and

Fourier space. This is in particular the case for the autocorrelation function R(t) and the energy spectrum E(o), since

they are Fourier transforms due to the “Wiener–Khinchin theorem” (see Appendix 2A for a demonstration):

jDðBlÞ ¼

ð

flð�rÞ<1

d
D

�r ¼

ð

f1ðT�1
l �rÞ<1

d
D

�r ¼ l�Del

ð

B1

d
D

�r
0 ¼ l�DeljDðB1Þ; �r ¼ Tl�r

0
: ð2:70Þ

Another quantity of interest is the “D-variance,” “variogram,” or (second-order) structure function S2(t) that

characterizes the fluctuations Dv:

S2ðtÞ ¼




DvðtÞ2
�

¼




�

vðtÞ � vðt � tÞ
	2
�

¼ 2

�


vðtÞ2
�

�




vðtÞvðt � tÞ

��

ð2:71Þ

or in terms of the power spectrum:

S2ðtÞ ¼ 2
�

Rð0Þ � RðtÞ
	

¼ 2

ð1

�1

do EðoÞð1� e
iotÞ ð2:72Þ

For scaling spectra EðoÞ � o�b there are low-frequency divergences so that the correlation integral (Eqn. (2.70))

only converges for b < 1 (a high-frequency cutoff is needed for convergence, but is always present in discretely

sampled data). However, for S2(t), at low frequencies the real part of EðoÞð1� e
iotÞ� o2�b, so that the structure

function integral in Eqn. (2.71) converges for b < 3 but S2(t) still satisfies the same Tauberian theorem as R(t);

Section 5.4.3 considers generalizations to higher-order structure functions. These low-frequency divergences are

“infrared catastrophes.” (The terms “infrared” and “ultraviolet” catastrophe originate from the theory of black-body

radiation. By introducing the quantum hypothesis, Planck inserted a high wavenumber (small wavelength) cutoff

which saved the theory from “ultraviolet” divergences, hence the term.)

Hence:

EðoÞ � o�b , RðtÞ � txð2Þ; b < 1 ð2:73Þ

and/or:

S2ðtÞ ¼ hDvðtÞ2i � txð2Þ; 1 < b < 3 ð2:74Þ

where x(2)¼�1þ b is the autocorrelation function/(second-order) structure function exponent. In terms of x(2), we

see that the autocorrelation function converges for x(2) < 0, and the structure function for 0 < x(2) < 2. To extend

the range beyond this interval we must use other definitions of fluctuations using wavelets (see Section 5.5). For the

weakly variable fluxes considered here, we can simply take the mean square fluctuation from Eqn. (2.9) to obtain

S2(t) � t2H so that x(2) ¼ 2H (H ¼ 1/3 for the Kolmogorov law). Chapter 5 discusses the generalization to moments

of order other than 2 and to situations where intermittency is important so that the scale dependence of the various

moments of the turbulent fluxes becomes important.
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2.5 The special case of 2D turbulence

2.5.1 Comparing two- and three-
dimensional turbulence
The seductive but ultimately naive idea that 2D or
quasi-2D turbulence should be relevant for large-scale
atmospheric dynamics has been so popular that it is
worth realizing how singular it is with respect to 3D
turbulence – and indeed with respect to turbulence in
any spacewith d> 2 (see the generalizations to stratified
“elliptical dimensions” in Chapter 6). Indeed, in two-
dimensional turbulence, in addition to the conserved
quantity ε, the vorticity is conserved. This leads to the
conservation of an additional quadratic quantity analo-
gous to ε: the “enstrophy” O ¼ o2 (not to be confused
with the earth’s rotation vector). The reason is that for
a two-dimensional flow the vorticityo is perpendicular
to �v (i.e. o ¼ ozz

_

, oz ¼ @vy=@x � @vx=@x, ox ¼
oy ¼ 0 since vz ¼ 0, @=@z ¼ 0; see the schematic
Fig. 2.7), and consequently:

ðo �rÞ�v � 0 ð2:75Þ

i.e. there is no longer any vortex stretching and the
incompressible vorticity equation reduces to an
advection–dissipation equation for the vorticity:

Do

Dt
¼ nr2o ð2:76Þ

when the dissipation is negligible, any power of the
vorticity is conserved, not only the enstrophy which is
its square. We can define the enstrophy flux density:

Z ¼ �
1

2

@o2

@t
ð2:77Þ

Taking the scalar product of the two-dimensional
vorticity equation with o and following exactly the
same arguments as for ε, we find that when Z is
integrated over a volume, it is conserved by the non-
linear terms of the Navier–Stokes equation (as is ε).
The existence of this second quadratic invariant (Z)
has a drastic effect on the properties of the associated
turbulence, as we show below.

2.5.2 Two-dimensional enstrophy
cascades
Two-dimensional turbulence has received a lot of
attention for several reasons. It is undeniably much
more numerically manageable, and at first sight much

simpler, than three-dimensional turbulence. In add-
ition, many geophysical flows are “apparently” two-
dimensional at large scales since they are “thin”
(e.g. the scale height of the atmosphere � 10 km
for the pressure). In Section 2.6 and Chapter 6, we
examine some of the empirical evidence. In the
atmosphere, Charney (1971) introduced a variant
of two-dimensional turbulence called “quasi-geos-
trophic” turbulence. This is based on a number of
approximations: the existence of a large- and small-
scale separation, the use of the geostrophic wind to
determine the material derivative, the assumption
of hydrostatic balance and the near uniformity of
the static stability. Although this development was
historically important, these limitations make it
unlikely to be realistic (see more detailed discussion
in Schertzer, 2009); it is examined empirically in
Section 2.6.

Returning to the ideal case of two-dimensional
turbulence, we have seen that both energy and
enstrophy are conserved by the nonlinear terms,
hence both will be cascaded. Now from Eqn. (2.63)
we have:

O ¼ ho2i ¼

ð1

0

dp EoðpÞ ¼

ð1

0

dp p2 EðpÞ ð2:78Þ

where O is the enstrophy. The enstrophy in the nth
octave is therefore:

On ¼

ð

ffiffi

2
p

knþ1

kn=
ffiffi

2
p

dp p2 EðpÞ �

ð

ffiffi

2
p

knþ1

kn=
ffiffi

2
p

dp p2 p�b

� p3�b

�

�

�

�

ffiffi

2
p

knþ1

kn=
ffiffi

2
p

	 kn
3 EðknÞ

ð2:79Þ

From the spectrum we can estimate the lifetime (“eddy
turnover time”) of a structure of size ln ¼ 1/kn as:

tn 	

 

ðkn

0

dp p2 EðpÞ

!�1=2

	
�

k3n EðknÞ
	�1=2

ð2:80Þ

In analogy with the energy cascade (Section 2.4.2), we
can also define:

PðOÞ
n ¼

On

tn
ð2:81Þ

as the Fourier-space enstrophy flux (which is constant
for a quasi-steady process) through the nth octave.
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Finally we obtain the enstrophy flux through the nth
octave in Fourier space:

PðOÞ
n ¼

On

tn
	

kn3EðknÞ
�

kn3EðknÞ
	�1=2

ð2:82Þ

If we assume that this is constant in a steady state and
independent of n, then Z

e

PðOÞ
n and we obtain the

spectrum in the constant enstrophy flux regime:

EðkÞ 	 Z2=3k�3 ð2:83Þ

Using either dimensional analysis or the Tauberian
theorems (Box 2.2), we can obtain the corresponding
real-space result:

Dv � Z1=3Dx ð2:84Þ

These formulae (sometimes called the “Kraichnan”
laws; Kraichnan, 1967) need some refinement since
the picture of enstrophy being passed mainly from
one octave to a neighbouring octave (without sign-
ificant direct, nonlocal transfer over many octaves) is
only strictly valid if the cascade was local, b < 3. Since
we have found b ¼ 3, we may anticipate that this
“marginal” case will involve at least logarithmic
corrections. This is indeed the case.`

The result b ¼ 3 shows that every octave in two
dimensional turbulence contributes approximately
equally (to within the log corrections) to the non-
linear dynamics, the cascade is on the borderline
between local and nonlocal. Each eddy turnover
time tn is approximately equal. Note that the non-
localness of two-dimensional cascades is quite serious;
for example (Kevlahan and Farge, 1997), using
numerical simulations on 1024 � 1024 grids with the
usual Newtonian viscosity dissipation term (i.e. a
Laplacian) find b � 4 or larger depending on the
boundary conditions, but b � 3 for various higher
powers (up to 8th) of a Laplacian (i.e. using
“hyperviscosity”). This implies that the spectral expo-
nent b depends on the details of the dissipation term.
Due to the effects of nonlocalness, two-dimensional
turbulence is thus in many ways more complex than
three-dimensional turbulence, and since no clear
direct evidence for a two-dimensional cascade has
been found in the atmosphere (or in other geophysical

systems), its status as a useful geophysical model is
uncertain (it may, however, be relevant in soap films:
e.g. Guttenberg and Goldenfeld, 2009).

Before proceeding, note that since
EoðkÞ ¼ k2EðkÞ, if the small scales were dominated
by an energy flux cascade, we would obtain
EoðkÞ ¼ k2k�5=3, which would diverge for large wave-
numbers, and hence enstrophy could not be con-
served. We therefore conclude that enstrophy must
be cascaded from large to small scales through a k�3

regime, and energy flux from smaller to larger scales
via a k�5/3 regime, an “indirect” cascade. At the lowest
wavenumbers, we must either introduce an energy
sink, or we obtain a spectral peak (at kE) that moves
to lower and lower wavenumbers in time (the value is
determined by dimensional arguments). Fig. 2.8
shows a schematic diagram for the latter case, assum-
ing that injection of both enstrophy and energy fluxes
occurs at the same (intermediate) scale. Finally, the
dissipation wavenumbers may be estimated by
dimensional arguments as in 3D turbulence: we find

kdiss ¼ ðZ=n3Þ1=6.

2.6 Atmospheric extensions

2.6.1 Applying isotropic turbulence to the
atmosphere: the Gage–Lilly model
Because of the additional conserved enstrophy flux in
2D, the cascades are more complicated than in
3D, depending notably on the (possibly different)
injection scales for ε, Z. If we follow the classical
model which first assumes isotropy, then – due to

Log10E(k)

Log10k

k3 k –5/3

k3

ki kdisskE

Fig. 2.8 A schematic illustration of the 2D enstrophy cascade with
both energy and enstrophy fluxes injected at wavenumber ki. The
energy flux is cascaded to lower wavenumbers while the enstrophy
flux is cascaded to higher wavenumbers.
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the � 10 km atmospheric scale height – we are forced
to introduce at least two isotropic turbulent
regimes: a 3D isotropic regime at scales smaller
than 10 km, and another 2D isotropic turbulent
regime at large scales. From the discussion above,
we can see that numerous forcing and dissipation
length scales and mechanisms will be required.
Indeed, by the early 1980s, theorists had produced
a series of complicated ad hoc conceptual models
which involved a small-scale 3D direct energy cas-
cade, a larger-scale direct enstrophy cascade and
finally a very large-scale indirect energy cascade,
the whole system involving three distinct sources
of turbulent flux (e.g. Lilly, 1983).

The first major experiment devoted to testing the
2D/3D model was the EOLE experiment. It used the
dispersion of constant-density balloons (Morel and
Larchevêque, 1974; this is similar in principle to some
of Richardson’s methods used to obtain Fig. 1.1), and
the balloons stayed (nearly) on isopycnals (i.e. surfaces
of constant density), not on isobars. Due to the
hydrostatic relationr ¼ �g�1

@p=@z, the vertical spec-
trum of r: E(kz) � kz

�br has exponent br ¼ bp – 2 so
that a key difference between isopycnals and isobars is
that while the latter are gradually sloping (bP > 3) the
former are highly variable with large-scale average
slopes diminishing at larger and larger scales.

The original conclusions of the EOLE analysis
(Morel and Larchevêque, 1974) were that the turbu-
lence in the 100–1000 km range was two-dimensional.
However, even then discrepancies were noted between
the relative diffusivity and the velocity structure
function results. Later, and more importantly, the
conclusions contradicted those of the GASP and
MOZAIC analyses (which found k�5/3 out to hun-
dreds of kilometres; see below). This motivated the
reanalysis of the original (and still unique) dataset by
Lacorta et al. (2004), who used velocity structure
functions (which they called “finite scale relative vel-
ocities”) and other techniques to show that, on
the contrary, the data followed the Dx1/3 law (i.e.
b ¼ 5/3), thus vindicating Richardson over this range
and invalidating the original conclusions. Fig. 2.9
shows their reanalysis, which supports Richardson
over the range of about 200–2000 km.

Interestingly, it seems that to properly under-
stand the behaviour below about 200 km we must
revisit their reanalysis! This is because although
Lacorta et al. (2004) interpolated the EOLE satellite

tracked-balloon positions every hour, the actual data
were at lower temporal resolution – “mostly” every
2.4 hours – and neither the original nor the recent
reanalysis attempted to understand the consequences
of this temporal smoothing. The basic effect is
straightforward to calculate (the detailed calculations
are postponed to Appendix 6A since we haven’t yet
developed all the necessary theory). If the mean
advection velocity is u0 (estimated by Lacorta et al.,
2004, as � 100 km/h), and the balloon position is
sampled at intervals of Dt, then the estimated veloci-
ties are effectively averaged over distances u0Dt. This
temporal and spatial averaging decreases the variabil-
ity for distances<u0Dt, i.e. on distance scales less than
the typical advection distance. Surprisingly neither
Lacorta et al. (2004) nor Morel and Larchevêque
(1974) seem to have noticed this, instead attempting
to find physical interpretations for the behaviour down
to 50 km even though u0Dt according to their own data
was at least 200 km. For example, Lacorta et al. (2004)
claim that “at distances smaller than 100 kmour results
suggest an exponential decay with e folding time of
about 1 day in rough agreement withMorel and Larch-
evêque (1974).” In Fig. 2.9, we show that even the slope
for the range affected by the averaging is roughly as
expected theoretically (assuming space-time scaling up
to planetary scales: see Appendix 6A). In other words,
the re-reanalysis of EOLE is compatible with
Richardson's scaling results over the entire observed
range, not only 200–2000 km.
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Fig. 2.9 Second-order velocity structure function estimated from
the EOLE balloons. The theoretical effect of the low temporal
resolution is discussed in Appendix 6A; it predicts the break as
indicated on the left by the reference line, slope 1 (added to the
original with break point corresponding to Δt ¼ 2.4 hours and u0 ¼
100 km/h). The right-hand arrow shows the true limit ~2000 km.
Adapted from Lacorta et al. (2004).

Classical turbulence, modern evidence

38



Although at the time the EOLE experiment was
influential, it did not include the determination of the
spectrum, which was inconvenient to estimate
because of the uneven distribution of the balloons.
The first serious estimates of the horizontal wind
spectrum had to await the GASP experiment
(Fig. 2.10a), which was apparently incompatible
with the early EOLE interpretations. The key diffi-
culty was that the GASP spectra showed that k�5/3

wind spectra extended out to scales much larger
than the scale height of 10 km (up to several hun-
dred kilometres). This motivated the development
of the more sophisticated “Gage–Lilly” model (Fig.
2.10a: Lilly, 1989). This model suffers from many
unsatisfactory ad hoc features, especially the up-
scale k�5/3 energy flux regime from roughly 1 km
to ~200 km (dashed line in Fig. 2.10a), which Lilly
describes as “escaped” 3D energy transformed to
quasi-2D stratified turbulence. The same feature
was termed “squeezed 3D isotropic turbulence” by
Högström et al. (1999). Other difficulties are the
unknown flux sinks in the 2D/3D transition region,
an unknown large-scale energy flux dissipation
mechanism (surface drag?), and speculative energy
and enstrophy flux sources at � 2000 km.

2.6.2 The real transition is from k
�5/3 to

k
�2.4

. . . and it is spurious: a review of the
classical aircraft campaigns and a new one
(TAMDAR)
Even if we accept the plausibility of the various
mechanisms invoked in the Gage–Lilly model,
the evidence for 2D turbulence is scant: barely an
octave in scale of the k�3 regime even in the
classical (oft-reproduced) GASP spectrum
(Fig. 2.10a). Actually, more careful examination of
the original GASP analyses proves even more
damaging to the k�3 hypothesis: while Fig. 2.10a
was a composite of all the available data, the more
relevant spectrum is the rarely cited Fig. 2.10b,
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Fig. 2.10 (a) A schematic of the standard model updated to take
into account the results of the GASP experiment. The figure is
adapted from Lilly (1989) and schematically illustrates the
“Gage–Lilly” model. Note that the 2D enstrophy cascade region
spans much less than an order of magnitude in scale whereas the
speculative inverse energy flux cascade (dashed line) spans over

two orders of magnitude. (b) GASP spectrum of long-haul flights
(> 4800 km) adapted from Gage and Nastrom (1986) with the
reference lines corresponding to the horizontal and vertical
behaviour discussed in the text (exponents 5/3, 2.4, i.e. ignoring
intermittency corrections corresponding to Hh¼ 1/3, Hv¼ 0.7 as well
as to the 2D isotropic turbulence slope –3).
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which shows only the relevant long-haul flights
(> 4800 km). The interpretation of this spectrum
is more straightforward than the composite since
the composite effectively involves somewhat differ-
ent ensembles of flights as one moves to larger and
larger scales. However, the long-haul spectrum
shows no hint whatsoever of a k�3 regime; instead,
one sees k�5/3 at small scales followed by an almost
perfect k�2.4 spectrum at the larger scales.

A more recent large-scale campaign to estimate
spectra has also used instrumented commercial
aircraft: the MOZAIC campaign of > 7600 flights
between 9.4 and 11.8 km (Cho and Lindborg, 2001;
Lindborg and Cho, 2001). Not surprisingly, it is very
close to the GASP spectrum, and Fig. 2.11 conveni-
ently summarizes and compares the two. Again it can
be seen that any k�3 regime must be very narrow, and
that in any case k�5/3 behaviour at small scales
followed by k�2.4 at large scales (without any k�3

regime) explains the observations quite accurately.
By reproducing key figures and adding appropriate

reference lines, we can see that the same k�5/3 to
k�2.4 behaviour with similar transition scales
(40–200 km) explains other aircraft wind spectra
(Gao and Meriwether, 1998: 11 legs of the scientific
Electra aircraft, which also flew along isobars but at
� 6 km; see Fig. 2.12); for stratospheric spectra, see
Fig. 2.13 (Bacmeister et al., 1996). Lovejoy et al.
(2009) also find similar behaviour in the tropo-
spheric Gulfstream 4 scientific aircraft spectra
already discussed in Chapter 1 (Fig. 2.14).

So why is there a break in the spectrum at scales
from 40 to 400 km: highly variable yet significantly
larger than the atmospheric scale height? And why
is it not visible in other spectra of strongly non-
linearly linked fields, such as the radiances (Fig. 1.2)
or the temperature or humidity (including from the
same aircraft: compare Figs. 1.6c and 2.14)? The
answer is surprisingly simple: it suffices that the
aircraft have a small but nonzero slope, so that after
a critical distance the fluctuations it measures no
longer reflect the horizontal statistics, but rather the
vertical ones.
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Fig. 2.12 The averaged spectra adapted from Gao and Meriwether
(1998) at 6 km altitude with the horizontal and vertical exponents
discussed here indicated as reference lines. Reproduced from
Lovejoy et al. (2010).
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To see how this works, consider Fig. 2.15a, which
is a contour plot of the mean squared horizontal
wind differences hDv2ðDx,DzÞi for various lags (Dx,
Dz) in the vertical plane. It was obtained from data
over the year 2009 from a fleet of short-range com-
mercial aircraft flying over the continental USA; the
overall sample contained over 14 500 aircraft legs
(TAMDAR: Moninger et al., 2003; Mamrosh et al.,
2006) sampled somewhat irregularly, but at roughly
20 km resolution in the horizontal. Our investigation
required distinguishing statistics on isobars from
those on isoheights, and thus required high-accuracy
GPS altitude measurements. For our purposes, an
essential TAMDAR improvement with respect to the
more widespread, older AMDAR equipment was thus
that the former included accurate GPS altimetry that
enabled altitude differences (Dz) to be estimated to
within � 4 m, a level of accuracy essential for distin-
guishing isobars and isoheights. At the same time
wind differences are measured to within � 2.5 m/s.
Although it is possible to estimate Dz, Dv from two
different aircraft, here only data from single legs were
considered. This eliminates the (relatively poor)

absolute sensor calibration from the problem, as the
wind differences measured from single aircraft only
require accurate relative calibrations. Using data from
single aircraft not only yields much higher-accuracy
measurements, but it also greatly simplifies the analy-
sis of the – otherwise extremely complex to analyse –
problem of highly nonuniform statistical sampling of
Dv2 in (Dx, Dy, Dz, Dp, Dt) space that results when
considering wind differences from two different air-
craft with numerous particularities including geo-
graphical distributions determined by the
commercial flight corridors. More details can be
found in Pinel et al. (2012).

In Fig. 2.15a one can see that the empirical con-
tours (dark) are nearly of the form theoretically pre-
dicted (light) for scaling stratified turbulence
discussed in Chapter 6:

hDv2ðDx,DzÞi ¼ C

�
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�
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1=Hz

 !xð2Þ

ð2:85Þ

where Hz is the ratio of the horizontal to vertical wind
exponent and x(2) is the exponent of S2 (Eqns. (2.71),
(2.73)), the second-order “structure function
exponent,” and ls is the “sphero-scale,” which is
the scale at which fluctuations have roughly the
same vertical and horizontal extents. At scale ls,
we have hDv2ðls, 0Þi ¼ C ¼ hDv2ð0, lsÞi so that the
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Fig. 2.15 (a) A contour plot of the mean squared transverse (top) and longitudinal (bottom) components of the wind, as estimated by a year’s
(� 14 500) TAMDAR flights, 484 000 wind difference measurements. All the fluctuations were from a single aircraft at different parts of its
trajectory, and only trajectories between 5 and 5.5 km were used. Black shows the empirical contours, grey the theoretical contours assuming
scaling stratification and the functional form indicated in the text. The numbers next to the contours are the values of the contours (italics is
theory, bold is empirical, to improve the statistics, reflection symmetries were used). Reproduced from Pinel et al. (2012). (b) A sample of six
fractal aircraft trajectories (fractal dimension � 1.56) from NASA’s ER2 aircraft during missions near Antarctica. The aircraft flew along isomachs
but there was a mean vertical “drift” of 	1 m/km (reference line) caused by the lightening of the aircraft due to fuel consumption. Adapted
from Lovejoy et al. (2004). (c) For the TAMDAR data this shows the mean vertical displacement for points on isobars defined by Δp < 0.126 mb
(373 000 differences were used, flight legs between 5 and 5.5 km). The reference line shows a slope Hisobar ¼ 0.80 corresponding to a fractal
dimension of Disobar ¼ 1þ 0.80¼1.80. Each point is the average of over 1000 measurements. Reproduced from Pinel et al. (2012). (d)
Comparison of mean squared wind differences of the transverse component of the wind from TAMDAR data sampled from near isobars (Δp<
1.26 mb), near isoheights (Δz< 20 m) and from sloping isobars i.e. Δp < 1.26 mb and slope s > 3.2 � 10�4 (the longitudinal components gave
very similar behaviour). We see that the latter has the theoretical vertical exponent for a nonfractal vertical section, 1.4, the Δp< 1.26 mb curve
has (for scales>	140 km) the exponent 1.1 theoretically predicted for the fractal isobars: 1.1¼ Hisobar 1.4, whereas the curve for Δz< 20 m has
the theoretical isoheight exponent. Reproduced from Pinel et al. (2012).
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corresponding structures are “roundish,” hence the
name. From the regression onhDv2i in Fig. 2.15a,
the best-fit empirical parameters are Hz � 0.57, x(2)
� 0.80 and ls � 1.0x 10�3 m. TheHz value is very close
to the theory value (Hz¼ (1/3)/(3/5)¼ 5/9¼ 0.56); see
Chapter 6, although x(2) is a little larger than the theory
value 2H ¼ 2/3, and ls is close to values measured in
vertical lidar scans of pollution backscatter and to the
somewhat less direct aircraft estimates in Lovejoy et al.,
2004, 2009). The constant C � 4.5 � 10�6 m2/s2 is
hDvðL2s Þi � hε2=3l

2=3
s i; the equality is approximate

since there are intermittency corrections due to the
highly variable nature of ε, ls (Lovejoy et al., 2008);
ignoring these issues, taking C � ε

2=3l
2=3
s we obtain

ε�10�5m2/s3. This low estimate of ε (see Chapter 8)
and slightly larger value of x(2) could thus be
explained by intermittency corrections.

From the functional form in Eqn. (2.85) we can
consider two particularly simple extreme cases: pure
horizontal and pure vertical displacements. In the
former case we easily see that the mean squared hori-
zontal differences vary as hDv2ðDxÞi / Dxxhð2Þ with
xhð2Þ ¼ xð2Þ � 0:8, whereas in the latter case the
mean squared vertical differences hDv2ðDzÞi /
Dzxvð2Þ with xvð2Þ ¼ xð2Þ=Hz � 1:4. Since the spectral
exponent b ¼ 1 þ x(2) (Eqn. (2.73)) this implies
different horizontal and vertical spectral exponents:
bh ¼ 1.8, bv ¼ 2.4.

In order to determine the spectrum measured
from real aircraft trajectories, we need a model of
the latter. For example, in Chapter 6 we consider a
simple intermediate model involving a trajectory
along a constant slope s; i.e. using Dz ¼ sDx in Eqn.
(2.85), we find a critical value Dxc such that for Dx <
Dxc the horizontal behaviour is dominant whereas for
Dx > Dxc the vertical behaviour is dominant. It is
therefore easy to imagine that, depending on how flat
the aircraft trajectory is, at small scales b � 1.8, yet at
large enough scales one could readily obtain a verti-
cally dominated spectrum with a transition to b� 2.4,
as found in the campaigns discussed above.

However, things are potentially more complicated
than this simple constant-slope model. As discussed
in Chapter 6, both the proportionality constant in
Eqn. (2.85) and ls depend on highly variable turbulent
fluxes (energy and buoyancy force variable fluxes),
and Fig. 2.15b shows that trajectories are not uniform
with constant slope, but can be fractal. However the
trajectories in the figure are from aircraft whose

autopilot flies on lines of constant Mach number,
and this is quite unusual. It is more typical for aircraft
to follow isobars; single long, high-resolution
(280 m) isobaric aircraft trajectories are discussed in
Chapter 6, but here we use the TAMDAR data,
which are short (< 	400 km) and sampled somewhat
irregularly (on flat legs, typically every 	20–30 km,
much more frequently when changing altitude levels).
This low sampling rate in individual legs is largely
compensated for by the overall high number of
TAMDAR legs: for example, 484 000 individual
wind differences were used to estimate the contours
in Fig. 2.15a. By sampling only wind differences from
measurements nearly on the same isobar, we can
determine the statistics of vertical isobaric cross-
sections. Fig. 2.15c shows that on the isobar the
mean vertical displacement <Dz> � Dx

Hisobar with
Hisobar � 0.80, so that the isobar is fractal (fractal
dimension 1þHisobar ¼ 1.80 in vertical sections; see
Chapter 3).

We can now combine our information about
<Dv2(Dx, Dz)> with our knowledge of the fractal
structure of the isobars to see how <Dv2> varies on
various trajectories (Fig. 2.15d). For example, we have
already shown from Eqn. (2.85) that on isoheights
hDv2ðDxÞi / Dxxhð2Þ with xh(2) ¼ x(2) ¼ 0.8,
and this is confirmed in Fig. 2.15d. Let us now
consider the behaviour along isobars. As in the
constant-slope model discussed above, in Eqn. (2.85)
for small horizontal displacements, the horizontal
term dominates and we obtain the same result as
for isoheights, i.e. hDv2ðDxÞi / Dxxhð2Þ � Dx0:8.
However, for large enough displacements the
second term in Eqn. (2.85) becomes dominant
so that we expect hDv2ðDxÞi / hjDzðDxÞjixvð2Þ �
DxHisobarxvð2Þ � DxHisobarxð2Þ=Hz � Dx1:1; this is also
confirmed in Fig. 2.15d, although the behaviour is
only dominant for scales > ~140 km. As a final test
of the model, we can restrict our attention to those
isobars which are also steeply sloping (in the figure,
with slope > 0.32 m/km). In this case, the fractality of
the isobars is no longer important, for a large range in
Dx only the vertical displacement is dominant and we
expect hDv2ðDxÞi / Dxxvð2Þ � Dx1:4, which is also
verified in the figure.

As a final comment we remark that in a recent
paper Frehlich and Sharman (2010) used nearly the
same TAMDAR data but reached an opposite conclu-
sion: that <Dv2> was the same on isoheights as on
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isobars. However, detailed analysis in Pinel et al.
(2012) shows that this conclusion was likely spurious,
the reason being the inappropriate use of TAMDAR
data over the numerous flight segments where the
aircraft changed altitude levels. The corresponding
altitude resolution was much lower over these sloping
sections than over the roughly flat ones, so much so
that the purported isoheight data analyses were not
really from isoheights at all – so the data analyses
including these low-vertical-resolution sections were
unable to adequately distinguish isoheight and isobar
data. The TAMDAR system is programmed to sample
much more frequently when the aircraft changes
altitude levels, so that if care is not taken this low
resolution can seriously bias the estimates, making it
impossible to distinguish isoheight and isobar statis-
tics. This was graphically demonstrated by Pinel
et al. (2012), who could almost exactly reproduce
the findings of Frehlich and Sharman (2010)
by including these low-resolution segments, yet
(as Fig. 2.15d shows) when they are removed the

difference between isoheight and isobar statistics
becomes clear. Additional evidence pointing to bias
was the fact that when the low-resolution data points
were removed the horizontal scaling of <Dv2> was
greatly improved.

This anisotropic scaling model of the vertical
structure is developed further in Chapter 6, but it
can easily quantitatively reproduce the observations
leading to the reinterpretation of the Nastrom–Gage
spectrum (Fig. 2.16a). In the new model, rather
than having sources and sinks at precisely defined
scales separated by wide ranges with no sources or
sinks (the classical inertial ranges), the energy flux
is instead from solar heating modulated by scaling
cloud fields, so that the input is over a wide range
of scales in a scaling manner (in accord with the
observed scaling of the radiance: Figs. 1.2 and 1.3).
In this reinterpretation, the large-scale (low-wave-
number) k�2.4 is simply a spurious consequence of
the not carefully accounted for effects of anisotropic
turbulence on the aircraft motion.
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Reproduced from Lovejoy et al. (2010).
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2.6.3 The classical approach: conclusions
from analyses and reanalyses
The interpretation of aircraft data in terms of large-
scale 2D turbulence was very influential, so that other
evidence about atmospheric structure and statistics
were generally interpreted in the same way. The prob-
lem was that the special 2D exponent b ¼ 3 provided
the only theoretical framework for explaining spectra
with b > 5/3. The long absence of a credible alterna-
tive theory tempted even early investigators to “shoe-
horn” their spectra into the k�3 mould. For example,
by “eyeballing” four spectra over less than an octave in
scale, Julian et al. (1970) concluded that 2.7 < b < 3.1
for the horizontal wind. In the 1980s larger datasets
became available, and it was possible to make more
direct tests of 2D turbulence theory from atmospheric
analyses (Boer and Shepherd, 1983) and later from
the ECMWF ERA40 reanalyses (Strauss and Ditle-
vsen, 1999). Although Boer and Shepherd (1983) gave
cautious support to b � 3 and to a 2D interpretation,
in hindsight and with the benefit of a simple theory
predicting b � 2.4, their conclusions seem unconvin-
cing (Fig. 2.16b). Similarly, when interpreting their
reanalyses, Strauss and Ditlevsen (1999) found that “b
� 2.5–2.6 . . . significantly different than the classical
turbulence theory prediction of 3,” but again close to
the value 2.4.

Today, we can revisit wind spectra using the
state-of-the-art successor to the ERA40 reanalysis –
the ECMWF interim reanalysis whose spectra were
already presented in Fig. 1.5b, and to which we
return in Chapter 4 – and calculate the spectrum
directly without Strauss and Ditlevsen’s complex
2D preprocessing. Fig. 2.17 shows the angle integ-
rated spectrum of the zonal wind at each tropo-
spheric 100 mb level, compensated by the average
k�2.4 behaviour so as to accentuate the small devi-
ations. Also shown in the figure are straight reference
lines. These are not regressions but rather the pre-
dictions of the stratified anisotropic scaling model
discussed in Chapter 6: the slopes are those empiric-
ally estimated in the vertical direction from
dropsondes (Fig. 6.2; Lovejoy et al., 2007). Regres-
sions on the reanalysis spectra from k ¼ 2 to k ¼ 30
(i.e. 5000–330 km) give b differing by less than 0.05
throughout the data-rich lower 4 km, rising to only
0.2 at 10 km (� 200 mb). Following the discussion of
the previous section, we should not be surprised if

these small differences are the consequences of
either intermittent aircraft and/or sonde motion
(Chapter 6).

2.6.4 Evidence from satellite altimeter
winds over the ocean
One way of overcoming the problems and limitations
of in-situ wind measurements is to use remote
sensing. The most direct remote method is to use
the Doppler shift from clear-air radar turbulence
measurements. However, existing datasets are over
fairly narrow ranges of scales. In addition, the radar
measures the radial wind component, which system-
atically changes direction as the radar scans to build
up a three-dimensional field. This makes the inter-
pretations complicated and tempts users to make
“products” based on complex-to-analyse assumptions
about the statistics in order to correct for these effects.

An alternative is to use ocean surface data from
satellite scatterometers to measure wave heights and to
correlate these with surface winds over the oceans.
Such satellite wind products have been developed since
the mid 1980s and rely on measurements of Bragg
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lines are not regressions, rather they have the slopes of the
horizontal wind in the vertical direction as estimated by dropsondes
in Lovejoy et al. (2007). It can be seen that the isobaric velocity
spectra have exponents close to the vertical values, and this is
especially true of the data-rich lower levels. The 200 mb spectrum
falls off a little too quickly at high wavenumbers, possibly due to
poor-resolution data below 	1000 km. The scaling starts at k ¼ 2–3,
corresponding to n ¼ 4–6 in Fig. 2.16b. Reproduced from Lovejoy
et al. (2010).
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scattering amplitudes of ocean waves at the typically
centimetric scatterometer wavelength (e.g. 2.1 cm
from the SeaSat scatterometer, Fig. 2.18a, and 2.2 cm
for the QuikScat data in Fig. 2.18b). At these wave-
lengths, the scatterometer is sensitive to capillary
waves whose amplitudes are only indirectly related
to the local winds. Correlating the scatterometer
backscatter with the wind speed is only part of the
problem; more difficult is determining the wind direc-
tion. At the moment, this is currently done by observ-
ing the same patch of ocean at different angles and by
using meteorological reanalyses to help remove
remaining directional ambiguities. The final product
is thus dependent in a number of subtle ways on
various assumptions about the nature of the turbu-
lence and of the numerical models. Bearing this in
mind, we refer the reader to some early scatterometer
results that had spectral exponents quite near b ¼ 5/3
(see the regression lines in Fig. 2.18a; Freilich and
Chelton, 1986): over the range 200–2200 km, the
regression estimates for the tropics were b � 1.9, and
for themid-latitudes b� 2.2.More recent products use
more sophisticated algorithms, but the results are not
much different: Fig. 2.18b shows spectra using the
DIRTH algorithm (Patoux and Brown, 2001). As can
be seen, the spectrum is almost perfectly scaling with
b ¼ 2.4: the (sloping) isobaric value. Although the
value of the exponent may well depend on some of
the assumptions that went into its derivation, these
assumptions would be unlikely to transform an other-
wise nonscaling spectrum into a scaling one. In other
words, the fact that the spectrum is nearly a perfect
power law over the observed range is highly significant
and in itself would be difficult to explain with the 2D/
3D model. Similar but yet more recent results
using 10 years of data (instead of one year; King and
Kerr, 2010), are shown in Fig. 2.19, showing that the
exponents are apparently even lower, very close to
the Kolmogorov value (the isotropic 2D turbulence
result x(2) ¼ 2 corresponding to b ¼ 3, is completely
off the scale!). Also indicated is the Bolgiano–
Obukhov value x(2) ¼ 2 (3/5) – K(2) � 1.15 (the
horizontal line) which would be expected for a near-
surface layer sloping in the vertical direction (K(2) �
0.05 is the empirical intermittency correction; see
Chapters 5, 6).

Finally we could add that a recent QuickScat paper
(Xu et al., 2011) claims that b varies geographically
from 1.6 to 2.9, but these estimates are based on little
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Fig. 2.18 (a) The spectra of sea surface winds as estimated from
the SeaSat scatterometer over four regions in the Pacific Ocean
(regions 1, 2 are the South Pacific, regions 3, 4 are the north Pacific),
adapted from Freilich and Chelton (1986). The smallest wavenumber
corresponds to about 2200 km, the reference lines (added) have
slopes –3, –5/3. (b) The kinetic energy spectrum estimated over
the oceans over a year, using QuikScat satellite altimeter data
(adapted from Patoux and Brown, 2001). DIRTH is the recommended
product; also shown are reference lines –5/3, –3 (in the original),
with –2.4 reference line added. Largest scale is 1700 km, smallest is
2 � 25 ¼ 50 km.
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more than an octave in scale. In fact, all the data are
very close to b ¼ 1.8, with high wavenumber devi-
ations from scaling accounting for most of the
regional spectral differences.

2.6.5 The continuing difficulties with the
classical model and inferences from
numerical simulations
In order to improve on these speculative mechanisms
needed to combine isotropic 2D and isotropic 3D
turublence, efforts have been made to reproduce “real-
istic” k�3 to k�5/3 transitions in numerical models.
This is not a trivial question, because of the possibility
of “three-dimensionalization” of two-dimensional
flows discussed in Ngan et al. (2004), i.e. the likelihood
that three-dimensional turbulence can destabilize an
otherwise 2D flow. For the moment, the results are at
best equivocal. For example, most numerical weather
models do not display the transition (Palmer, 2001),
while others may display it although over very small
ranges – e.g. the Skamarock (2004) WRF (regional)
model spectra, which are in fact very close to k�2.4

(Fig. 2.20). To date, the most convincing k�3 to k�5/3

transitions in numerical models have been produced
using the SKYHI model on the earth simulator

(Takayashi et al., 2006; Hamilton et al., 2008), yet as
pointed out by Lovejoy et al. (2010) they have the
poorest fit to GASP observations precisely over the
range 	400–3000 km which their (painstakingly
crafted) k�5/3 to k�3 transition is supposed to explain.
In other words, this model “success” may make them
less rather than more realistic! In addition, Smith
(2004) has shown that at least in the case of the
quasi-geostrophic simulation by Tung and Orlando
(2003), high wavenumber k�5/3 regimes are in reality
spurious consequences of energy build-up due to unre-
solved high wavenumbers with respect to an incor-
rectly “tuned” hyperviscosity.

2.6.6 Empirical determination of the
direction of the cascade
Another way to test the classical 2D/3D model and to
compare it to the anisotropic scaling model is to
examine the spectral energy transfers due to the non-
linear terms. A 2D cascade will display an upscale
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Fig. 2.19 Regression exponents for the second-order wind
structure function x(2) estimated by regression over the “meso beta
scale” (20–200 km), from 10 years of QuikScat sensor data with 1800
km swaths at 25 km resolution, adapted from King and Kerr (2010).
The three curves are for somewhat different parts of the Pacific
Ocean.
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Fig. 2.20 Sample spectra from WRF forecasts of zonal wind
averaged over the isobaric surfaces covering roughly the range 3–9
km in altitude, adapted from Skamarock (2004). Although they
claimed that this shows a “clear k�3 regime” for the solid (oceanic)
spectrum it only spans a range of factor 2–3 in scale, and this at the
relatively unreliable extreme low wavenumbers (between the
downpointing arrows, upper left). Except for the extremes, the
spectra again follow the isobaric predictions k�2.4 very well over
most of the range. Reproduced from Lovejoy et al. (2010).
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energy transfer, a 3D cascade a downscale transfer
(Section 2.5.2); furthermore, the usual schematics
(e.g. the Gage–Lilly model, Section 2.6.1) also assume
that the corresponding ranges are “inertial,” i.e. with
no sources or sinks, so that the fluxes are roughly
constant in Fourier space. In comparison, in the
anisotropic scaling model things can be much more
complicated, since the sources and sinks (which will
be largely solar heating and infrared cooling) will be
scaling and nonlinearly coupled to the dynamical
fields (via the scaling cloud field).

The empirical determination of the direction of the
energy fluxes is very demanding, since in principle all
wind components and their derivatives are required.

However, with the help of the assumption of statistical
isotropy, Lindborg (1999) related the sign of the third-
order velocity structure function <Dv3> to the direc-
tion of the cascade. The results (using MOZAIC air-
craft data) showed mostly negative third-order
structure functions (even out to 1000 km) in agree-
ment with a downward (i.e. 3D) cascade. But the signs
were not consistent (see Fig. 2.21a, which also shows
that their third-order structure functions are close to
those theoretically predicted for sloping isobaric air-
craft trajectories). An algorithmic correction intro-
duced by Cho and Lindborg (2001), although not
clearly explained, surprisingly yielded a more opposite
conclusion.
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Fig. 2.21 (a) Third-order structure
functions (diagonal contributions)
adapted from Plate 1 of Cho and
Lindborg (2001). Light grey indicates a
negative sign, dark grey, positive,
indicating large- to small-scale and
small- to large-scale transfers,
respectively. The theoretical reference
lines were added with slopes
corresponding to the predictions of
the sloping isobaric trajectory model
presented here (Section 2.6.2 and
Chapter 6) with the third-order vertical
structure function xv (q) ¼ qH – K(q) ¼
1.82 (using q ¼ 3, H ¼ 0.77, K(3) �
0.49) and horizontal structure function
with xh (q) ¼ xv (q) Hz ¼ 0.83 (Hz ¼
0.46; parameters from Chapter 6 and
Lovejoy et al., 2010). The transition is
not far from the 40 km found in the
Gulfstream 4 analyses (Chapter 6).
(b) The third-order structure function
of the horizontal wind normalized by
the second-order function (the
skewness) estimate QuickScat
scatterometer data from the N4WP
region of the Pacific. These are
monthly averages of I ¼ skewness; <
0 means large- to small-scale cascade.
The left is averaged over the 250–1000
km (“meso-a”) scale range, the right
over the 25–250 km (“meso-β”) range.
Although the transfer is
predominantly from large to small, it is
highly intermittent in accord with
the finding here from the ECMWF
reanalysis (Figs. 2.22, 2.23) and with
the predictions of the scaling model.
Adapted from Fig. 6 of Kerr and King
(2009).
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Fig. 2.23 (a)The angular integral of T(k) for each year: 2005, 2006, 2007. The average of the three is the medium grey line which is only clearly
distinguishable to the right of the 0.8 position (it’s the line that barely drops below the axis at log10k¼ 0.9). The thick darker lines that roughly define
the envelope are the isotropic energy spectrum E(k) (top) and its negative (bottom). (b) The corresponding plots ofP(k), which is the integral of T(k),
over wavenumbers higher than k for each year: 2005, 2006, 2007. The average of the three (medium grey) is again only clearly distinguishable when
its drop below the upper envelope at about log10k � 1.0. The thick darker lines that define the envelope are the same as in Fig. 2.23a.
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Fig. 2.22 (a) The sign of T(k) for each
of the three years analysed. Black
indicates T> 0, white, T< 0. The
horizontal axis is kx (zonal), the vertical
axis, ky (meridional); the largest
wavenumber corresponds to 330 km,
the smallest to 10 000 km (more
accurately, � 45� about the equator
and 0–90� , 90–180� , 180–270� , 270–0�

longitude). (b) The same as Fig. 2.22a,
but for the ensemble 2005–2007
(right) and the disagreement areas (in
grey, left).
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Recently, Kerr and King (2009), using QuickScat
scatterometer data, similarly found that the sign of the
flux fluctuates as the horizontal lag (scale) changes
(Fig. 2.21b).

To test this out in a more direct way (without the
third-order structure functions and isotropy assump-
tions), we can use the ECMWF interim reanalysis
products; here the zonal and meridional winds at
700 mb for the years 2005–2007. The main weakness
is the hybrid nature of the reanalyses and the neglect
of the contribution of the vertical wind terms (the
minimum reanalysis scale is 166 km, which is much
larger than the atmospheric thickness). Let us recall
that the classical (isotropic) spectral energy transfer
T(k, t) is defined by the triple velocity correlations
coming from nonlinear interactions and which
satisfy:

@

@t
þ 2nk2

� �

Eðk, tÞ ¼ Tðk, tÞ ð2:86Þ

where E(k, t) is the spectrum as a function of time (see
e.g. Lesieur, 1987). The same equation holds before
averaging over all wave-vector directions (i.e. without
hypothesizing isotropy). In this case consider respect-
ively hv2i ¼ uð0Þ and the spectral transfer Tð�k, tÞ that
depends on the vector (�k ðũð�k, tÞ is the Fourier trans-
form of u: Appendix 2A). The relationship between
the two transfers is merely:

TðkÞ ¼

ð

j k0j¼k

Tðk
0
Þdk

0
ð2:87Þ

(i.e. angle integration). Because the isobaric
surfaces are orthogonal to the pressure gradients, the
spectral transfer for the “horizontal” velocity along
the isobars is somewhat simpler than its more general
expression on isoheights (advection is then the unique
nonlinear term in the Navier–Stokes equations). One
can show (Appendix 2C) that in this case, written out
explicitly and considering only the horizontal
transfer:
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� ð2:88Þ

where we have used the notation u ¼ vx, v ¼ vy (zonal
and meridional components). The vertical wind was
ignored because in the reanalyses the vertical scales

are so much smaller than the smallest horizontal scale
(here 1.5�, i.e. 166 km).

Fig. 2.22a shows sgn(T(k)) when sections of the
reanalyses are used in the calculations. Each 700 mb
field was broken into sections from � 45� latitude
(this avoids strong distortions from the map
projection), and four disjoint 90� longitudinal
sections. It can be seen by comparing the results for
the different years that the distribution is not at all
isotropic, and that much of the details of the anisot-
ropy persist from one year to another (note that
standard Hann windowing techniques were used for
the numerical Fourier transforms). Fig. 2.22b shows
that over half of the wavevectors agree on the sign for
each of the three years, but that the region of agree-
ment has a highly complex fractal-like structure. In
order to investigate further, we calculated the classical
transfer, T (Eqn. (2.87)).

Fig. 2.23a shows the result: the sign oscillates every
octave or so in scale, in a largely reproducible way from
year to year, yet there is no obvious 2D/3D transition,
nor source/sink-free inertial range. At the largest
octave or so in scales (smallest k), the transfer is posi-
tive (from large to small). Finally, we can calculate the
total flux from scales larger than k�1 to smaller scales:

PðkÞ¼

ð

1

k

Tiðk
0Þdk0 ð2:89Þ

This is shown in Fig. 2.23b. Although the integration
naturally smoothes out some of the oscillations pre-
sent in T(k), there is still no obvious pattern, with the
overall direction/sign changing every factor of 4–5 in
scale. Note that here, as for T, at the very high wave-
numbers the hyperviscous effects mean that the trans-
fer is poorly estimated and should be ignored. In both
Figs. 2.23a and 2.23b we have superposed the envel-
ope defined by the isotropic energy spectrum (see the
discussion of this and the slightly different spectrum
calculated in Chapter 6 from the 2006 reanalyses).
This comparison shows that the magnitude of the
transfer closely follows the spectrum itself. Other
attempts to test the direction of the cascade using
aircraft estimates of the sign of the third-order vel-
ocity structure function (Fig. 2.21b) have found simi-
lar chaotic/complex variations of cascade direction
with scale, much more in accord with a scaling input
and output of energy over a wide range.
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2.7 Summary of emergent laws in
Chapter 2
We derived several scaling laws in dimensional form
in both real space and Fourier space (spectra) by
using turbulent fluxes linked to the Navier–Stokes
equations in three dimensions (the Kolmogorov–
Obukhov law, Eqn. (2.90), top) and two dimensions
(the Kraichnan law, middle), and linked to the equa-
tion of passive scalar advection (the Corrsin–Obu-
khov law, bottom):

Dv ¼ ε
1=3jDrj1=3; EvðkÞ ¼ ε

2=3k�5=3

Dv ¼ Z1=3jDrj; EvðkÞ ¼ Z2=3k�3

Dr ¼ w1=2ε�1=6jDrj1=3; ErðkÞ ¼ wε�1=3k�5=3

ð2:90Þ

Each equation depends on a turbulent flux: the energy
flux (3D, ε), the enstrophy flux (2D, Z) and the
passive scalar variance flux (w), respectively. For
the moment, each is considered to be classical, i.e.
the fluxes are � constant (spatially homogeneous,
quasi-Gaussian, nonintermittent). To emphasize that
the above assumes isotropy, we have replaced the
spatial lag Dx used in the earlier sections by the
modulus of the vector lag Dr.

The general form of these laws is:

Df ¼ φjDrjH ð2:91Þ

for fluctuations Df in a turbulent field f, flux φ and
exponent H. This is the prototypical emergent atmos-
pheric law. In this classical form it is valid only for
weakly variable fluxes and for statistical isotropy,
assumptions which the pioneers doubted would allow
them to be valid in the atmosphere over scales much
larger than several hundred metres. However, the rest
of this book shows how to generalize φ to a highly
variable multifractal cascade process and for the iso-
tropic vector norm scale notionjDrj replaced by an
anisotropic scale functionkDrk. Finally, we assumed
that the fluctuation was simply a difference, but
this is not always adequate – so that, for example,
when H is outside the range 0–1, the notion of fluctu-
ation Df itself can be refined with the help of wavelets
(Section 5.5).

The general relations between real-space fluctu-
ations and Fourier-space spectra are obtained using
the Wiener–Khinchin theorem (see Appendix 2A for
a demonstration), and the specific relations that
apply in scaling systems are obtained using
Tauberian theorems. The Wiener–Khinchin the-
orem is valid for statistically stationary processes
and relates the autocorrelation R(t) to the power
spectrum E(o):

RðtÞ ¼




vðtÞvðt � tÞ

�

¼
ð1

�1

do ðDvðDxÞÞQuadHaar ¼ 3ðsðx þ DxÞ

�3sðx þ 2Dx=3Þ þ 3sðx þ Dx=3Þ � sðxÞÞ=DxEðoÞ

ð2:92Þ

R(t) is also related to the “D-variance” of the fluctu-
ation, i.e. the second-order structure function S2(t):

S2ðtÞ ¼
D

DvðtÞ2
E

¼




�

vðtÞ � vðt � tÞ
	2
�

¼ 2

�

D

vðtÞ2
E

�
D

vðtÞvðt � tÞ
E

� ð2:93Þ

or in terms of the power spectrum:

S2ðtÞ ¼ 2
�

Rð0Þ � RðtÞ
	

¼ 2

ð1

�1

doEðoÞ
�

1� ðDvðDxÞÞQuadHaar

¼ 3ðsðx þ DxÞ � 3sðx þ 2Dx=3Þ

þ3sðx þ Dx=3Þ � sðxÞÞ=Dx
	

ð2:94Þ

In scaling regimes, we have power law spectra
EðoÞ � o�b, and we can use a Tauberian theorem
to conclude that R(t), S2(t) also follow power laws:

EðoÞ � o�b , RðtÞ � txð2Þ; b < 1 ð2:95Þ

where the condition b < 1 is needed for low-
frequency convergence. A high-frequency (small-
scale) cutoff is also needed, but one is always
present in discretely sampled data. For the struc-
ture function:
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S2ðtÞ ¼
D

DvðtÞ2
E

� txð2Þ;1 <b < 3 ð2:96Þ

and in both cases b ¼ �1þ xð2Þ. For the noninter-
mittent fields considered in this chapter, x(2)¼ 2H, so
that b < 1 corresponds to x(2) < 0, H < 0. The
condition 1 < b < 3 for S2 is for both high- and

low-frequency convergence and corresponds to 0 <

x(2) < 2, 0 < H< 1, which is the basic range for
atmospheric fields in the weather regime, so that struc-
ture functions are generally more useful than autocor-
relation functions. However, in the macroweather
regime, b < 1, (H< 0), so that it is preferable to use
structure functions based on different types of fluctu-
ation defined by wavelets (see Section 5.5).
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Appendix 2A: Spectral analysis in arbitrary dimensions

In this appendix we generalize the 1D results of Box
2.2 to higher dimensions, considering space rather
than time. Consider the second-order velocity correl-
ation tensor:

uijð�rÞ ¼ hvið�r
0Þvjð�r

0þ�rÞi ¼ hvið�r
0Þvjð�r

0 ��rÞi ð2:97Þ

(the symmetry under inversion follows from transla-
tional invariance; this can be a function of time, but
we will not denote this explicitly). We will go on
assuming statistical homogeneity, i.e. independence
of translation when it applies to translation in time
and space. Furthermore, we will also assume that the
turbulence is statistically isotropic (independent of
direction). Then we have uijð�rÞ ¼ ujið�rÞ and
uijð�rÞ ¼ ujiðrÞ, where r ¼ j�rj. We can define
uðrÞ � uiiðrÞ the trace of the velocity correlation
tensor (using Einstein’s notation convention for sum-
ming over a repeated index) and the average energy
per unit mass is thus:

e ¼
1

2
hv2ð�rÞi ¼

1

2
uð0Þ ð2:98Þ

(by spatial homogeneity, there is no �r dependence).
Introducing the d-dimensional Fourier transforms:

uð�rÞ ¼

ð

ddk eik�r~u ð�kÞ ð2:99Þ

we obtain:

~uð0Þ ¼

ð

dd�r uð�rÞ ð2:100Þ

(using the inverse Fourier transform and setting�k ¼ 0).
We now wish to exploit the isotropy by performing
the d-dimensional Fourier-space integral above
over (d – 1)-dimensional “annuli” or “shells.” We
obtain:

e ¼

ð1

0

dk EðkÞ ð2:101Þ

where e is the total energy per unit mass,
EðkÞ 	 kd�1

euðkÞ is the (isotropic) “energy spectrum”

and k ¼ j�kj (in one dimension the integral is
Ð

udk, in
two dimensions

Ð

u2pkdk, in three dimensions
Ð

u4pk2dk).
Consider �~vð�kÞ, the Fourier transform of �vð�rÞ, then

the inverse transform gives:

�vð�rÞ ¼

ð

ddk eik�r ~v ð�kÞ ð2:102Þ

This implies that �~vðkÞ ¼ �v
~ð�kÞ, which follows the

fact that �vðxÞ is real, and:

uð�rÞ ¼ h�vð�r
0Þ��vð�r� �r

0Þi

¼

ð ð

dd�kd
dk

0

eið�kþ�k
0
Þ��r

0
ei�k��rh�~vð�kÞ��~vðk

0

Þi ð2:103Þ

Similar expressions are obtained for uij with the help
of the tensor product instead of the scalar product.
Now, statistical homogeneity means that the right-
hand side is independent of �r

0Þ. This implies that
the only contribution to the double integral is from
k ¼ –kʹ, hence:
D

�~vð�kÞ��~v ðk
0

Þ
E

¼ PðkÞdð�kþ k
0

Þ ð2:104Þ

This defines the spectral density of P(k) and shows
that a statistically homogeneous field can be repre-
sented as the integral over statistically independent
pairs of waves with wavenumber vectors k, –k, and
with random amplitudesev�ð�kÞ. Using this result we
obtain a d-dimensional Wiener–Khinchin theorem:

uð�rÞ ¼

ð

dd�k e
ik�r PðkÞ ð2:105Þ

relating the autocorrelation function of a stationary
process to its harmonic representation via a Fourier
transform. Putting �r ¼ 0 shows:

uð0Þ ¼

ð

dd�kPðkÞ ð2:106Þ
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and using isotropy (and ignoring constant factors
such as 4p):

uð0Þ ¼

ð1

0

dkEðkÞ ¼

ð1

0

dkkd�1pðkÞ ð2:107Þ

Hence if we attribute an energy 1
2 PðkÞ to each wave-

number �k then the total energy in Fourier space
equals 1

2uð0Þ, which is the energy per unit mass. We
also see immediately that:

EðkÞ ¼ kd�11

2




j�evðkÞj
2
�

ð2:108Þ

Hence if the d-dimensional spectral density P(k) is:

Pð�kÞ � j�kj
�s ð2:109Þ

then:

EðkÞ ¼ k�b; k ¼ j�k j; b ¼ sþ 1� d ð2:110Þ

This is a relation which will prove useful later. Con-
cerning the enstrophy spectrum, we now repeat the
above arguments, but for hr2

�vi (recalling that in
Fourier space r2 ! �k2 and using Eqn. (2.62)):

hjoj2i ¼ h�v�r
2
�vi ¼

ð

dd�k k
2hj�evð�kÞj

2i ð2:111Þ

and integrating as usual over angles in Fourier space:

hjoj2i ¼

ð1

0

dk k2EðkÞ ð2:112Þ

Hence:

EoðkÞ ¼ k2EðkÞ ð2:113Þ
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Appendix 2B: Cascade phenomenology and

spectral analysis

One of the properties of turbulence to which we appeal
to justify the cascade model developed in the following
chapters is that the dynamical interactions are strongest
between structures whose sizes are nearly the same. This
means that for the energy flux to pass from a large to a
small eddy/structure it must pass through numerous
intermediate steps: large structures don’t spontaneously
break up into numerous small ones but instead pass
energy flux from one scale to another in a cascade-like
manner. The development below is close to Rose and
Sulem (1978) and shows simply that on condition that
1 < b < 3, the main contribution to the dynamically
significant vn across structures of size ln is from wave-
numbers in the octave near wavenumber 1/ln.

Following Section 2.4, consider the dynamically
significant velocity gradient. We will express vn in
terms of E(k):

vn
2 ¼

D

jDvð�l nÞj
2
E

¼
D

jvð�rÞ � vð�rþ�l nÞj
2
E

ð2:114Þ

¼ 2
n

hv2i � hvð�rÞvð�rþ�lnÞi
o

ð2:115Þ

The first term, hv2i ¼ uð0Þ is the total energy,
ð1

0
dp EðpÞ (we will not worry about constant factors

such as p etc.). The second term is just the trace of the
velocity correlation tensor uðlnÞ ¼ uiiðlnÞ. Now:

uð�lnÞ ¼

ð

d
�
p eip�ln euð

�
pÞ ð2:116Þ

but in our case (isotropic turbulence) ln ¼ j�lnj and

�
p��ln ¼ plncosy, where y is the angle between p and ln.
Hence:

uðlnÞ ¼

ð1

0

dp EðpÞ

ð

O

dd�1Oeiplncosy ð2:117Þ

where O is the (solid) angle in Fourier space. In
spherical polar coordinates (y,f) (d= 3), we have
d
d�1O ¼ cosy dy df. Then we have:

vn
2 ¼ hjDvðlnÞj

2i ¼

ð1

0

dp EðpÞð1�

ð

O

dd�1OeiplncosyÞ

¼

ð1

0

dp EðpÞ

ð

O

dd�1Oð1� eiplncosyÞ

ð2:118Þ

where we have used the fact that the normalization
has been defined so that:
ð

O

dd�1O ¼ 1 ð2:119Þ

To estimate this integral in Eqn. (2.118), we use
kn ¼

2p
ln
and divide the range of integration into three

parts:

ðIÞ 0 � p �
kn
ffiffiffi

2
p ðlow frequencyÞ;

ðIIÞ
kn
ffiffiffi

2
p � p �

ffiffiffi

2
p

ðmedium frequencyÞ;

ðIIIÞ
ffiffiffi

2
p

kn � p < 1 ðhigh frequencyÞ:

We will now consider each case, starting with the
limiting cases I, III.

Term (I)

pln is small, i.e. pln ! 0 and discarding all imaginary
parts in first order term of p (since we know a priori
that the integral must be real) we are left (ignoring
constant factors) with second-order terms ΟððplnÞ

2Þ:
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ð

kn=
ffiffi

2
p

0

dp ðplnÞ
2EðpÞ 	 ln

2

ð

kn=
ffiffi

2
p

0

dp p2 EðpÞ 	 ln
2hjoj2i

ð2:120Þ

where we have used EoðpÞ ¼ p2EðpÞ. This is the large-
eddy contribution to vn

2. This result can be under-
stood physically in the following way. The effect of
large-scale vorticity is to produce a nearly constant
velocity gradient across the eddy, and the velocity
difference will be approximated by lnoðpÞ (since
o ¼ r��v and we are interested in a “typical” gradi-
ent), hence the mean squared difference will be:

ln
2hjoj2i ¼ ln

2

ð

kn=
ffiffi

2
p

0

dp p2 EðpÞ ð2:121Þ

Term (III)

This is the small-eddy contribution. pln ! 1:
ð

O

dd�1Oð1� eiplncosyÞ ! 1 ð2:122Þ

since the exponential will oscillate very rapidly and
will yield zero on average. So the contribution to vn

2

due to small structures is

ð

1

ffiffi

2
p

kn

dp EðpÞ ð2:123Þ

where the contributing wavenumbers are greater
than

ffiffiffi

2
p

kn. The physical interpretation is that the
small-scale eddies cause the boundary of ln-scale eddy
to execute a highly convoluted random walk. In the
mean, the effect is diffusive. The diffusion constant
depends on the mean square velocity of all the con-
tributing eddies, which is:

ð

1

ffiffi

2
p

kn

dp EðpÞ ð2:124Þ

Term (II)

Take

En �

ð

ffiffi

2
p

kn

kn=
ffiffi

2
p dp EðpÞ

ð

O

dd�1O ¼ ð1� eiplncosyÞ ð2:125Þ

as the definition of energy in band n. We will investi-
gate under which conditions this term is the main
contribution to vn

2. When it dominates terms I and
III, the energy spectrum is termed “local,” since most
of the contribution to the dynamically significant
quantity vn

2 is due to structures with neighbouring
wavenumbers; otherwise, it is “nonlocal.” The final
expression for vn2

�

ðIÞ þ ðIIÞ þ ðIIIÞ
	

is:

vn
2 � ln

2

ð

kn=
ffiffi

2
p

0

dp p2 EðpÞ þ En þ

ð

1

ffiffi

2
p

kn

dp EðpÞ

ð2:126Þ

Due to the scaling, the dominant behaviour of the
spectrum will be a power law. We now consider
how the value of the scaling exponent affects the
relative value of various terms. Considering
EðpÞ 	 p�b (ignoring constant factors) then
(I) becomes:

ln
2

ðkn=
ffiffi

2
p

0

dp p2 p�b ¼ ln
2 p3�b

�

�

�

�

kn=
ffiffi

2
p

0

(

	 ln
2kn

3 for b < 3
! 1 for b > 3

ð2:127Þ

When b � 3 then the term diverges – this
low-frequency divergence is called an “infrared catas-
trophe” and indicates that the spectrum is dominated
by low frequencies – it will be nonlocal.

Term (III) becomes:
ð1

ffiffi

2
p

kn

dp p�b 	 p1�b

�

�

�

�

1

0

(

	 kn
1�b for b > 1

! 1 for b < 1

ð2:128Þ

Hence if b < 1 the term diverges, we have an “ultra-
violet catastrophe,” and again the spectrum is non-
local, this time due to dominance of the higher
frequencies.

We can now conclude that if 1 < b < 3, all the
terms are dominated by the contributions from wave-
numbers near kn ¼ 2p

ln
, and hence the spectrum will be

local. Now as long as b > 1, term III is negligible and
the sum of terms I and II can be approximated by:

vn
2 � ln

2

ð

kn

0

dp p2 EðpÞ; b > 1 ð2:129Þ
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(we are interested in an order-of-magnitude estimate
only; the angular integration will give a constant
correction to the above of order unity).

When viscosity is negligible, the only way to define
a quantity with dimensions of time is as follows:

tn ¼
ln

vn
	
�

ð

kn

0

dp p2EðpÞ
	�1=2

ð2:130Þ

which is an estimate of the eddy turnover time.
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Appendix 2C: Spectral transfers

To calculate the spectral transfers needed for Section
2.6.6, we start with the equations of hydrodynamic
turbulence without assuming incompressibility (here
we roughly follow Davidson, 2004):

@ui

@t
¼ �

@ðuiujÞ

@xj
�

1

r

@p

@xi
þ n

@
2ui

@xj@xj
ð2:131Þ

@u0i

@t
¼ �

@ðu0iu
0
jÞ

@x0j
�

1

r0
@p0

@x0i
þ n

@
2u0i

@x0i @x0j
ð2:132Þ

with:

�u¼�uð�xÞ; u
0 �¼�uð�x

0Þ;�x
0 ¼ �xþ�r ð2:133Þ

(as usual, we sum over repeated indices). Multiply the
first by ui

0 and the second by ui then add and take
ensemble averages, we obtain:

@huiui
0i

@t
¼�

*

ui
@ðui

0uj
0Þ

@x
0

j
þ ui

0 @ðuiujÞ

@xj

+

�

*

1

r0
ui
@p0

@xi0
þ

1

r
ui
0 @p

@xi

+

þ n

*

ui
@
2ui

0

@xj0@xj0
þ ui

0 @
2ui

@xj@xj

+

ð2:134Þ

Now, the nonlinear transfer (the first term on the
right) is the usual term to worry about. The pressure
terms vanish in isotropic turbulence; they also vanish
along isobars even in nonisotropic turbulence
(assuming that we only calculate the “horizontal”
isobaric components: @p

@xi
¼ @p0

@xi
¼ 0 for xi any isobaric

component). Finally, the dissipation terms are only
important at very small scales.

To estimate the nonlinear term we can use Fourier
techniques. For any two real fields A, B:

Að�xÞ ¼

ð

ei�k
:
�x gAð�kÞd�k ¼

ð

e�ik:ð x
0
� rÞ gAð�kÞd�k;

Bð�x
0Þ ¼

ð

eik
0
:ð xþ rÞ gBð�k

0Þd�k
0 ð2:135Þ

The far-right top equality is obtained by taking com-
plex conjugates of both sides and using the fact that A
is real.

Taking products and averages, we obtain:

hAð�xÞBð�x
0Þi ¼

ð ð

eix
0
:ð� kþ kÞei�r:�kh gAð�kÞ

gBð�k
0Þid�kd�k

0

ð2:136Þ

Using the assumption of statistical translational
invariance, we require that �k ¼ �k

0 so that:

hAð�xÞBðx
0Þi ¼

ð

ei�r:�k
0
ghAð�kÞ

gBð�kÞid�k ð2:137Þ

Hence we see that hAð�xÞBðx
0

�
Þi and h gAð�kÞ

gBð�kÞi
are Fourier transform pairs. We can now apply this
to the evaluation of the nonlinear terms. In the first,

take A ¼ ui; B ¼
@ðuiukÞ

@xk
so that:

F:T:

*

ui
@ðu0iu

0
jÞ

@x0j

+

¼




eui ðikjguiujÞ

�

F:T:

*

u0i
@ðuiujÞ

@xj

+

¼




euiðikjguiujÞ


�

ð2:138Þ

we see that these are complex conjugates, so that the
usual transfer is given by:

Tð�k Þ ¼ F:T: �




ui
@ðu

0

iu
0

jÞ

@x
0

j
þ u

0

i

@ðuiujÞ

@xj

�

" #

¼ 2kj Im½ eui ðguiujÞ
 ð2:139Þ
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Chapter

3
Scale-by-scale simplicity: an introduction
to multiplicative cascades

3.1 Cascades as conceptual models
Although the idea of cascades in atmospheric dyna-
mics is conventionally traced back to the famous
poem buried in page 66 of Richardson’s book on
Weather Prediction by Numerical Process (cited in
Section 1.1.1), for a long time cascade models were
mostly inspirational. It was not until the 1960s that
explicit multiplicative cascade models were first
developed. Even though they almost certainly played
a role when Kolmogorov formulated his famous law
in 1941, he did not explicitly mention cascades. This
is surprising, because in the same year he published
a model of rock fragmentation using the allied idea
of multiplicative random variables (Kolmogorov,
1941a). The cascade idea was quite explicit, however,
in the one-paragraph abstract by Onsager (1945),
where he apparently independently discovered the
Kolmogorov law:

The modulation of a given Fourier component of the
motion is mostly due to those others which belong to
wavenumbers of comparable magnitude . . . It has not
been pointed out before that the subdivision of the
energy must be a stepwise process, such that an n-fold
increase of the wavenumber is reached by a number of
steps of the order log n. For such a cascade mechanism
that part of the energy density which is associated
with large wavenumbers should depend on the total
volume rate of dissipation e only. Then dimensional
considerations require that the energy per component
of wavenumber k . . . � e2/3k�11/3

. . .

(Onsager, 1945)

(Onsager’s spectrum is three-dimensional, i.e. s ¼ 11/3
so that β ¼ 5/3: see Eqn. (2.110)).

Even much later, in the presentation of the log-
normal model of turbulent intermittency, cascades
are not (quite) explicitly mentioned:

The hypotheses concerning the local structure of
turbulence at high Reynolds number, developed in the
years 1939–41 by myself and Obukhov [Kolmogorov,
1941b, 1941c, 1941d; Obukhov, 1941a, 1941b] were

based physically on Richardson’s idea of the
existence in the turbulent flow of vortices on all
possible scales l < r < L between the external scale
L and the internal scale l and of a certain uniform
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Fig. 3.1 (a) The first 8192 points of the temperature series
measured by a Gulfstream 4 flight over the Pacific ocean at 196 mb
and at resolution of 1 s corresponding (to within � 2%) to a spatial
resolution of 280 m. (b) The first 8192 points of the flux estimated
from the temperature series in Fig. 3.1a by using absolute second
differences. The curves starting at the bottom are the normalized
energy fluxes. Curves bottom to top are successively degraded by
factors of 4 and displaced by 3 units in the vertical for clarity. It turns
out that the largest value is nearly the same as that predicted
theoretically in Chapter 5 (Section 5.2.3).
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mechanism of energy transfer from the coarser-scaled
vortices to the finer.

(Kolmogorov, 1962)

In any case, modern explicit cascade models are
usually traced back to the “pulse in pulse” model
(Novikov and Stewart, 1964), which is close to the β

model described below.
The need for explicit cascade models arose because

of the problem of turbulent intermittency: the sudden
transition from quiescence to chaos which is ubiquitous
in turbulent flows, including in the atmosphere. Not
only is most of the atmosphere’s activity (including the
energy, moisture and other transfers) confined to a
small fraction of the total volume – mostly storms and
other violent events – but even within the latter, they are
far from uniform. Fig. 3.1a graphically illustrates this
problem with a transect of aircraft temperature data
over the distance 280 � 213 m � 2300 km. In Fig. 3.1b,
we show the turbulent flux estimated from it by the

absolute second finite differences of the temperature
(denoted e; this is the analogue of the energy flux but
for the temperature field rather than the velocity field).
The flux has been normalized by its mean, and at the
bottom (the full resolution) we see that there
are occasional large spikes; indeed here the largest nor-
malized flux is e ¼ 26.07. This corresponds to 16.4
standard deviations, so we immediately see that the
transect is far from Gaussian. Moving from bottom to
top, the figure illustrates the effect of lowering the reso-
lution by averaging over longer and longer intervals.

The same sequence of degraded e is shown in
Fig. 3.2a (left). This is to be compared to the right-
hand column, which is the same but in terms of
the singularities g obtained by the transformation of
variables g¼ loge/logl where l is the scale ratio ¼ L/l
where L is length of the transect (¼ 8192 pixels) and l
is resolution scale (which increases by factors of 4
from 1 pixel (top) to 4096 pixels (bottom)). Notice
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Fig. 3.2 (a) The left column, top
to bottom, is the increasingly
degraded version of the flux (ε) for
the temperature, and the right
column is the same but in terms of
the singularities: the transformation
of variables γ ¼ logε/logλ where
ε is the normalized temperature
flux (estimated from the second finite
difference derivative.) The horizontal
axis x is in km, resolution is 280 m. (The
left column is the same as Fig. 3.1b
except that the order is top to bottom
rather than bottom to top.) Notice
that while the range of variation of the
ε’s rapidly diminishes as the resolution
is lowered, on the contrary the
amplitude of the fluctuations of the
γ’s is roughly the same at all scales.
A refined analysis of this type of
transform and resulting graph can be
used to show that this flux is singular
(Schertzer et al., 2010).
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that while the range of variation of the e’s rapidly
diminishes as the resolution is lowered, on the con-
trary the amplitude of the fluctuations of the g’s is
roughly the same at all scales, indicating that g is scale
invariant. This result is not trivial; it is a consequence
of the long-range correlations in e. In order to make
this clear, in Fig. 3.2b we have shuffled/randomized
the same e transect (top left) and then degraded it
(lower left) and compared this with the derived g

transects (right). In this case we see that instead of
remaining of roughly constant amplitude the range of
variation of the g’s quickly diminishes as we degrade
to lower and lower resolutions (bottom right). This
visually demonstrates the existence and importance of
long-range correlations.

Instead of starting at the bottom of Fig. 3.1b and
averaging to lower and lower resolution, we could

imagine starting at the top at the lowest resolution
(i.e. a line parallel to the x-axis at the constant
value 1) and moving downwards by introducing
variability at smaller and smaller scales, in this way
building up a cascade process. In this chapter we
show how to do this by multiplicatively modulating
the process at successively smaller and smaller
scales.

3.2 Discrete-in-scale multiplicative
cascades

3.2.1 The βmodel: activity on a fractal
support
Fig. 3.3 (left-hand side) shows a schematic of a
“homogeneous” cascade; a process of this type
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Fig. 3.2 (b) On the left, from top
to bottom, the same ε data as in
Fig. 3.2a is shown but for the data
shuffled/randomized. Note the
much more rapid convergence (as
compared with Fig. 3.2a) as the series
is averaged by factors of 4, top to
bottom. On the right, due to the
absence of long-range correlations,
the range (e.g. the difference between
the maximum and minimum values)
of the γ’s rapidly decreases instead of
being roughly constant.
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may have been Kolmogorov’s initial inspiration. One
starts with a large-scale structure/“eddy” indicated as
square, and this square eddy breaks up, either due to
interactions with other eddies or due to internal
instability (or both). In this homogeneous version,
the conserved quantity (the energy flux density in
hydrodynamic turbulence, as discussed in Chapter 2)
is simply redistributed from large structures to
small; its density remains constant everywhere (i.e. it
is homogeneous in the deterministic sense). This
homogeneous cascade is clearly a poor model of real
turbulence – if only because the latter is highly
intermittent; in the words of Batchelor and Townsend
(1949), it is “spotty.”

An initial attempt to handle intermittency
reduces it to the simple notion of “on/off ” intermit-
tency, i.e. a cascade with the simple alternative

for the offspring of alive/dead. This leads to a
confinement of the turbulence to a tiny support, a
very small subregion of the flow. The right-hand
side in Fig. 3.3 shows the result of such a cascade
obtained by multiplying the energy flux of a
“mother” eddy to obtain that of the “daughter”
eddies either by 0 (dead sub-eddy) or by a positive
value (lc0), corresponding to an active sub-eddy, with
fixed probability l�c

0 . In the usual, stochastic version
of the model, we divide the spatial scales by l0 (here
l0 ¼ 2) and then flip coins to determine the on or off
state; more precisely:

Pr me ¼ lc0
� �

¼ l�c
0

Pr me ¼ 0ð Þ ¼ 1� l�c
0

ð3:1Þ

(“Pr” indicates “probability”). The nonzero value is
taken as me ¼ lc0 so that the mean hmei ¼ 1; this
implies a scale-by-scale conservation of the flux e.

Since the rule is the same at each level, the
process is scale invariant, and in the small-scale
limit, the active regions are confined to a fractal
set (see e.g. Fig. 3.4). This is essentially the “pulse
in pulse” model proposed by Novikov and Stewart
(1964), a variant of which was baptized the “β

model” in an influential paper by Frisch et al.
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Fig. 3.3 A schematic diagram showing the first few steps in a
(discrete in scale) cascade process. At each step, the parent eddy
is broken up into 2 � 2 “daughter” eddies, each reduced by a factor
of 2 in scale, indicated as squares. The left shows a homogeneous
cascade (corresponding to Kolmogorov’s 1941 homogeneous
turbulence) in which the energy flux is simply redistributed from
large to small structures, while keeping its density constant. The
right-hand side shows an improvement: “on/off ” intermittency is
modelled by an “alive/dead” alternative at each step (here only the
bottom right sub-eddy becomes dead); the mean conservation of
energy flux can be taken into account by boosting the density of the
flux in the “active” eddies. For pedagogical reasons, the alternative
displayed is purely deterministic, but could be easily randomized
(see text). Adapted from Schertzer and Lovejoy (1987).

Fig. 3.4 An illustration of four cascade steps of the stochastic
“β model.” The probability that an eddy will remain alive is
λ0

�C ¼ 0.87 (using the scale ratio at each step λ0 ¼ 4 here and
the codimension C ¼ 0.2). Reproduced from Schertzer and
Lovejoy (1987).
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(1978). The latter paper was actually less explicit,
simply specifying a reduction of the volume of
active regions by a factor β at each step, hence the
name “β model”. The active region of the β model is
an example of a fractal set since, as we see in the
next subsection, its fractal dimension is less than its
topological dimension.

3.2.2 Fractal codimensions and
dimensions
Let us consider the properties of the βmodel in more
detail. By construction, the set of nonzero points on
the βmodel (the “support”) is scale invariant; it is the
simplest nontrivial example of scale invariance, a
geometric fractal set of points. Again, by construc-
tion, at each step in the cascade, the probability that
an alive eddy has an alive “daughter” eddy decreases
as l�c

0 ; after n steps, the total range of scales is l¼ l0
n

and the total probability that a given nth-step eddy is
alive is:

PrðaliveÞ ¼ l�c
0

� �n
¼ l�c ð3:2Þ

Alternatively, we can count the total number of alive
eddies. Since at scale ratio l, l�c is the fraction of
alive eddies, this implies that on average there are:

Nalive ¼ NtotPr ¼ ldl�c ¼ lD; D ¼ d � c ð3:3Þ

alive daughter eddies, where d ¼ the dimension of the
space where the process is developed (d¼ 2 in Fig. 3.4)
and Ntot ¼ ld is the total number of intervals (d ¼ 1),
square boxes (d ¼ 2), cubes (d ¼ 3) etc. of size l�1.
The exponent D ¼ d – c is the difference between the
dimension of the embedding space and the codimen-
sion c of the fractal set. In the limit that the process is
repeated indefinitely to small scales, and when D � 0
(c � d), it is the geometrical fractal dimension of the
set of active regions. Note that there is no problem
defining the β model cascade process for any c > 0, so
that when c > d we have D < 0 (see Box 3.2 for more
discussion of this “latent” dimension “paradox”).

The β model effectively approximates turbulence
by a geometric fractal set where all the activity is
concentrated. We have already seen Richardson’s
Weierstrass function model of the trajectory of a
particle in a turbulent flow (Fig. 2.4); two other early
geophysical models using fractal sets are shown
in Fig. 3.5: Welander’s 1955 model of a turbulent
interface, and Steinhaus’s 1960 model of a fractal river
basin. A little later, Mandelbrot (1967, 1975) pro-
posed geometric fractal models for coastlines and
topography.

Fractal model of a fluid

(Welander, 1955)

Fractal model of drainage systems

(Steinhaus, 1960)

Fig. 3.5 Early examples of geometrical
fractal sets applied to geophysical
problems, showing the initial stages in
construction. Left: the first four steps in
the construction of the “Koch” curve
(Koch, 1904) reproduced fromWelander
(1955), who used it as a model of an
interface in a turbulent fluid. Each
segment is iteratively replaced by a
scaled “generator” (shown in the second
line). In the limit, the fractal dimension is
D ¼ logN/logλ0 � 1.25, where N ¼ 4 is
the number of segments at each step
and λ0 ¼ 3 is the scale reduction
factor. Right: the first four steps in the
construction of a “Peano” curve (Peano,
1890) reproduced from Steinhaus
(1960), who gave it as an example of a
hydrological drainage network. In this
case, each segment is replaced by four
others, each reduced by a factor 2 so
that D ¼ logN/logλ0 ¼ 2, implying that
the limiting continuous line (topological
dimension 1) fills the unit square
(dimension 2) so that it ultimately passes
through every point in the unit square.
Do not be misled by the “necks” which
keep the curve from being broken –

they do not contribute in the limit.
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A fractal set more relevant for atmospheric science
is shown in Fig. 3.6a: a meteorological measuring
network (Lovejoy et al., 1986; Korvin et al., 1990;
Nicolis, 1993; Doswell and Lasher-Trapp, 1997;
Mazzarella and Tranfaglia, 2000; Giordano et al.,
2006). Although the distribution of measuring stations
is a human construct– as can be seen from the figure – it
is quite sparse, depending greatly on the distribution of

population and wealth, as well as on the distribution
of land mass.

In the β model, the probability at a given reso-
lution l is the same as the fraction or density of
points on the fractal at that resolution. In order to
empirically demonstrate the fractality of the stations
in Fig. 3.6a it suffices to determine the relation
between the density of stations and scale. If the
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Fig. 3.6 (a) The geographical
distribution of the 9962 stations
that the World Meteorological
Organization listed as giving at least
one meteorological measurement per
24 hours (in 1986); it can be seen that
it closely follows the distribution of
land masses and is concentrated in
the rich and populous countries. The
main visible artificial feature is the
Trans-Siberian Railroad. Also shown is
an example of a circle used in the
analysis. Adapted from Lovejoy et al.
(1986). (b) Analysis of the measuring
network in Fig. 3.6a: the average
number of stations (centred at a
station) in a circle radius L. The
(logarithmic) slope is the correlation
dimension; the line in the plot has
D ¼ 1.75. The bottom line is the
average number between L and
L þ ΔL, and the top line is the total
number within a radius L (ΔL is the
spacing between successive annuli;
here 10 are taken per order of
magnitude in L). The geographical
location of the stations was only
given to within ~1 km and three
pairs were found with nominally the
same geographical location, so it is
possible that the line extends to
even smaller scales. The largest scales
are dictated by the finite number
of stations available. By inspection,
we see that larger and larger circles
are clearly more and more filled by
holes; this reflects the fact that the
number density decreases as L�c with
c ¼ 2 – D ¼ 0.25. Reproduced from
Lovejoy et al. (1986).
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density is a power law then its exponent is its codi-
mension; if the latter is > 0, then the set is a fractal
set. Alternatively, if the total number of stations as a
function of scale is a power law then the exponent is
its fractal dimension D. If D < d (the dimension of
the embedding space), then c ¼ d – D > 0 and again
the set is a fractal set (there are also marginal fractal
sets when D ¼ d, c ¼ 0, but we will not pursue this
possibility here). This average number is conveni-
ently estimated by determining the average number
of stations within a circle radius L (Fig. 3.6a).
Fig. 3.6b shows the result using circles centred at
given stations. This number is proportional to the
number of pairs of stations within a distance L. The
resulting exponent (the slope on the log–log plot,
Fig. 3.6b) is a “correlation dimension” Dcor; in general
it is a little smaller than the usual fractal dimension,
which is a “box dimension.” The box dimension Dbox

would be the result if we performed the same analysis
but averaged over circles whose centres were uni-
formly distributed (rather than being on members of
the set, i.e. around stations). Dbox, Dcor are part of a
hierarchy of exponents characterizing the density of
stations. The relation between them is discussed in
Box 5.4; for further analysis of the station density see
Tessier et al. (1994).

In comparison, the usual method of objective
analysis (e.g. “Kriging,” “optimal interpolation” or
other conventional geostatistical techniques) interpo-
lates atmospheric fields from sparse networks onto
regular grids by assuming that the measurements are
distributed on a two-dimensional set (the earth’s sur-
face) but with “holes” that need filling. For example,
taking the area of the earth as~5 � 108 km2, the 9962
stations in Fig. 3.6a would be considered each to
represent 5 � 108 km2/9962 � 5 � 104 km2; i.e. the
resolution of the network would be taken as the
square root: � 200 km – but with “holes.” Fig. 3.6b
shows that this interpretation is incorrect: rather than
d ¼ 2, the dimension is Dcor � 1.75 with holes at all
scales (down to at least 1 km, which was the reso-
lution of the geographical locations of the stations!).
Since mathematically two – even large – sets of points
(“structures”) only intersect each other (with nonzero
probability) if the fractal dimension (D) of one of
them is greater than the codimension of the other, a
new problem arises. For example, active cores of
storms (or other regions with D < 2 – 1.75 ¼ 0.25)
will be so sparse that they will (almost certainly) be
missed (will not intersect the network). The reason is

that their dimensional – not spatial – resolution is too
low. This intersection theorem is a simple consequence of
the fact that codimensions are probability exponents, so
the probability of the network (with codimension Cnet)
intersecting a given phenomenon (with Cphen) is simply
l�Cnetl�Cphen ¼ l�C\ and the intersection codimen-
sion C\ ¼ Cnet þ Cphen. If C\ > d, then
D\ ¼ d � C\ < 0 and the network is too sparse to
measure/intersect the phenomenon (see Box 3.2).
(Note added in proof: quantitatively very similar
results were obtained by analysing the fractal dimen-
sions of the HadCRUT3 monthly surface temperature
climate data set (at 5� � 5� resolution, appendix 10C).
The data were also found to be sparse in the time
domain with Dcor � 0.8 (i.e. Dcor � 0.2).)

3.2.3 The amodel and canonical
conservation
By reducing the question of turbulent activity to a
geometric “on/off ” dichotomy, the β model is not
only simple, for most purposes it is simplistic: the
more general cascade models described below are
necessary to capture the intermediate levels of acti-
vity. Indeed, in spite of numerous attempts (many
of which, ironically, were inspired by Mandelbrot’s
seminal works on the geometry of fractal sets (1977,
1983)), the last 25 years have shown that most geo-
physical fieldsmust be described statistically, that they
cannot be reduced to geometry. This is contrary to
the case of “monofractal” functions such as the
Weierstrass function, or its stochastic generalizations
(e.g. fractional Brownian motion), which can be
reduced to geometric sets of points by considering
the points on their graphs (see Section 5.5).

The β model turns out to be a poor approximation
to turbulence, if only because it is unstable under per-
turbation. As soon as we consider a more realistic
alternative to the caricatural dead/alive dichotomy,
most of the peculiar properties of the β model are lost.
To show this, let us turn to the “amodel” (Schertzer and
Lovejoy, 1983), so named because of the divergence of
moments exponent a that it introduces. In the notation
below, we call this exponent qDwhere theD emphasizes
that it depends on the dimension of spaceD over which
the cascade is averaged: do not confuse this with the
Lévy a (used extensively below), nor with the a in the
dimension multifractal formalism (Box 5.5).

To see how the a model works, consider con-
structing it on the unit interval (Fig. 3.8a). At first,
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Box 3.1 Box counting and fractal sets, functional box counting and multifractal fields

Eqn. (3.3) relates the number of structures at a given scale to their fractal dimension; it can in fact be taken as the

definition of “box-counting dimension,” and it can be used to empirically estimate D. Consider the βmodel (Fig. 3.4):

if we distribute disjoint boxes size L (squares in 2D; L� 1/λ) only on those parts which cover at least one point on the

set, then the number of the boxes needed for the covering is N � L�D where D is the “box-counting” dimension

(usually taken as synonymous with the fractal dimension – but more on this in Chapter 5).

Consider what happens if we attempt to characterize a scaling function rather than a (black and white) scaling

set of points. Consider a two-dimensional (d ¼ 2) field f ð�rÞ, and use given thresholds (T ) to convert it into

(geometrical) exceedance sets ST, not having in general the same fractal dimension (see Fig. 3.7a for an example

with two thresholds): the number of boxes at resolution L, threshold T is NT (L) and satisfies:

NT Lð Þ � L�D Tð Þ ð3:4Þ

where D(T ) is the box counting dimension for the set ST.

(a)

(b)

Fig. 3.7 (a) A schematic diagram showing functional box counting. In A (top) the field is covered with a regular grid; two isolines are
shown. In B, C, D, a low threshold T1 is applied so that all the regions f ð�rÞ > T1 are shown as white; box counting is used to obtain
progressively better and better approximations to the set (left to right) and to estimate the box dimension D(T1) (Eqn. (3.4)). In E, F, G,
a higher threshold T2 and a higher resolution is used and the regions f ð�rÞ > T2 are used to estimate D(T2). Reproduced from Lovejoy
et al. (1987). (b) Functional box counting on radar reflectivity data of rain (data taken from a weather radar in Montreal, Canada). The
top graph is for horizontal (2D) sections at 3 km levels, covered with shapes (roughly) L � L; the bottom graph is for 3D sections
covered with cube-like shapes. Each line corresponds to a reflectivity factor increasing by a factor of about 2.5 (starting at the top, which
is the lowest detectable signal). Although all the different levels are accurately power laws (scaling), the more and more intense rain
regions (lower curves) have lower and lower slopes: again, we conclude that rain is multifractal. The geostatistics theory slopes 2, 3 (top
and bottom respectively) are shown for reference. Adapted from Lovejoy et al. (1987).
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the interval is uniform so that the initial energy flux
density e0 ¼ 1. As in the β model, the cascade pro-
ceeds by dividing the unit interval successively into
l0 subintervals (l0 is an integer ¼ 2 in Fig. 3.8a)
and multiplying the flux density by independent iden-
tically distributed random factors me (the notation
m indicating “multiplicative increment”; it is analogous
to the use of the Δ to denote an additive increment).
Therefore after n (discrete) cascade steps, the smallest
scale is l0

�n, the value of the energy flux density at a
point 0 � x � 1 is the product:

en ¼
Y

n

j¼1

mej ð3:5Þ

In order for the flux to be conserved from scale to scale,
we constrain the weightsme so that<me>¼ 1, implying

<en> ¼ 1. Each cascade step in the a model is a two-
state (binomial) process with me ¼ either l0

gþ or l0
g�

where gþ> 0 corresponds to a boost (me> 1) and g– to a
decrease (me < 1) (Schertzer and Lovejoy, 1985). As in
the β model, the corresponding probabilities can be
written l0

�c and 1 – l0
�c respectively, where c > 0 is a

parameter (it corresponds to the maximum
codimension of the process, as discussed in Chapter 5).
Formally:

Prðme ¼ l
gþ
0 Þ ¼ l�c

0

Prðme ¼ l
g�
0 Þ ¼ 1� l�c

0

ð3:6Þ

An example of the pattern of boosts (þ) and decreases
(–) is shown in Fig. 3.8b. Although the a model
apparently involves three parameters (gþ, g–, c), due
to the conservation constraint:

Box 3.1 (cont.)

Let us now see what happens when this “func-

tional” box counting is applied to radar reflectivities

from rain. In Fig. 3.7b, we see that the scaling is excel-

lent: the power law (Eqn. (3.4)) was accurately obeyed

for all T, L. However, DT systematically decreases with

threshold: it is not constant (as assumed in the mono-

fractal models such as fractional Brownian motion,

Section 5.4.3) but a decreasing function, indicating that

the field is multifractal. Similar results (Fig. 3.7c) show

that the topography is also multifractal.

Let us now consider some consequences of the

scaling of these exceedance sets. If we consider the

areas AT exceeding a given threshold then we find

that they systematically decrease as the resolution

becomes finer (decreasing L) : AT ¼ LdNT ¼ LC(T); with

C(T ) ¼ d – D(T ). We see that, contrary to standard

assumptions (including those of classical geostatistics:

Matheron, 1970), unless C(T ) ¼ 0, the areas depend

on the subjective resolution L; Figs. 3.7b and 3.7c

show reference lines indicating that for both the rain

area and topography, all the regions defined by the

thresholds have C(T ) ¼ d – D(T ) > 0 so that they

have systematic resolution dependencies.

In meteorology, it is common to use satellite pictures of cloud areas to define “cloud fractions” FT ¼ AT/A � LC(T)

(where A is the total area of the satellite image, independent of L). In this case, the same type of functional

box-counting analysis (Gabriel et al., 1988) shows that cloud fraction is indeed a similarly subjective quantity

depending on the observer-dependent resolution. Actually, cloud fraction is doubly subjective, since the exact

threshold used to separate cloud from no cloud is also somewhat arbitrary, so that both L and T are different when

determined by ground observers and by satellite radiance algorithms. It is therefore hardly surprising that there are

serious calibration issues (see e.g. Wielicki and Parker, 1992), although even recent attempts to deal with cloud sizes

would benefit from a systematic scaling approach (see e.g. Wood and Field, 2011).

(c)

Fig. 3.7 (c) Functional box counting of the topography of
France at 1 km resolution. Adapted from Lovejoy and Schertzer
(1990).
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hmei ¼ l�c
0 l

gþ
0 þ ð1� l�c

0 Þl
g�
0 ¼ 1 ð3:7Þ

only two can be freely chosen.We can see that theβmodel
is recovered in the limit gþ ! c, which is the same as
g� ! �1. Note that the boost “singularity” gþ can
in principle take any value gþ� 0 and that there
is nothing to prevent individual realizations from
having “extreme” outcomes such as a cascade step
with only boosts or only decreases. The conservation
in Eqn. (3.7) is only over an ensemble of processes; in
analogy with thermodynamics, it is a “canonical”
conservation. Fig. 3.9a shows two examples of the
a model in 1D with rather different parameters,
showing how the “spikes” – the “singularities” – build
up step by step; note the vertical axis scale, which
changes considerably as the cascade evolves to smaller
scales. Fig. 3.9b shows 2D examples comparing
β models (left column) with c increasing from top
(0.1) to bottom (0.5); these fractal sets become
increasingly sparse as c increases. The second column
is a rendition on a linear scale of the corresponding a
model with gþ ¼ c – 0.09 with the same c values (and
the same random seed so that the difference in the
structures that result from c ! c – 0.09 can be
gauged). The variability is so large that the simula-
tions vary from fairly homogeneous grey (top) to very
inhomogeneous when c ¼ 0.5 (bottom). In an effort
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Fig. 3.8 (a) A schematic picture of the amodel. At each step, uniform
intervals (left) are divided into λ¼ λ0 subintervals (λ0¼ 2 here) and then
each is randomlymultiplied by either λ0

γþ of λ0
γ� (with γþ> 0, a boost,

γ–< 0, decrease). (b) Schema of tree of boosts (þ) or decreases (–) for a
one-dimensional β or a model with probabilities as above.
Reproduced from Schertzer and Lovejoy (1996).
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Fig. 3.9 (a) A comparison of two α
models with different parameters. Left
column: γþ ¼ 0.2, c ¼ 0.3 (C1 ¼ 0.087),
right column: γþ ¼ 1.1, c ¼ 1.2
(C1 ¼ 0.82). From top to bottom every
second cascade step (a factor of λ0

2) is
shown, 10 steps in all; the total range
of scales is 210 ¼ 1024). Notice the
changing vertical scales.
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(b)

Fig. 3.9 (b) A comparison of the β model (left column), the a model (columns 2 and 3), and a discrete-in-scale “universal multifractal”
cascade model (Section 3.3.3 with a multifractality index a ¼ 1.8), columns 4 and 5 (see Fig. 3.10 for K(q)). The first column is a β model
with c increasing by 1/10 (top to bottom), the second column is an a model with the same c but γþ ¼ c – 0.09, the third column is the
log of second. The fourth column is a universal multifractal model with a multifractality index a ¼ 1.8 and the same C1 as the a model
(0.00050, 0.037, 0.098, 0.170, 0.248 respectively). The fifth column is the log of the fourth. To get an idea of the variations, note that the a
model ranges from minima to maxima (0.68, 1.06), (0.028, 1.84), (1.49 � 10�3, 3.20), (7.52 � 10�5, 5.58), (2.13 � 10�5,9.71) (top to bottom
respectively), while the universal multifractal model has ranges: (0.069, 1.06), (1.99 � 10�13, 6.36),(1.004 � 10�22, 19.04), (1.18 � 10�30, 42.07),
(1.08 � 10�37, 76.80) (top to bottom respectively, all have mean ¼ 1).
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to better visualize the intermediate levels of intensity,
the third column shows the same simulation but on a
log scale. If we converted the a model into a geomet-
ric set of points by considering only those regions
which are greater than a threshold, then, due to the
scaling, the sets are fractal sets and we can see that as
we increase the threshold to higher levels the resulting
fractal codimension increases (the fractal dimension
decreases). This method of converting the multifractal
into fractal sets is only approximate; it can only work
over a finite range of scales. The “graphs” of the pro-
cess do not converge: as we increase the resolution, the
graph itself does not converge; the small-scale limit is
singular. The amodel is therefore the simplest example
of a multifractal process (to which we return in greater
detail in Chapter 5). Finally, columns four and five
(linear and log scales respectively) show a discrete-in-
scale “universal multifractal” model described below
which has not just two possible states at each step but
a continuum (but not yet a continuum of spatial scales;
there are still ugly construction lines!). Going from left
to right, the β and a models share a common param-
eter c while the Lévy cascade shares the same parameter
C1 (described below) so that their behaviours near the
mean are the same.

3.2.4 The pmodel and microcanonical
conservation
The a model was developed specifically because it
afforded a simple example of nonclassical extreme
behaviour: “divergence of statistical moments” –

algebraic probabilities – that result when the largest
cascade values exceed a critical value (here, when gþ
exceeds the dimension of space, d: see Section 5.3.2).
This interesting behaviour is a consequence of the
singular small-scale cascade limit, which turns out to
imply that “dressed” cascades – i.e. those cascades
completed to infinitely small scales and then spatially
integrated over a finite scale – have these nonclassi-
cal extremes. The jargon “bare” and “dressed” was
borrowed by Schertzer and Lovejoy (1987) from
theoretical physics to underline the fact that only in
the latter are all the interactions (over the whole
hierarchy of scales) taken into account. However,
the analysis of the dressed properties is not as
straightforward as for those of a cascade developed
over a finite range of scale l and then stopped, i.e.
the “bare” properties; we pursue this more advanced
topic in Section 5.3.

However, there is a simple way to modify the cas-
cade which avoids at least some of the bare/dressed
complications: to change the type of scale-by-scale con-
servation from canonical (over an ensemble of realiza-
tions, as for the a model) to “microcanonical”
conservation (at each cascade step, each realization).
To understand this, take the example of the 1D
a model with l0¼ 2: it can be transformed into the
microcanonical “p”model (Meneveau and Sreenivasan,
1987) by requiring at each step that the two random
multipiers me1, me2 needed to yield a daughter from
a parent eddy have exactly an average of 1 so that
me2 ¼ 2 – me1. In other words, at each step there is
exactly one gþ and one g– satisfying ðl

g�
0 þ l

gþ
0 Þ=2 ¼

(with l0 ¼ 2). The only choice in the p model is thus
whether gþ is on the right- or left-hand side of each
interval. Interestingly, the p model was actually first
proposed much earlier by de Wijs (1953) as a model
for the distribution of minerals and ores in the
lithosphere, and it was argued that it led to at least
approximately a lognormal distribution.

It turns out that the most important difference
between the a and pmodels is in the largest events that
they can generate. Whereas we have pointed out that in
the amodel, any gþ � 0 is possible, in the pmodel, the
requirement that the multipliers are � 0 (so that g– is
real) implies an upper limit gþ� 1. If we generalize this
to other discrete scale ratios l0 > 2 or to higher d-
dimensional a models but with the same microcanoni-
cal constraint (i.e. that the sum of all the multipliers
at each step equals the total number of multipiers l0

d)
then instead of the canonical conservation condition
<me> ¼ 1 we obtain:

1

ld0

X

ld0

i¼1

mei ¼ 1 ð3:8Þ

This microcanonical constraint implies that the
most extreme microcanonical model is that in which
all the multipliers are zero except for a single one,
whose value is thus me ¼ ld0 . This implies that in d
dimensions, gþ� d is the most extreme microcano-
nical model possible. It turns out that this is precisely
the condition that guarantees that in a space dimen-
sion d, the interesting extreme cascade probability
tails disappear. By focusing on the special and artifi-
cial microcanonical cascades, much of the physics
literature has thus missed this interesting “nonclassi-
cal route to self-organized criticality” (SOC) discussed
in Box 5.2. Similarly, there are also special “Novikov”
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Box 3.2 Dimensions and codimensions

Fractal geometry

Fractal geometry (Mandelbrot, 1977, 1983) provides the simplest nontrivial example of scale invariance, and is useful

for characterizing fractal sets. Unfortunately in geophysics we are usually much more interested in fields (with values

at each point) and rarely interested in geometrical sets. However, over a wide range of scales fractal dimensions can

still be useful in “counting the occurrences of a given phenomenon” – as long as this question can properly be

posed. If this is the case and the phenomenon is scaling, then the number of occurrences (NA(l ) at resolution scale l

in space and/or time of a phenomenon occurring on a set A) follows a power law:

NAðlÞ
0 L

l

� ��DF

ð3:9Þ

DF being the (unique) fractal dimension, generally not an integer, and L the (fixed) largest scale (here and below the

sign ~ means equality within slowly varying and constant factors).

Fractal codimensions

The notion of fractal codimension CF can be defined both statistically and geometrically. While the latter is more

popular, we will demonstrate that the former is much more useful and more general, since it applies not only to

deterministic but also to stochastic processes.

Definition 1: geometric definition of a fractal codimension

Let A � E (the embedding space) with dimðEÞ ¼ D and dimðAÞ ¼ DFðAÞ. Then the codimension CFðAÞ is defined as:

CFðAÞ ¼ D� DFðAÞ ð3:10Þ

This definition corresponds merely to an extension of the (integer) codimension definition for vector subspaces,

i.e. E1 and E2 being in direct sum (i.e. E1 \ E2 ¼∅):

E ¼ E1 � E2 ) codimðE1Þ ¼ dimðE2Þ ð3:11Þ

Definition 2: probabilistic definition of a fractal codimension

In fact the codimension CF can be considered to be more fundamental than the notion of fractal dimension DF and

should be introduced directly. The probability (Pr) that a ball Bλ (of size l ¼ L=λ) intersects the set A has the following

scaling behaviour:

PrðBλ \ AÞ	λ�CF Að Þ ð3:12Þ

and CF is thus directly defined as an exponent measure of the fraction of the space occupied by the fractal set

A (size L) in an embedding space E, which can even be an infinite dimensional space.

Relating the two definitions

Since the probability of the event ðBλ \ AÞ is defined as:

PrðBλ \ AÞ	
NðBλ \ AÞ

NðBλ � EÞ
	
λ�DF ðAÞ

λ�DðAÞ
ð3:13Þ

where NðBλ \ AÞ refers to for example the number of balls Bλ needed to cover the set A and NðBλ � EÞ is the

corresponding number for the entire space, it is easy to check that when CFðAÞ < D ¼ dimðEÞ < 1 the two

definitions (Eqns. (3.10), (3.12), respectively) are equivalent:

CFðAÞ � D < 1, fdefinition 1 �definition 2g 8 DF � 0 ð3:14Þ

Rather obviously, the statistical definition does not imply any limitation on C. However, the equivalence between the

two definitions does not hold any longer as soon as CF (A) > D, since:

for CFðAÞ > D, fboth definition 1 and definition 2g ) DFðAÞ < 0 ð3:15Þ

This is the so-called “latent” dimension “paradox” corresponding to the fact that a deterministic geometric definition

is no longer possible; indeed, there is no possible definition of a negative Hausdorff dimension! This is not surprising
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inequalities which are sometimes invoked but
which are only relevant in microcanonical cascades
(Novikov, 1994). Finally, the microcanonical assump-
tion is sometimes made implicitly when analyzing
data (the “fragmentation ratio” or “multiplier”method),
and this will lead to serious biases in estimating the
exponents (see Lovejoy, 2010, for a discussion and
numerical examples).

3.2.5 Statistical properties of theamodel
and general cascades
We have seen that in order to respect the scale-by-
scale conservation of the mean (its independence
of n), we require the canonical conservation
hmei ¼ 1, which ensures that heni ¼ 1. However, with
an increasing number n of steps, the other statistical
moments he

q
ni will either “blow up” to infinity

(for q > 1) or “down” to zero (for q < 1). The overall
characterization of the statistical properties is
conveniently made with the help of the “moment
scaling exponent” K(q), which can be defined
by the statistics of the distribution of random weights
me:

KðqÞ ¼ logl0hme
qi ¼ Loghmeqi=Logl0 ð3:17Þ

Introducing the (random) cascade “generator” G0, the
logarithm of the multiplier:

G0 ¼ Logl0ðmeÞ ð3:18Þ

implies that K(q) is actually its (Laplacian, base l0)
second characteristic function (“cumulant generating
function”), because Eqn. (3.17) can be rewritten as:

KðqÞ ¼ logl0
�

eqG0


ð3:19Þ

The importance of defining the generator of the
cascade implicitly in this manner instead of directly
via the weight me, is that Eqn. (3.19) can be easily
generalized for continuous-in-scale cascades, yet it is
also useful for discrete cascades (Schertzer and Love-
joy, 1987). Let us first note that in probability theory,
characteristic functions are usually introduced as the
Fourier transforms of the probability densities of
random variables, and their natural logs are the
second (Fourier) characteristic functions. For both
Laplace and Fourier transforms, due to their invert-
ibility, defining the statistics via the probability dens-
ity or via the first or second characteristic functions is
equivalent. Here, the finiteness of the characteristic
function K(q) is equivalent to that of the qth
order moment of me; in fact, conservation of the mean
(q ¼ 1) requires that at least the positive moments of
order 0 � q � 1 are finite. Another way of stating this
is that only random multipliers me with well-defined
Laplace characteristic functions can yield physically
possible cascade generators.

A trivial but important consequence of the
independence of the cascade steps (and of the

Box 3.2 (cont.)

since definition 2 (Eqn. (3.12)) overcomes many limitations of the Hausdorff dimension, which is defined for

compact sets (hence bounded sets): the codimension measures the relative sparseness of a phenomenon (the

relative frequency of its occurrence), whereas the dimension measures its absolute sparseness (the absolute

frequency of its occurrence). Obviously, we don’t need to know the latter in order to be able to determine the

former. However, it turns out historically that the (fractal) dimension was introduced first.

The “intersection theorem”

It is important to point out a direct and important corollary of the probabilistic definition of fractal codimensions.

If E1 and E2 are statistically independent:

CFðE1 \ E2Þ ¼ CFðE1Þ þ CFðE2Þ ð3:16Þ

i.e. statistical codimensions just add for the intersection of independent fractal processes. This is a direct conse-

quence of the fact that the probability of the intersection factorizes PrðE1 \ E1Þ ¼ PrðE1ÞPrðE1Þ. It is important to

note that the derivation and the validity of this “theorem” is not so obvious when using the geometric definition (for

discussion, see Falconer, 1990). In Chapter 5 we use statistical codimensions to solve the paradox of apparent

negative dimensions by introducing the notion of “sampling dimension.”
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corresponding weights) is that K(q) is scale invariant,
i.e. independent of the number n of steps:

heqni ¼




Y

n

j¼1

me
q
j

�

¼
Y

n

j¼1

�

me
q
j



¼
�

meq
n

¼ l
nKðqÞ
0

ð3:20Þ

with respect to the overall scale ratio l, since the
cascade started:

l ¼ ln0 ð3:21Þ

We can now write the general expression for the
statistical properties after a total scale range l:

�

e
q
l



¼ lKðqÞ ð3:22Þ

This is the basic formula for cascade statistics used
throughout this book. As indicated above, this speci-
fication of the statistics of me (and also of el) via their
statistical moments is equivalent to their specification
by their probabilities. We postpone demonstrating
the beautiful and simple relation between the two
until Chapter 5, concentrating for the moment on
the properties of K(q), and in Chapter 4 on the analy-
sis of atmospheric data.

3.2.6 Properties of the moment scaling
exponent K(q)
In order to see the general shape of the K(q) function,
we may first note that conservation from one scale to
another <en>¼ 1 requires K(1) ¼ 0. In addition,
because any positive number raised to the zero power
is one, we have <1> ¼ 1, hence K(0) ¼ 0. Finally, a
basic property of second characteristic functions is
that K(q) must be convex, i.e. K00(q) > 0; this can be
shown directly by doubly differentiating K(q) ¼
log<eqG>/logl (see Appendix 3A for details). We
therefore conclude that the typicalK(q) looks something
like Fig. 3.10, which shows theK(q) for the amodel and
the universal multifractal models in the fourth and fifth
columns of Fig. 3.9. The models are tangent to each
other at q ¼ 1 because the derivatives at q ¼ 1 were
deliberately chosen to be equal to each other. This value:

C1 ¼ K 0ð1Þ ð3:23Þ

is “the codimension of the mean”; it is a basic char-
acterization of the variability near the mean, to which
we return in Chapter 5.

To illustrate these properties, we can make some
explicit calculations for the a model. For example, we
have:

KaðqÞ ¼ log½l
qgþ�c
0 þ l

qg�
0 ð1� l�c

0 Þ
=logl0

K
0

aðqÞ ¼
gþl

qgþ�c
0 þ g�l

qg�
0 ð1� l�c

0 Þ

l
qgþ�c
0 þ l

qg�
0 ð1� l�c

0 Þ

ð3:24Þ

From this we see that for the a model:

C1 ¼ K 0

að1Þ ¼ gþl
gþ�c
0 þ g�l

g�
0 ð1� l�c

0 Þ ð3:25Þ

Also, we may note that for the a model, there are low
and high q asymptotes whose slopes are:

lim
q!�1

K 0

aðqÞ ¼ g� ð3:26Þ

Considering now the special case of Eqn. (3.24), when
gþ ¼ c, g� ¼ �1, we obtain the results for the
β model:

KbðqÞ ¼ C1ðq� 1Þ ð3:27Þ

We see that it is linear in qwith c¼C1. The βmodel with
correspondingC1 can be said to provide a “monofractal”
(on/off) approximation to the mean (q ¼ 1) behaviour
of the cascade (see Fig. 3.9 for examples), but obviously
this approximation is only valid for q � 1, otherwise it
may be misleading. Note that lim

q!0
KbðqÞ ¼ �C1 so that

in the β model, C1 is also the codimension of the
nonzero regions, of the “support.”

1 2 3 4q

0.1

0.2

0.3

K(q)

Fig. 3.10 The K(q) functions for the αmodel (middle curve, c ¼ 0.2,
γþ ¼ 0.11, from the second from the top of the 5 � 5 grid in
Fig. 3.9b), with universal multifractal model (top curve), α ¼ 1.8
with same C1 (¼ 0.037, same as second from the top of the 5�5 grid
in Fig. 3.9b) and β model (bottom, linear) with c ¼ C1.
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It is therefore natural to characterize the multi-
fractality by the deviations of K(q) from the β model,
i.e. from its linear tangent K0(1). The deviations can
be characterized by the curvature of K(q) near the
mean (Schertzer et al., 1991); indeed, we can already
use this idea to give a “local” (in q space) definition of
the degree of multifractality a:

a ¼ K 00ð1Þ=K 0ð1Þ ð3:28Þ

We shall see that this local (C1, a) description of K(q)
can often provide a complete “global” description
when the cascade is in the basin of attraction of
“universal multifractals” discussed below (note that
this a is not the same as the a used in the original
formulation of the a model).

3.2.7* The dual codimension
function C(q)
Functions that will be useful in later analysis are
the codimension and dimension functions C(q), D(q):

CðqÞ ¼
KðqÞ

q� 1
; DðqÞ ¼ d � CðqÞ ð3:29Þ

The underlying duality corresponds to the fact
that the codimensions C(q) were introduced
(Schertzer and Lovejoy, 1983, 1984) with the help
of an intersection theorem, as the codimension
of sets over which the statistical moments of the
field are finite, whereas in order to characterize
low-dimensional chaotic systems, Hentschel and
Procaccia (1983) and Grassberger (1983) intro-
duced D(q) as “generalized dimensions,” but with
almost no justification. Both are significant in that
they underline the fact that in general a scaling
field cannot be defined with only a single dimen-
sion, a question that we will pursue in Chapter 5.
By the graphical construction (Fig. 3.11) it is clear
that C(q) is the slope of the chord between the
points (1,0) and (q, K(q)), and by the convexity
of K(q), C(q) must be an increasing function of q:
C0(q) � 0 for all q, hence the dimension function
D0(q) � 0. Note that using l’Hopital’s rule at q ¼ 1
we see that:

Cð1Þ ¼ K 0ð1Þ ¼ C1 ð3:30Þ

This fundamental parameter will be shown to be the
codimension of the mean field, i.e. <e>.

3.2.8 The small-scale cascade limit:
a first look
We have seen in Eqn. (3.19) that K(q) is the second
characteristic function of the generator G. It follows
that the small-scale limit (l ! 1) of the cascade is
highly singular since logl diverges implying that
logheqGli diverges to 1 (q > 0) or to �1 (q < 1).
From the examples in Fig. 3.9a, we see that it is
plausible that this corresponds to the limiting density
el becoming either infinite spikes, or zero values,
although – because of the conservation property –

on average the area under the spikes must be fixed.
As l ! 1, we find (Chapter 5) that the spikes are
distributed on sparse fractal sets – strictly of measure
zero with respect to the usual Lebesgue measure (i.e.
in Fig. 3.9a, in the limit, they have zero lengths, zero
areas respectively), and that the amplitude of the
spikes must diverge so as to maintain the mean fixed.
After a large (but finite) l, if we consider the regions
that exceed a given level of activity, then this is a fractal
set (truncated at the scale L/l). If we consider the set of
points exceeded by even taller spikes, then we find that
the fractal dimension of this different set is smaller.
The limiting cascade process is thus an example of a
multifractal, a nontrivial hierarchy of fractals.

It turns out that this highly singular
multifractal limit is like a Dirac d function: the
limiting cascade density e1 is a generalized
function obtained as the limit of the series of func-
tions el, and is itself only meaningful if integrated
over a finite set. The integration over a finite set

slope = C(q) =

K(q)

q
q1

q – 1

K(q)

q–1

Fig. 3.11 A schematic illustration of the relation between K(q) and
C(q). Reproduced from Schertzer and Lovejoy (1996).
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Box 3.3 Autocorrelations, spectra and bounded cascades

The moments in Eqn. (3.22) explicitly describe the “one point” cascade statistics (i.e. the statistics at a single point

�r within the cascades) and are the same for all�r within the region of simulation (in space, the process is “statistically

homogeneous”; in time, “statistically stationary”). However, all the statistical properties of the cascade are implicitly

defined once K(q) is specified, i.e. the n point joint probabilities. For example, we may wish to estimate the power

spectrum of a cascade which is a two-point statistic. Due to the Wiener–Khinchin theorem, it suffices to determine

the autocorrelation function R(Δx) of the cascade; the spectrum is then obtained as its Fourier transform. From

Box 2.2 we have (in 1D):

EðkÞ ¼

ð

1

�1

RðΔxÞε�ikΔxdΔx; RðΔxÞ ¼ hεðx � ΔxÞεðxÞi ð3:31Þ

From the Tauberian theorem (Box 2.2) if R(Δx)� Δx�δ, then E(k)� k�βwith β¼1þ δ, hence we need only determine δ

from the cascade. For the discrete cascade, we can follow the argument from Yaglom (1966) and Monin and Yaglom

(1975). Consider a cascade in 1D developed over n steps, for a total scale ratio λ0
n. Consider next a lag Δxm such that:

λ
�ðmþ1Þ
0 < Δxm < λ�m

0 ð3:32Þ

so that logΔxm � �mlogλ0. The qth-order autocorrelation is thus:

�

εqnðx � ΔxmÞε
q
nðxÞ



¼




Y

n

i¼1

Y

n

j¼1

ðμεiμεjÞ
q

�

ð3:33Þ

where the index i refers to the multipliers at the point x – Δxm and the j to those at the point x. The lag Δxm
is the typical size of the mth-level structures, so that if m � n, the two points will likely share all the

multipliers and hεqnðx � ΔxmÞε
q
nðxÞi ¼ hε2qn ðxÞi ¼ λ

nKð2qÞ
0 (i.e. we discount the unlikely event that they happen to

straddle special points at the edge of large structures). If we consider now the casem< n then, typically, we will find

that the multipliers at the points x, x – Δxm will be shared up to level m, but will be different for the levels > m. This

implies:

�

εqnðx � ΔxmÞε
q
nðxÞi �

�

με2q
m
�

�

μεq
2
	ðn�mÞ

¼ λ
mKð2qÞ�2ðn�mÞKðqÞ
0 ð3:34Þ

Using λ�m
0 � Δxm and λn0 ¼ λ, we obtain:

hεqλðx � ΔxÞεqλðxÞi � Δx�ðKð2qÞ�2KðqÞÞλ�2KðqÞ ð3:35Þ

where we have dropped the subscripts m on the Δx, and indicated the resolution of ε directly by the total scale

range λ rather than the number of steps n. Finally, the usual autocorrelation is obtained by taking q ¼ 1; using the

scale-by-scale conservation condition K(1) ¼ 0 we obtain the particularly simple result:

hελðx � ΔxÞελðxÞi � Δx�Kð2Þ; 1 � Δx > λ�1

hελðx � ΔxÞελðxÞi � λKð2Þ; Δx < λ�1 ð3:36Þ

The normalized autocorrelation function Rλ(Δx) with the property Rλ(0) ¼ 1 can be obtained by normalizing by the

value at Δx ¼ 0 to obtain:

RλðΔxÞ � ðλΔxÞ�Kð2Þ
; 1 � Δx > λ�1

RλðΔxÞ � 1; Δx � λ�1 ð3:37Þ

Finally, using the result from Eqn. (3.31), we obtain:

EðkÞ ¼

ð

1

�1

RλðΔxÞe
�ikΔxdΔx � λKð2Þk�β; β ¼ 1� Kð2Þ; K � λ ð3:38Þ

Since K(1) ¼ 0, K0(1) > 0 and K00 > 0, we have K(2) > 0 and we see that β < 1. Fig. 3.12 shows the result on the flux

estimated from the temperature series shown in Fig. 3.1a.
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smooths the “bare” (un-integrated) process enough so
that a small-scale (large l) limit does exist for the
integrals. Interestingly, the integration does not
smooth out the small scales completely, so the statis-
tical variability of such integrated “dressed” cascades
is significantly higher than for the cascade con-
structed down to the same scale and then stopped:
the “bare” cascade. This is discussed in further detail
in Chapter 5.

3.3 Universal multifractal processes

3.3.1 Universality in physics, in turbulence
As there is only a conservation and convexity con-
straint on K(q), (i.e. K(1) ¼ 0, K00

> 0), a priori, an
infinity of parameters (the K(q) function) is required
to specify a cascade process. However, for obvious

theoretical and empirical reasons physics abhors
infinity; this is the reason why in many different fields
of physics the theme of universality appears: among
the infinity of parameters, it may be possible that only
very few of them are relevant. This is especially true as
soon as we consider not only ideal systems, but more
realistic systems subjected to perturbations or self-
interactions. Indeed, such perturbations or inter-
actions may wash out many of the peculiarities of
the theoretical model, retaining only some essential
features. The system can be expected to converge to
some universal attractor, in the sense that a whole
class of models/processes, belonging to the same
domain of attraction, will converge to the same process
defined by (far) fewer (relevant) parameters (Fig. 3.13).
For example, in critical phenomena most of the many
exponents describing phase transitions will depend only
on the dimensionality of the system. More precisely –

Box 3.3 (cont.)

The result β < 1 for a conserved cascade already

implies that “observables” with β> 1 (such as the wind

and most of the meteorological fields) cannot be direct

results of multiplicative cascade processes as defined

above. However, this is to be expected since it is only

the scale-by-scale conserved quantities that are

expected to cascade in the first place. This is worth

stressing, since there has been an attempt – the

“bounded cascade model” – to directly model atmos-

pheric fields with β > 1 using multiplicative cascade

processes (Cahalan, 1994). For example, in order to

model 1D sections of atmospheric turbulence with β

¼ 5/3 (the Kolmogorov value), at each step in the

bounded cascade the multipliers are constrained to

be of the form με ¼ (1þspcn) where 0 < p < 1 is a

parameter and s ¼ � 1 is a random sign. The add-

itional cascade-step dependent parameter is cn ¼ λ0
�nH

(with 0 < H < 1) with λ0 ¼ 2. Due to this “bounding,”

instead of being independent of the cascade step, the

με rapidly approach unity as n becomes large. In fact

for large j, λ
�jH
0 is very small so that at each point:

εn ¼
Y

n

j¼1

ð1þ sjpλ
�jH
0 Þ � 1þ p

X

n

j¼1

λ
�jH
0 sj ð3:39Þ

so that in the small-scale limit, the bounded cascade is actually seen to be a disguised additive process. Indeed,

Lovejoy and Schertzer (2006) show that its statistics are essentially those of a truncated, additive fractional Brownian

motion, so that the term “cascade” is quite misleading. Since pure multiplicative processes are only sufficient for

defining conservative fluxes, in order to deal with processes with β > 1 a wide generalization is necessary, to

fractionally integrated fluxes (Schertzer and Lovejoy, 1987; Schertzer et al., 1997; see Section 5.4.4).

Fig. 3.12 The spectrum (thin line) of the fluxes from the
aircraft transect shown in Fig. 3.1a with its average over
logarithmically spaced bins (thick line) along with a reference line
with slope –0.89 (K(2) ¼ 0.11, the value for C1 ¼ K0(1) ¼ 0.06,
α ¼ K”(1)/K0(1) ¼ 1.8).
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although they could be originally quite different – all the
processes belonging to the same “basin of attraction”
will converge toward the same limit or “attractor” –

hence the notion of universality: the larger the basin,
the more universal the attractor. Indeed, it was the
realization that low-dimensional systems (such as non-
linear mappings or coupled nonlinear ordinary differ-
ential equations) had universal behaviour (leading to
the “universal” appearance of the famous Feigenbaum
constant) that led to an explosion of interest in
deterministic chaos. Universal multifractal processes
are an analogous attractor but for a large number of
degrees of freedom.

In turbulence, the idea of universality is also quite
old, and the early proposals are compared in Table 3.1.
It can be seen that in comparison to these one- or
two-parameter models, the general cascade process
effectively involves an infinity of parameters (the entire
convex K(q) function) with the early proposals as
special cases. Universality on the basis of a multiplica-
tive central limit theorem is tantamount to reducing

the K(q) to two parameters for e with the third (H) for
the observable (e.g. Δv) so that we return from an
infinity of parameters to just three: a, C1, H.

3.3.2 Universality, multiplicative
processes and cascades
The study of multiplicative random processes has a
long history (see Aitchison and Brown, 1957); it goes
back to at least McAlister (1879), who argued that
multiplicative combinations of elementary errors
would lead to lognormal distributions. Kapteyn
(1903) generalized this somewhat and stated what
came to be known as the “law of proportional
effect,” which has been frequently invoked since then,
particularly in biology and economics (see also Lopez,
1979, for this law in the context of rain). This law was
frequently used to justify the use of lognormal distri-
butions, i.e. it was tacitly assumed that the lognormal
was a universal attractor for multiplicative processes.
Although Kolmogorov (1962) and Obukhov (1962)
did not explicitly give the law of proportional effect as
motivation, it was almost certainly the reason that
they suggested a lognormal distribution for the
energy dissipation in turbulence. Since then, culmin-
ating in the multifractal processes, we have seen that
there have been many proposals for explicit multi-
plicative cascade models that would reproduce the
strong intermittency in turbulence.

Unfortunately, in the course of development of
these models the basic issue of universality was
obscured by various technical questions. If we simply
iterate the model step by step with a fixed scale ratio
l, we indefinitely increase the overall range of scales

Table 3.1 How many parameters for turbulence? The idea of universality in turbulence goes back to Kolmogorov (and indeed, to
Richardson in his 4/3 diffusion law, which is more or less equivalent to the Kolmogorov law). Universal multifractals reduce the infinity
of parameters implicit in K(q) to only two (C1, a), i.e. back to a finite and hence “manageable” number.

Answer Date References Explanation Parameters

1 1941 Kolmogorov (homogeneous turbulence) Δvλ � ε
1=3λ�1=3 H¼ 1/3

2 1962 Kolmogorov–Obukhov (lognormal model) hεq
λ
i ¼ λKðqÞ

KðqÞ ¼
μ

2
ðq2 � qÞ

H, μ

2 1964 Novikov-Stewart, Mandelbrot, Frisch et al., β model KðqÞ ¼ C1ðq� 1Þ H, C1

1 1974 (Mandelbrot, 1974) K(q) Any K(q) convex with

K(0)¼ K(1)¼ 0

3 1987 Universal multifractals KðqÞ ¼ C1
a�1

ðqα � qÞ a, H, C1

Basin of Attraction

Attractor

Fig. 3.13 Schematic of a basin of attraction. Reproduced from
Schertzer and Lovejoy (1996).
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l ! 1 already posing a nontrivial mathematical
problem (the weak limit of random measures: see
Kahane, 1985). There were also some hasty claims
(e.g. Yaglom, 1966) that iterating the process to
smaller scales would lead to the (universal) lognormal
model (see also Venugopal et al., 2006, for similar
arguments on the smallness of the high-order terms
of the cumulant generating function K(q)). The claim
of universality of the lognormal model was first criti-
cized by Orszag (1970) and then by Mandelbrot
(1974), the latter on the grounds that even if the
cascade process was lognormal at each finite step, in
the small-scale limit the spatial averages of the cascade
process would not be lognormal. Furthermore, since

the particularities of the discrete models (e.g. the form
of K(q) for the a model, Eqn. (3.24)) remain as a
discrete cascade proceeds to its small-scale limit, the
opposite extreme claim has since been made, that
multiplicative cascades could not admit any universal
behaviour: “in the strict sense, there is no universality
whatsoever . . . this fact about multifractals is very
significant in their theory and must be recognized”
(Mandelbrot, 1989). In the atmospheric literature, Gupta
andWaymire (1993) repeated the same kind of claim. In
both cases, their rejection of universality was based on
a failure to understand the alternatives discussed by
Schertzer and Lovejoy (1987, 1991a); this early debate is
discussed in detail in Schertzer and Lovejoy (1997).

Box 3.4 Scaling gyroscopes cascade (SGC): shell models and beyond . . .

The complexity and intractability of the Navier–Stokes equations have lead to the development of some greatly

simplified (almost caricatural) models of them, which nevertheless preserve some of their fundamental properties.

One well-known example is a 1D turbulence model, the Burgers equation. Although this gives precious hints about

the intermittency it has the unfortunate drawback of introducing compressibility. In comparison, the so-called “shell

models” involve the conservation of the quadratic interaction and invariance for the flux of energy (Gledzer et al.,

1981), a very popular simplification. They are however ultimately simplistic since they are only scalar (not vector)

models and they retain only the spatial scale dependence instead of location dependence. Indeed, these models

consider the time evolution of the averaged characteristic velocity shear un (with corresponding vorticity knun) on the

shell defined by the wave-vectors j�kj � kn, the wavenumber kn being the inverse of the scale of the corresponding

eddies, which is discretized in a algebraic way with ln ¼ L/λ0
n, L being the outer scale, with the discrete scale ratio λ0

(typically ¼ 2), n the number of steps (Section 2.4). Whereas in real flows in d dimensions, the number of degrees of

freedom increases as l–d, the shell models keep only a small and fixed number (independent of l) and keep only

certain interactions, the typical shell model equation of evolution being:
d

dt
þ nk2n

� �

vn ¼ knunun�1 � knþ1u
2
nþ1.

However, as we have seen, the increase in the number of degrees of freedom with scale is crucial for their

cascade phenomenology and intermittency (and multifractality). In order to take into account these spatial

degrees of freedom, Chigirinskaya and Schertzer (1996), Chigirinskaya et al. (1996) and Schertzer et al. (1997)

proposed a tree structure of eddies, each eddy having λ0
d sub-eddies. They show that for both 2D and 3D

turbulence the equations of evolution due to the direct interactions of eddies and sub-eddies are analogous

to the Euler equations of a gyroscope. The indirect interactions are obtained by coupling an infinite hierarchy

of gyroscopes. From a fairly abstract consideration of the structure of the Navier–Stokes equations (its “Lie

structure”), they derived space-time models called scaling gyroscope cascades (SGC). The recognition of similar-

ities between the Navier–Stokes equations of hydrodynamic turbulence and the Euler equations of a gyroscope

can be traced back to Lamb (1963).

The SGC yields concrete models that can be used to investigate fundamental questions of turbulence, in

particular its intermittency. Not only does the SGC in 2D yield the inverse energy cascade sub-range as well as

the direct enstrophy sub-range (see Sections 2.4 and 2.5), but the multifractal characteristics of the former are

extremely close to those of the SGC direct energy cascade in 3D turbulence. For the energy flux in both cases, in

space, α� 1.4� 0.05, C1,ε� 0.25� 0.05 and in time, α� 1.5� 0.05, C1,ε� 0.25� 0.05. This is in excellent agreement

with the empirical exponents found in the atmosphere: compare the identical values in time from hot-wire data

from Schmitt et al. (1993) (Table 8.1) and in space: the aircraft estimate 0.046 (see Table 4.4: note that for the velocity,

α is the same and C1v ¼ C1,ε 3
�α � 0.05; see Eqn. (4.15)). Also in good agreement with experiment is the exponent

qD,ε for the divergence of moments for the energy flux: qD,ε � 2.3 � 0.06. This implies qD,v ¼ 3qD,ε � 6.9 � 0.2 for the

velocity exponent, which is close to various temporal estimates in the range 7–7.7 (Section 5.3 and Table 5.1a).

Finally, when the SGC is reduced to a shell model (by considering a single path), the intermittency is quite

different: α � 0.6 � 0.05, C1,ε � 0.40 � 0.05, showing the importance of the spatial degrees of freedom.

Scale-by-scale simplicity
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On the contrary, keeping the total range of scales
fixed and finite, mixing independent processes of the
same type (by multiplying them) while preserving
certain characteristics (such as the variance or the
amplitude of the generator), and then seeking the
limit l ! 1, a totally different limiting problem is
obtained. For instance, this may correspond to densi-
fying the excited scales by introducing more and more
intermediate scales (Fig. 3.14), and seeking thus the
limit of continuous scales of the cascade model. Alter-
natively, we may also consider the limit of multipli-
cations of independent, identically distributed,
discrete cascade models leading also to universal mul-
tifractal processes.

3.3.3 Universality in cascades: a
“multiplicative central limit theorem”

As presented above, the problem with cascades is that
we need an entire (nearly arbitrary) convex function
K(q) for the specification. Yaglom (1966) sensed
the problem and already argued – essentially using
the law of proportional effects – for approximate
“lognormality” on the basis of the usual central limit
theorem applied to loge after a large number of cas-
cade steps. The problem is that the cascade requires a
scale-by-scale conservation principle, otherwise there
are no well-defined small-scale cascade limits, and it
turns out that this normalization is in contradiction
with the normalization required for central limit con-
vergence (specifically, the former requires <me> ¼ 1
whereas the latter requires <ΔG> ¼ 0 where ΔG ¼
logme), and due to the convexity of the logarithm
function we have necessarily <ΔG> ¼ <logme> <

0 for any probability distribution of me which is
constrained such that <me> ¼ 1.

However, multifractal universality classes do exist.
Two different routes to universality have been pro-
posed, and both consider a cascade developed only
over a finite range of scales. Only after central limit
theorem convergence has been achieved does one
consider the small-scale limit. The first route to uni-
versality (Schertzer and Lovejoy, 1987) relies on a
“densification” of the cascade, adding more and more
intermediate scales in a cascade defined over a finite
range: an “infinitely divisible” or continuous (in scale)
cascade (Fig. 3.14). Another route that was easier to
analyze – the nonlinear “mixing” of cascade processes
– was proposed by Schertzer et al. (1991); indeed, this
very practical question of multifractal universality was
the subject of debate during the 1990s (Gupta and

Waymire, 1993; Schertzer and Lovejoy, 1997); see also
Brax and Peschanski (1991) and Kida (1991) for the
closely related issue of log-Lévy cascades. We should
also mention that a weaker “log-Poisson” universality
has also been proposed by She and Leveque (1994),
but this is only “infinitely divisible” (continuous in
scale); it is neither stable nor attractive (Section 5.2.5
and Eqn. (5.36)).

We now sketch the mathematical argument for
multifractal universality (for details, see Schertzer
and Lovejoy, 1987, 1991b, 1997). If we assume that
the K1(q) for a single cascade step for each of the
interacting processes ei are analytic at q ¼ 0, then
we can make a Taylor expansion about the origin:

K1ðqÞ ¼
X

1

i¼1

Aiq
i ð3:40Þ

where the Ai are the expansion coefficients (the sum
starts at i ¼ 1 since K(0) ¼ 0). In order to obtain an
exactly lognormal cascade we may consider e, which
is the result of nonlinear (renormalized, multipli-
cative) interaction of N (generally non-lognormal),
statistically independent discrete cascades with a total
range of scale l:

el ¼
Y

N

i¼1

ei

aN
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1=bN
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ð3:41Þ

Fig. 3.14 Scheme of densification of scales. Reproduced from
Schertzer and Lovejoy (1996).
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Here, i indexes the N independent cascade processes
which interact (are multiplied together) and aN, bN are
recentring and renormalizing constants which must be
chosen so that the limit of many interacting processes
(N ! 1) is well defined. In the case of analytic K(q)
(which turns out to be exceptional!), we can choose to
recentre (aN) and renormalize (bN) by:

bN ¼ N1=2
; A1 ¼ LoglaN ð3:42Þ

thus obtaining:

K1ðqÞ ¼ lim
N!1

KNðqÞ ¼ A2q
2 ð3:43Þ

i.e. the higher-order terms disappear, and K1ðqÞ thus
is a pure quadratic function independent of N; it is
the moment scaling function of a pure lognormal
cascade:

�

e
q
l



¼ eA2q
2logl ¼ lA2q

2

ð3:44Þ

Once the central limit theorem convergence has been
achieved (N ! 1), one then considers the small-
scale limit (l ! 1). Here we must normalize the
pure lognormal process so that the small-scale cascade
limit is well behaved: this is easily performed by
noting that an unnormalized e may be normalized
by e ! e=hei so that KðqÞ ! KðqÞ � qKð1Þ, so that
we obtain:

KðqÞ ¼ C1ðq
2 � qÞ ð3:45Þ

where we have used the notation C1 for the constant
A2 (since K0(1) ¼ C1, Eqn. (3.23)) and we have
dropped the subscript).

However – as pointed out by Lévy (1925) in the
context of sums of independent random variables – the
(log) Gaussian case does not exhaust the possibilities.
Indeed, more generally we must allow for the possibi-
lity of nonanalytic single cascade step K1(q) with the
following small q expansion:

K1ðqÞ ¼ Aaq
a þ A1qþ A2q

2 þ Oðq3Þ ð3:46Þ

If the new nonanalytic term Aaq
a has a < 2, then,

repeating the above universality argument, with the
choice:

bN ¼ N1=a
; A1 ¼ Log

l
aN ð3:47Þ

we obtain:

K1ðqÞ ¼ Aaq
a; 0 � a < 2 ð3:48Þ

for a 6¼ 1. When a ¼ 1, the nonanalytic term must be
taken as qlogq (see below). As a technical point
(Schertzer and Lovejoy, 1987, 1991b; Schertzer et al.,
1988), note that KðqÞ ¼ Aaq

a corresponds to a
random generator G ¼ loge that follows an
“extremely asymmetric” Lévy distribution, sufficient
for cascade processes (see Samorodniitsky and Taqqu,
1994, for the more general Lévys needed for the
complete treatment of random sums). The final nor-
malization step needed for small-scale convergence
(analogous to the lognormal derivation: K(q) !
K(q) – qK(1)) leads to:

KðqÞ ¼
C1

a� 1
ðqa � qÞ; 0 � a � 2 ð3:49Þ

(Schertzer and Lovejoy, 1987). For a ¼ 1, using
l’Hopital’s rule for the limit a ! 1, we have C1qlogq
(see Fig. 3.15 for the shape of the universal K(q)
curves). Once again, the constant has been written
this way so that K0(1) ¼ C1. We may also check that
the local (near the mean) curvature characterization
a ¼ K00(1)/K0(1) is also valid, although here C1 and
a provide a global (complete) characterization of
K(q) (Eqn. (3.49)). In the limit a ! 0, we recover
the (linear) β model (Eqn. (3.27)). Note that when
a < 2, and q < 0, then KðqÞ ¼ 1; this is a

Fig. 3.15 Universal K(q) as a function of q, for different α values
from 0 to 2 by increments of Δα ¼ 0.2. Adapted from Schertzer and
Lovejoy (1989).
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consequence of the extreme Lévy tail on the negative
(but not positive) fluctuations of loge (see more dis-
cussion of Lévy variables in Section 5.4). The possi-
bility (even likelihood) of heqli ! 1 for q < 0 means
that extreme caution should be used when analyzing
negative moments of empirical data. While finite
datasets will always have finite negative moments,
their values will sensitively depend on the small (near
zero) values of the data and would yield spurious
scaling properties.

We have already shown an example of a discrete-
in-scale universal multifractal (Fig. 3.9b); one of the
useful features of the universal multifractals is that
they can be obtained as the continuous-in-scale
limit of a discrete cascade, and hence they can be
used for more realistic continuous-in-scale cascade
simulations. This is discussed in more detail in
Section 5.4. Finally, although the restriction a � 2
falls out naturally from the preceding, we could
mention that the fundamental reason that a cannot
exceed 2 is that the corresponding probability
densities would no longer be positive definite
everywhere.

3.4 Summary of emergent laws
in Chapter 3
The simplest example of intermittency is the “on/off ”
intermittency exemplified by the β model. The acti-
vity is distributed over a fractal set. Fractal sets have
the property that if they are observed at resolution l
(e.g. by covering them with l-sized “boxes”), then the
fraction (¼ probability, P) of the space covered by the
set is:

P / lc / l�c; l ¼ Lext=l ð3:50Þ

where c is the fractal codimension and l is the ratio
of the largest-scale Lext to the box-scale l. The

corresponding fractal dimension is D ¼ d – c where
d is the dimension of the space in which the set is
embedded. More realistic cascades (such as the a

model) involve intermediate levels of activity; they
are multifractal. In both the β and a models, the
turbulent flux e is the result of a multiplicative cascade
process, and it depends on its scale/resolution ratio
l as:

�

e
q
l



¼ lKðqÞ ð3:51Þ

Due to a kind of multiplicative central limit theorem,
either via a densification of the cascade, or due to
nonlinear interactions of discrete-in-scale cascades, we
obtain convergence to “universal multifractal processes”
with moment scaling function:

KðqÞ ¼
C1

a� 1
ðqa � qÞ ð3:52Þ

where 0 � a � 2 and 0 � C1 � d, (K(q) ¼ C1qlogq
when a ¼ 1).

The normalized autocorrelation function Rl(Δx)
for the cascade developed over a scale range l is:

RlðΔxÞ � ðlΔxÞ�Kð2Þ; 1 � Δx � l�1

RlðΔxÞ � 1; Δx � l�1 ð3:53Þ

so that the power spectrum (the Fourier transform of
Rl(Δx)) is:

EðkÞ ¼ l�Kð2Þk�b; b ¼ 1� Kð2Þ ð3:54Þ

SinceK(1)¼ 0,K0(1)> 0 andK00
> 0, we haveK(2)> 0

so that β < 1.

3.4 Summary of emergent laws in Chapter 3
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Appendix 3A: The convexity of K(q)

It turns out that an important property of K(q) is that
it is convex: K00

> 0. We have already appealed to this
property in this chapter, and it is exploited systema-
tically in Chapter 5. In this appendix, we derive this
convexity property. Consider:

�

e
q

l



¼ lKðqÞ ¼

ð

e
q
l pðelÞdel ð3:55Þ

where pðelÞ is the probability density of el.
Then

@
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ð3:56Þ

Differentiating KðqÞ ln l ¼ lnheqli, and using the
above we obtain:

lnl
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ð3:57Þ

To determine the sign of the term in parentheses, we
can apply the Schwartz inequality:
�
ð

f 2dx

��
ð

g2dx

�

�

�
ð

fgdx

�2

ð3:58Þ

With f ¼ e
q=2
l ½pðelÞ


1=2, g ¼ e
q=2
l ½pðelÞ


1=2lnel and
dx ¼ del, we obtain:
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e
q
l ln el

2
ð3:59Þ

from which it follows that

lnl
@
2KðqÞ

@q2
> 0 ð3:60Þ

and since l > 1, we have K00(q)> 0, i.e. K(q) is convex
(this corresponds to a basic result in probability theory,
that second characteristic functions are always convex).
Since trivially we haveK(0)¼ 0 and via the conservation
conditionheli ¼ 1 we have Kð1Þ ¼ 0, we conclude
that K(q) has the general form sketched in Fig. 3.10.
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Chapter

4
Empirical analysis of cascades
in the horizontal

4.1 The empirical estimation of
turbulent fluxes in both dissipation
and scaling ranges

4.1.1 Discussion
Before continuing our theoretical analysis of cascade
processes, let us pause and survey the territory. In
Chapter 1 we used a familiar data analysis technique –
Fourier power spectra – to argue that atmospheric
fields were generally scaling over potentially most of
the dynamically significant ranges. In Chapter 2 we
surveyed the main attempts to statistically understand
the atmosphere, the elements of turbulence theory,
the predictions that at least in 3D there would be
cascade processes. We further argued that the unjus-
tified imposition of rotational symmetry (isotropy)
leads to the false conclusion that there must be (at
least) two qualitatively different regimes: a small-scale
3D isotropic regime and a large-scale 2D isotropic
regime. The 2D/3D model predicts drastic differences
between the two isotropic regimes for both the statis-
tics of vertical sections, and – at the “dimensional
transition” separating the two regimes – for the
statistics of passive scalar-like quantities. However,
for the horizontal wind field, it predicts a much
more mild transition – from k�5/3 (3D downscale
energy cascade) to k�3 (2D downscale enstrophy
cascade, upscale energy cascade). In Chapter 2 we
argued that by ignoring the literature (especially on
the statistics of vertical sections and of remote
sensing) and by focusing almost exclusively on the
(difficult to measure) horizontal wind in the hori-
zontal direction the 2D/3D model has been kept
alive in spite of its serious theoretical and empirical
shortcomings.

The decisive argument against the classical picture
is quite recent: it comes from the reinterpretion of
classical aircraft campaigns. This reinterpretation is
based on two findings: (1) that the results of the aircraft

campaigns had been misinterpreted: the transition in
the horizontal wind spectrum was not that between
k�5/3 and k�3 but the significantly different transition
from k�5/3 to k�2.4; (2) that not only had the k�2.4

regime been mis-estimated but the entire regime is in
fact a spurious artefact of the vertical aircraft motions.
We concluded that in reality the horizontal scaling
held over very wide ranges, and that this was possible
because the scaling in the vertical was quite different
from the horizontal, so that overall the atmosphere
respected an anisotropic scale symmetry. The implica-
tion of wide-range scaling coupled with the cascade
phenomenology was that we should expect emergent
turbulent cascade laws to hold from large (perhaps
planetary) scales on down.

In Chapter 3 we went beyond “conceptual” cas-
cade models to consider explicit multiplicative
cascades, and we examined some of their conse-
quences, notably that the general statistics of the
cascades can be specified by their statistical moments
via the simple multifractal cascade equation:

hj
q
li ¼ lKðqÞ ð4:1Þ

where l is the ratio of the outer scale where the
cascade begins and the resolution of the flux j.
In general, cascades only have the weak convexity
(K00

> 0) and conservation (K(1) ¼ 0) constraints.
This is equivalent to an infinite number of parameters
and is therefore impractical. However, we showed
that due to a kind of multiplicative central limit
theorem, under still rather general circumstances,
cascades were expected to belong to the basin of
attraction of “universal multifractals” in which
only two parameters, C1, a, are necessary:
KðqÞ ¼ C1ðq

a � qÞ=ða� 1Þ.
We now have enough tools to proceed to test

these ideas on atmospheric data. We start with an
empirical overview in the horizontal; extensions to
the vertical will be discussed in Chapter 6, and to time
in Chapters 8, 9 and 10.
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4.1.2 Estimating fluxes from the
fluctuations
In order to circumvent the isotropy/anisotropy issue
and to test the general predictions of multiplicative
cascades, we turn to Eqn. (4.1). However, Eqn. (4.1)
assumes that both the flux j and the outer cascade
scale are known, whereas they must be estimated
empirically without relying on any specific theories
of turbulence; we must use an approach that does
not require a-priori assumptions about the physical
nature of the relevant fluxes, nor of their scale
symmetries (isotropic or otherwise), nor of their
outer scales.

The empirical determination of the outer scale is
fairly straightforward. Consider Leff , the “effective
outer scale” where the cascade begins, and use the
symbol l0 ¼ Leff /L for the (unknown) scale ratio
from the beginning of the cascade and the resolution
of the flux j. We will instead use the symbol l as the
ratio of a convenient reference scale to the resolution
scale.

Now, starting with Eqn. (4.1), but with l0 in place
of l, the basic prediction of multiplicative cascades
applied to a turbulent flux is that the normalized
moments j0:

Mq ¼ hj0q
li; j0

l ¼
jl

hj1i
ð4:2Þ

obey the generic multiscaling relation:

Mq ¼ l0
KðqÞ

¼
Lef f
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L
¼

l

leff
; l ¼

Le

L
; leff ¼

Le

Lef f
ð4:3Þ

where “<.>” indicates statistical (ensemble) aver-
aging. l is a convenient scale ratio based on the
largest great-circle distance on the earth: Le ¼
20 000 km and the scale ratio l/leff is the overall ratio
from the scale where the cascade started to the reso-
lution scale L; it is determined empirically, although
from the foregoing discussion we expect Leff � Le so
that leff � 1 corresponds to planetary-scale cascades.
Since even at planetary scales each field nonlinearly
interacts with the other fields, it is possible (and we
often find) that Leff is somewhat larger than Le. We
can see that leff will be easy to empirically estimate

since a plot of logMq versus logl will have lines (one
for each q) converging at the outer scale l ¼ leff .

Let us now consider the empirical estimation of
the flux j. There are two basic cases to consider. The
first is widely applicable to empirical data, which are
nearly always sampled at scales much larger than the
dissipation scales (which are typically millimetric): it
is the one described above based on the scaling range
formula. If instead we have dissipation range data (for
example if we estimate fluxes from the outputs of
numerical models at the model dissipation scale),
then the basic approach still works, but it requires a
second interpretation.

Scaling-range flux estimates

If atmospheric dynamics are controlled by scale-
invariant turbulent cascades of various (scale-by-scale)
conserved fluxes j, then in a scaling regime the (abso-
lute) fluctuations DI(Dx) in an observable I (e.g. wind,
temperature or radiance) over a distanceDx are related
to the turbulent fluxes by a relation of the form:

DIðDxÞ � jDxH ð4:4Þ

(Eqn. (4.4) is a generalization of the Kolmogorov law
for velocity fluctuations – the latter has H ¼ 1/3 and
j ¼ εZ, Z ¼ 1/3 where ε is the energy flux to smaller
scales and the equality is in a statistical sense; see
Eqn. (5.94) and Table 5.2 for a precise definition.)
Without knowing Z or H – nor even the physical
nature of the flux – we can use this to estimate the
normalized (nondimensional) flux j0 at the smallest
resolution (Dx ¼ l ) of our data:

j0 ¼ j=<j>¼ DΙ=<DΙ> ð4:5Þ

where “< >” indicates statistical averaging. Note that
if the fluxes are realizations of pure multiplicative
cascades then the normalized Z powers jZ

=hjiZ are
also pure multiplicative cascades, so that j0 ¼ j/
<j> is a normalized cascade (<j> is the ensemble
mean large-scale flux, i.e. the climatological value; it is
independent of scale, hence there is no need for a
subscript). The fluctuation, DI(Dx), can be estimated
in various ways. In 1D a convenient method (which
works for the common situation where 0 �H� 1) is
to use absolute differences: DIðlÞ ¼ jIðx þ lÞ � IðxÞj
where l is the smallest reliable resolution and where x
is a horizontal coordinate (this is sometimes called
“the poor man’s wavelet”; other wavelets could be
used: see Section 5.5). In 2D, convenient definitions

Empirical analysis of cascades in the horizontal
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of fluctuations are the (finite difference) Laplacian
(estimated as the difference between the value at a
grid point and the average of its neighbours), or the
modulus of a finite difference estimate of the gradient
vector. The resulting high-resolution flux estimates
can then be degraded (by averaging) to a lower reso-
lution L > l.

Dissipation-scale flux estimates

For data at resolutions high enough for viscous
dissipation to be important, the scaling law
(Eqn. (4.4)) can no longer be used to estimate the
fluxes. In the atmosphere these scales are typically
millimetric and such data are rarely encountered. How-
ever, in reanalyses and models, the finest resolutions
are regularized using artificial “hyper-viscosities,” so
that their interpretation must be different. To see this,
consider the example of the energy flux, recalling that
at the dissipation scale the viscous term is dominant:

ε � n�v�r
2
�v ð4:6Þ

where n is the viscosity, v the velocity (see Section
2.2.3). Standard manipulations give:

ε � n
X

3

i, j¼1

@vi
@xj

þ
@vj

@xi

 !2

ð4:7Þ

(the i, j index the velocity components). Therefore if
Dx is in the dissipation range (e.g. the finest reso-
lution of the model) then:

Dv �
ε

n

� 	1=2
Dx ð4:8Þ

Since the meteorological models and reanalyses actu-
ally use hyper-viscosities with hyper-viscous coeffi-
cient n* and a Laplacian taken to the power h
(typically h ¼ 3 or 4), we have:

ε � n�v�r
2h
�v ð4:9Þ

which leads to the estimate:

Dv �
ε

n

� 	1=2
Dxh ð4:10Þ

In all cases, we therefore have (independently of h):

j0 ¼
Dv

hDvi
¼

ε1=2

hε1=2i
ð4:11Þ

We see that this is the same as Eqns. (4.2) and (4.3)
with j ¼ ε1/3, the only difference being that for the

wind field the exponent Z ¼ 1/2 holds in the dissipa-
tion range rather than Z ¼ 1/3, which holds in the
scaling regime. If we introduce KZ(q), which is the
scaling exponent for the normalized Z flux j0, then:

hj
0q

li ¼ l
0KZðqÞ

;

j
0
¼

j

hji
¼

εZ

hεiZ
;

KZðqÞ ¼ KεðqZÞ � qKεðZÞ ð4:12Þ

which for universal multifractals (Eqn. (3.49)) yields:

KZðqÞ ¼ ZaK1ðqÞ ð4:13Þ

(note: K1(q) ¼ K(q)), i.e. in obvious notation:

C1,Z ¼ ZaC1,1 ð4:14Þ

so that, comparing the dissipation estimate (Z ¼ 1/2)
and the scaling-range estimate (Z ¼ 1/3), we have:

C1,diss ¼
3

2

� �a

C1,scaling ð4:15Þ

Since we find (for the wind field) that a � 1.8 we have
C1diss/C1scaling � 1.51.8 � 2.07 (most of the fields have
fairly similar a values).

The extension of this discussion to passive scalars
is also relevant, and shows that the interpretation of
the empirically/numerically estimated fluxes in terms
of classical theoretical fluxes can be nontrivial. Denot-
ing by r the density of the passive scalar, and w its
variance flux, the dissipation range formula analo-
gous to Eqn. (4.6) is w � rkr2r (k is the molecular
diffusivity, assumed constant: see Eqn. (2.21)), leading
to Dr � ðw=kÞ1=2Dx, whereas the corresponding for-
mula in the scaling range is Dr � w1=2ε�1=6Dx1=3 (the
Corrsin–Obukhov law). Here, the scaling- and dissi-
pation-range formulae have the same dependency on
w, but the latter also involves the energy flux so that
the combined effective flux f � w1=2ε�1=6 measured
by the scaling method thus involves two (presumably
statistically dependent) cascade quantities rather than
just one. For example, Schmitt et al. (1996) examine
various dependency hypotheses in the case of turbu-
lent temperature fluctuations. In summary, although
both dissipation and scaling ranges can be used to test
for multiplicative cascades and to quantify their vari-
ability, the relation between the two normalized fluxes
is not necessarily trivial.

Once the fluxes have been estimated at the
smallest scale, the next step is to estimate them at
the lower-resolution intermediate scales. This is done

4.1 The empirical estimation of turbulent fluxes
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by spatially averaging the data over disjoint intervals
(1D), disjoint boxes (2D) etc. of size L. The last step is
to take the statistical (ensemble) average of the qth
powers of the spatial averages over the intervals (or
boxes). This is equivalent to an ensemble average over
a “partition function” of the moments and is called a
“trace moment” estimate of Mq (see Chapter 5 for
more discussion).

4.2 The scaling properties of
reanalyses

4.2.1 Discussion
We start our survey by considering the cascade
properties of the ECMWF interim reanalyses whose
spectra were analyzed in Fig. 1.5b. Reanalyses provide
convenient (and sometimes unique) sources of global-
scale state variables (i.e. the wind, temperature,
humidity etc.), and today their resolution in space
and in time is high enough that their scaling can be
reliably tested and their exponents estimated with
some confidence.

Recall that a reanalysis is by no means an empir-
ical field; it is rather a highly elaborated “product”
obtained by using complex 3D (space: ERA40) or
4D (space-time: ECMWF interim) variational data
assimilation techniques, and in the Twentieth Cen-
tury Reanalysis (20CR) by using an ensemble Kal-
man filter method. All of these assimilation
techniques are based on various smoothness and
regularity assumptions: specifically, they don’t take
the strong resolution dependencies (Eqn. (4.1)) into
account, they assume that at scales smaller than one
pixel K(q) ¼ 0.

In spite of the popularity and importance of
reanalyses, the study of their scale-by-scale statistical
properties is still in its infancy. The early pioneering
studies of Boer and Shepherd (1983) and Strauss and
Ditlevsen (1999) attempted to use them to directly test
the framework of two-dimensional geostrophic tur-
bulence theory. Rather than studying the scaling
properties of the fields themselves, they started by
converting them (by vertical integration) into theor-
etically preordained 2D products; and even these
were not studied directly but rather via anomalies
with respect to low-frequency means (yielding
“stationary” and “transient” components); and these
components were further decomposed into rotational
and irrotational wind components rather than the

more straightforward zonal and meridional compon-
ents. In Chapter 6 we see that in the spectral
exponents there is a systematic (probably spurious)
scale-by-scale north–south/east–west anisotropy. By
neglecting to perform more basic scaling analyses,
the early studies of reanalyses were thus “blind” to
what turns out to be a significant source of bias.
In contrast, the more recent studies of reanalyses
(Stolle et al., 2009, 2012; Lovejoy and Schertzer,
2011) directly focus on the scaling properties of the
turbulent fluxes which were expected to be the prod-
ucts of multiplicative cascade processes. They
attempted to achieve a wide survey of the statistical
properties of the reanalysis fields, comparing many
different models, studying the variations in the cas-
cade properties as functions of altitude, of latitude
and of forecast horizon.

In order to achieve an overview of the cascade
properties of reanalyses we will use the state-of-the-
art ECMWF interim reanalysis, chosen because of its
high resolution, its ready availability and its recog-
nized overall high quality. We specifically focused on
the 700 mb level as being representative of the “free”
atmosphere (without too many issues caused by the
topography yet low enough to be data-rich), and
we studied the daily (0 GMT) products for the year
2006, primarily concentrating on a band between �
45� latitude. Studies of the other pressure levels �
200 mb showed that the differences were not great (in
accord with Stolle et al., 2009). We also made inten-
sive studies of the 20CR reanalysis at 700 mb, since
this is particularly long (from 1871 through 2008 and
at 6-hour resolution: see Appendix 10C) and will be
useful later when we discuss the weather/climate tran-
sition and the climate regime.

4.2.2 The reanalysis products
At the time of writing, the ECMWF interim reanaly-
sis products were available from 1989 through 2009.
The full analysis is on a T255 spherical harmonic
grid corresponding to a resolution of about 0.7�

(� 79 km), and at 60 pressure levels. The publicly
available products used here are on 1.5� latitude/
longitude grids (corresponding to 166 km at the
equator) and at 37 pressure levels (every 25 mb in
the lower troposphere). Although this is slightly
lower than the full raw resolution, it has the advan-
tage of being less contaminated by the artificial
hyperviscous dissipation used at the smallest scales
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(although there are still some dissipative effects, as
can be seen from the spectra). The reanalyses use a
4D var scheme to assimilate data from both in-situ
and remote sources with the help of the ECMWF
numerical forecast model (see Berrisford et al., 2009,
for more details).

Of the 14 parameters available at the 700 mb level
(another 88 are available at the surface), we chose the
temperature, specific humidity, zonal wind, merid-
ional wind, vertical wind and geopotential height
(respectively: T, hs, u, v, w, z) as being the most
thermodynamically and dynamically important. Fig.
1.5a, shows the corresponding 0 GMT, January 1,
2006 fields, and Fig. 1.5b shows their isotropic
(angle-integrated) spectra. At (absolute) latitudes
greater than 45�, the pixel size becomes markedly
reduced; in addition, the data near the poles are much
sparser (hence both the in-situ and satellite data are
less reliable); consequently we primarily analyzed the
region between � 45� latitude using a cylindrical
projection. This restriction has the advantage that to
a reasonable approximation we can ignore the map
factor variation in pixel size and treat the data as
coming from a Cartesian grid, analysing and compar-
ing exponents in the east–west and north–south dir-
ections by using numerically convenient Fourier
techniques. This would not be easy using the – other-
wise theoretically preferable – spherical harmonic
spectral decompositions.

4.2.3 The basic cascade structure of
reanalyses
The spatial ECMWF cascade analyses are presented in
Fig. 4.1a (zonal), and Fig. 4.1b (meridional) (for the
corresponding temporal analyses see Fig. 8.7a). In
each case we start with the finite difference absolute
Laplacian flux estimate, which was then degraded by
spatial averaging in the corresponding direction and
then statistically averaged over the other directions
(space and/or time). In the figures, one can clearly
see the basic cascade structure of lines converging to
the external scales; note in particular that the external
cascade scales are systematically comparable to the
largest great-circle distance (20 000 km), and that
the scaling is well respected at all but the largest scales
(i.e. for log10l >~0.6, i.e. for scales <~5000 km: see
below for error estimates). Here, references to “cas-
cade structures” are simply a convenient short-hand
to indicate the converging straight lines predicted for

the log of the moments versus log of the scale for
multiplicative cascades – it does not refer to real-space
fluid structures. The moments are only shown up to
order q ¼ 2 since for large enough q they become
dominated by the largest value present in the data
sample so that the results spuriously depend on the
sample size (K(q) becomes spuriously linear; this is a
“multifractal phase transition”: see Chapter 5). It was
found that in these data the transition always
occurred for q somewhat greater than 2, so that the
moments shown here are well estimated from
the data.

In order to quantify the cascades, we performed
nonlinear fits to the universal multifractal form
(Eqn. (3.45)). Since the results were found to vary
little from zonal to meridional to temporal direction,
rather than give separate tables of parameters for
each, in Table 4.1 we give the mean parameters.
The direction-to-direction differences were suffi-
ciently small (they are apparently less than the sys-
tematic and statistical uncertainties in the parameter
estimates) that the direction-to-direction mean is
given with the corresponding spread indicated by
the standard deviation. Two estimates of the C1

parameter are given, one from the universal multi-
fractal fit (i.e. with K(q) constrained to the form of
Eqn. (3.45)) and the other simply from the numer-
ical derivative: C1 ¼ K0(1); in both cases, the lines
were constrained to pass through a single external
scale since this is the prediction of the fundamental
cascade (Eqn. (4.1)). It can be seen that the two C1

estimates are very close, although the difference is
generally larger than the direction-to-direction
spread; we take this as evidence that the direction-
to-direction differences in the exponents (corres-
ponding to possible zonal/meridional or space-time
scaling anisotropies in the fluxes) are not statistically
significant (note that the spread is for the three
directions: zonal, meridional and time).

In order to quantify the accuracy of the fits, we
estimated the residuals as:

D¼jlog10ðMqÞ�KðqÞlog10ðl=lef f Þj; d¼100ð10D�1Þ

ð4:16Þ

where the overbar represents averaging over all the
moments q � 2 and over the scale ratios larger than a
critical value, taken as log10l ¼ 0.6 corresponding to
5000 km. The percentage deviation d over the range is
given in Table 4.1 and is estimated as in Eqn. (4.16).
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Fig. 4.1 (a) The analysis of the 700 mb
ECMWF reanalyses at 0Z for 2006
between latitudes � 45� . The fluxes
were estimated using finite difference
Laplacians. The curves are the moments
q ¼ 0, 0.1, 0.2, . . ., 1.9, 2 (top). l ¼ 1
corresponds to the size of the earth, 20
000 km. Reproduced from (Lovejoy and
Schertzer (2011). (b) The same as Fig.
4.1a but for the meridional analysis. The
data span 90� in latitude, i.e. 10 000 km,
but the reference scale was kept at 20
000 km as in Fig. 4.1a. Reproduced from
Lovejoy and Schertzer (2011).

Empirical analysis of cascades in the horizontal

88



From the table we see that the typical accuracy is better
than � 0.5% (the worst fit was for the geopotential
height in the meridional direction, where it was
� 0.9%). We may also note that all the different fields
have very similar intermittency parameters: for the
universal multifractal estimates, the C1’s vary only
from 0.077 (T) to 0.121 (w), and a only from the lowest
1.77 (hs) to the highest 1.92 (w). The most significant
differences are for the external scales. Whereas the
scaling exponent C1 quantifies the scale-by-scale
change of the variability (intermittency), for fixed q,
changing the external scale changes Mq at all scales by
the same factor. Since the zonal and meridonal K(q)’s
are very close, there is little scale-by-scale (differential,
not absolute) horizontal anisotropy; however, the ratio
of the zonal to meridional external scales is 1.6 � 0.3
(the spread is from one of the six analyzed fields to the
other), which indicates a significant “trivial anisot-
ropy” so that typical isolines of flux are (roughly)
elongated ellipsoids a factor 1.6 longer in the zonal
direction than in the meridional direction. This corres-
ponds to the fact that the gradients of the fluxes (at
each scale) are typically about 1.6 times stronger in the
north–south direction, and this aspect ratio is roughly
independent of scale. We return to this important
anisotropy issue later, since for the reanalysis spectra
it appears that at least some of it is a spurious artefact
of the hyperviscous model dissipation.

For these spatial analyses, the scaling holds over
factors of 30 or more, the intermittency is strong
enough and the deviation D small enough that the
results are fairly convincing. However, to gain more
confidence in this conclusion, it is worth considering
the corresponding Mq graph for quasi-Gaussian pro-
cesses such as Ornstein–Uhlenbeck processes that
have K(q) ¼ 0 and are used, for example, as the basis
for stochastic linear forcing modelling (e.g. Penland,
1996; Sardeshmukh et al., 2000; for discussion, see
Appendix 10B). The resulting “universal” quasi-
Gaussian Mq graphs for these processes are discussed
in Appendix 4A; they show that convergence to the
theoretical K(q) ¼ 0 result takes roughly a factor of 10
in scale to achieve. This is more significant for ana-
lyses of temporal cascades, where often the data are of
sufficiently low resolution (e.g. daily) that the ratio of
the outer time scale (� 10 days) to the resolution is
of the same order as this convergence scale. This
makes the establishment of cascade scaling less con-
vincing (see the comparisons in Chapters 8 and 10).

It is of interest to compare the ECMWF interim
parameters to those of other models and reanalyses
and with those published in Stolle et al. (2009). The
latter were restricted to the zonal wind (u), tempera-
ture (T) and humidity fields (hs). Considering the
spatial (zonal direction) analyses (Table 4.2a) we see
that the parameters are very close to those of the other

Table 4.1 Fits for C1, α are for scales < 5000 km, the spreads in the parameters are over east–west and north–south directions, and
for time for the ECMWF interim reanalyses. The temporal fits are from 2 to 8 days (these are discussed in Chapter 8). The β and hence H
parameter estimate of the v (meridional wind) field is only fit up to 1300 km. The H estimates are for the spatial analyses only, they are from
β and K(2): H ¼ (β þ 1 – K(2))/2 with K(2) from the universal multifractal fits and using the β from the isotropic, zonal and meridional
horizontal spectral analysis in Chapters 1 and 6; they are for the zonal H values (the only exception is the meridional wind, where it is the
north–south value; the value in the orthogonal direction can be obtained by dividing by Hy � 0.80. See Table 8.1 for temporal H estimates.
Note that the parameter estimates are based on dissipation scale fluxes; this implies that the C1’s are different from those based on scaling-
range data flux estimates (e.g. aircraft or other typical in-situ data): see Eqn. (4.15).

hs T u v w Z

b 1.90 2.40 2.40 2.40 0.40 3.35

C1,uni 0.102 � 0.009 0.077 � 0.005 0.084 � 0.006 0.087 � 0.012 0.121 � 0.007 0.088 � 0.006

C1 0.101 � 0.009 0.072 � 0.005 0.082 � 0.007 0.085 � 0.013 0.115 � 0.008 0.083 � 0.005

α 1.77 � 0.06 1.90 � 0.006 1.85 � 0.012 1.85 � 0.011 1.92 � 0.009 1.90 � 0.012

H 0.54 0.77 0.77 0.78 0.14 1.26

Leff,EW (km) 13 000 20 000 13 000 16 000 16 000 63 000

Leff,NS (km) 6300 16 000 8000 10 000 13 000 40 000

Teff,time (days) 46 58 29 29 37 290

d (%) 0.32 � 0.04 0.35 � 0.02 0.31 � 0.09 0.28 � 0.10 0.33 � 0.10 0.52 � 0.30
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products, although the C1 parameter is systematically
a little smaller while the outer scales are systematically
a little larger. At any scale these two effects will tend
to cancel each other, since a smaller C1 indicates that,
starting at the external scale, the variability builds up
more slowly than for the ECMWF interim; however,
since there is an overall increase in the outer scale, this
slower variability builds up over a wider range. In
Table 4.2a we also show estimates from in-situ
aircraft measurements which include various efforts
to minimize the biases introduced by the aircraft
trajectories (intermittent fractality as well as from
the effects of nonzero slopes): see Section 4.3.

Very similar results were found for the forecast
products of the Canadian Global Environment Model
(GEM; Fig. 4.2a) at both t ¼ 0 and t ¼ 144, the
National Weather Service Global Forecasting System

model (GFS; Fig. 4.2b), and the Twentieth Century
Reanalysis (20CR; Fig. 4.2c). These are also compared
with ERA40, an early version of the ECMWF interim
reanalysis; see Table 4.2b for the parameter estimates.
We find, for example, that the deviations are of the
order � 0.3% for the reanalyses, � 0.3% for GEM and
� 0.5% for GFS (the 20CR reanalysis is nearly the
same). These small deviations allow us to conclude
that the analyses and models accurately have spatial
cascade structures. Overall, from the table we can also
see that the K(q) “shape parameter” – the difficult-to-
estimate multifractal index a – is roughly constant at
a ¼ 1.8 � 0.1. From Table 4.2c, we see that the scale-
by-scale characterization of the intermittency near the
mean (C1) has a tendency to decrease with altitude,
this effect being somewhat amplified by a decrease in
the external scale (which decreases all the moments by

Table 4.2a The zonal analysis of the fluxes obtained as the Laplacians (the ECMWF interim estimates are from Fig. 4.2; the ERA40, GEM,
GFS are from Stolle et al., 2009). All the data are from � 45� latitude, 700 mb (except the 20CR, which is only between 44� and 46�N
but from 1871 to 2008, every 6 hours). The aircraft data are from Lovejoy et al. (2010) and have been corrected by the factor (3/2)α � 2.07,
which is a theoretical estimate of the difference between the dissipation-scale flux estimates and the scaling-range flux estimates (using
α ¼ 1.8; see Eqn. (4.15)). Also, they are for roughly 200 mb flight levels rather than 700 mb levels (but the model parameters did not
change too much as functions of altitude). Note that the Leff for the aircraft wind is probably too big due to turbulent intermittency effects
of the aircraft trajectory; see Lovejoy et al. (2010) for discussion.

ECMWF interim ERA40 20CR GEM GFS aircraft

u α 1.86 1.93 1.87 1.68 1.80 1.94

C1 0.081 0.096 0.089 0.104 0.082 0.088

Leff 12 700 12 000 11 200 11 000 9000 25 000

T α 1.89 2.11 1.85 1.94 2.00 1.78

C1 0.074 0.094 0.088 0.077 0.080 0.107

Leff 20 000 14 500 11 200 8300 8600 5000

h α 1.70 1.75 1.73 1.60 1.74 1.81

C1 0.095 0.094 0.077 0.100 0.091 0.083

Leff 12 700 11 000 35 000 11 800 9000 10 000

Table 4.2b A comparison of the 1000 mb fields. The triplets (GEM) represent the parameter estimates for integrations of t ¼ 0, 48,
144 hours, and the pairs (GFS) for t ¼ 0, 144 hours.

C1 α Leff (km) δ (%)

T (GEM) 0.125 0.115 0.112 1.64 1.68 1.69 25 700 20 500 25 700 0.27 0.26 0.80

T (GFS) 0.142 0.138 1.72 1.71 27 900 26 000 0.59 0.60

u (GEM) 0.121 0.122 0.123 1.68 1.62 1.61 11 000 11 000 12 300 0.32 0.36 1.24

u (GFS) 0.114 0.107 1.80 1.84 12 300 11 200 0.54 0.64

h (GEM) 0.109 0.106 0.112 1.81 1.80 1.77 15 900 13 800 14 100 0.51 0.49 1.51

h (GFS) 0.128 0.128 1.86 1.81 21 700 20 900 0.46 0.46
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the same factor). Interestingly, the C1 is very similar
for the different fields (it is slightly larger for the
humidity), although as expected from our discussion
of the difference between dissipation and scaling-
range flux estimates the C1 are quite a bit larger than
those measured by aircraft (Section 4.3), also shown
in Table 4.2a: the difference is roughly the factor of
~2 estimated in Eqn. (4.15) for the velocity field (i.e.
the dissipation versus the scaling-range flux estimate).

In Table 4.2b, we compare the two forecast models
(GEM, GFS) in order to see if there are any systematic
trends as the model integrations increase (i.e. as the
effects of initial conditions become less and less
important). No systematic trends are obvious,
although for the 144-hour GFS forecast, the scaling
is notably poorer (although still quite reasonable)
with deviations less than about � 1.5%. Note that
because even the longest available forecast is still
statistically influenced by the analyses, these results
do not (quite) establish that the long-time behaviour
of the model is cascade-like. In Chapter 8, we examine
the cascade behaviour in the time domain.

At this point the reader may be disappointed that
the C1 values are typically “small,” and therefore
that intermittency apparently is of only minor

importance. Indeed, 40 years ago, a common view
was to consider intermittency important only for
spectral “corrections.” In this case, taking the example
C1 ¼ 0.05, a ¼ 1.8 we find the correction K(2) � 0.09
to the 5/3 Kolmogorov spectral exponent (Eqn.
(3.38)), which is small. However, as soon as we con-
sider fluxes and/or moments away from the mean, the
effects can be very important. For example, for the
energy flux (ε � Dv3/Dx) we have C1 ¼ 0.053 � 3a �
0.36 so that the dominant contribution to the mean
energy flux comes from a fractal set with codimension
0.36. Taking the dissipation scale as � 1 mm and the
outer scale as 104 km, this implies l ¼ 1010, so that
the set giving the dominant contribution is the frac-
tion l�C1 � 10�4, so that 99.99% of the field is too
weak to significantly contribute. Similarly, we can
easily estimate that the variance (the q ¼ 2 moment
of ε) is determined by the extremes corresponding to
a fraction (probabilities) of 10�13; for quasi-Gaussian
processes this would be closer to 10�1. As another
example, in Fig. 3.1b, the extreme 16.4 standard devi-
ations event corresponds to a Gaussian probability of
� 10�118, whereas the sample size is � 104 and C1 �
0.06. The point is that the variability builds up scale
by scale and a “low” exponent simply means that this

Table 4.2c Comparison of initial (t ¼ 0) fields for various fields at 1000, 700, 200 mb. The triplets of values are for, ERA40 (denoted by
“ERA”), GEM, GFS respectively. The aircraft estimates are from about 200 mb (the figure in parentheses is from aircraft analyses (Lovejoy et al.,
2009c), the second is corrected by the factor (3/2)α needed – at least for the wind field – to estimate the dissipation scale C1 from the
scaling range C1, see Eqn. 4.15).

C1 α Leff (km) δ(%)

ERA GEM GFS ERA GEM GFS ERA GEM GFS ERA GEM GFS

T (1000) 0.113 0.125 0.142 1.94 1.64 1.72 21 900 25 800 28 000 0.31 0.27 0.59

T (700) 0.094 0.077 0.080 2.11 1.94 2.00 14 500 8300 8600 0.29 0.47 1.02

T (200) 0.080 0.080 0.065 1.93 1.88 1.85 12 100 10 700 7800 0.30 0.36 1.17

T (aircraft) (0.052), 0.107 1.78 5000 0.5

u (1000) 0.105 0.121 0.114 1.93 1.68 1.80 12 900 11 000 12 300 0.33 0.32 0.54

u (700) 0.096 0.104 0.082 1.93 1.86 1.87 12 000 11 000 9000 0.24 0.29 0.83

u (200) 0.075 0.085 0.073 1.92 1.85 1.89 15 900 16 300 9000 0.267 0.35 0.76

u (aircraft) (0.040), 0.088 1.94 25 000 0.8

hs,hr (1000) 0.121 0.109 0.128 2.03 1.81 1.86 19 800 15 900 21 700 0.33 0.51 0.46

hs,hr (700) 0.094 0.100 0.091 1.75 1.60 1.74 11 000 11 800 9000 0.26 0.37 0.46

hs,hr (200) 0.085 0.109 0.100 1.73 1.54 1.70 50 000 33 000 9700 0.47 0.56 0.64

h (aircraft) (0.040), 0.083 1.81 10 000 0.5
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Fig. 4.2 (a) l ¼ Le / L, Le ¼ 20 000 km,
� 30� latitude. The left column is t ¼ 0,
the right column is the GEM analysis
(t ¼ 144 hours). Moments q ¼ 0, 0.1,
0.2, . . .,2.8, 2.9. Reproduced from Stolle
et al. (2009). (b) Same as Fig. 4.2a but for
T at 1000 mb for ERA40 (reanalysis, left)
and GFS (weather model, right).
Reproduced from Stolle et al. (2009).
(c) The zonal analysis of the spatial
Laplacian of the zonal wind, meridional
wind, temperature and specific
humidity (upper left to lower right),
from the 20CR reanalysis, from 1871 to
2008 (at 45� N every 6 hours and for
q ¼ 0, 0.1, 0.2, 0.3, . . . 2).

Empirical analysis of cascades in the horizontal

92



happens “slowly” with scale; nevertheless the resulting
variability may be enormous!

4.2.4* Lévy collapse: multiplicative
processes with and without scaling
We found that the universal multifractal form
(Eqn. (3.49)) leads to excellent fits over all the
moments (up to q ¼ 2) and scales up to 5000–
10 000 km, after which the scaling breaks down. How-
ever, even at scales so large that they are no longer in
the scaling regime, the flux probability distributions
may still be roughly of the special log-Lévy form. This
would imply that the “reduced moments”:

M 0
q ¼ Mða�1Þ=ðqa�qÞ

q ð4:17Þ

are independent of q. Fig. 4.3 shows the results in the
zonal direction when a ¼ 1.9 was used throughout to
effect the “collapse” (roughly the mean a value found
from the regressions, see Tables 4.1, 4.2). In the
scaling regime, all the moments “collapse” onto a

single straight line: M
0

q ¼ l
0C1

. However, we see that
even in the regime whereMq

0 is no longer a power law
(i.e. at large distances), the curves continue to col-
lapse, indicating that they remain of the log-Lévy
form (i.e. at a fixed scale l), the random cascade
“generator” Gl ¼ logjl has second characteristic
function logheqGli / ðqa � qÞ so that Gl has a Lévy

distribution. The degree of collapse can be simply
judged by inspecting the bunching of the lines for
different q on top of each other: this can also be
quantified scale by scale. For example, even at low l,
in the east–west direction the spreads of the lines
for different q values at 20 000 km are: � 10%, �
1.5%, � 6%, � 6%, � 10%, � 10% for hs, T, u, v, w, z
respectively. Note that the spreads are large for the
extreme small scale (one pixel in space); this is presum-
ably a finite size effect: the problem of convergence to an
accurate flux estimate. In Chapter 8 we reuse this tech-
nique in the time domain in the context of the weather/
climate transition and climate-scale statistics. Note that
while empirically we test the log-Lévy distribution of
dressed moments, outside the scaling regime it is quite
possible that these are not log-Lévy even though the
bare process does have log-Lévy distributions.

4.2.5 The conservation/fluctuation
exponent H
Up until now, we have concentrated our attention on
the spectral properties (especially the exponent b,
Chapter 1) and on the cascade properties of the tur-
bulent fluxes (especially the exponents C1, a). How-
ever, we indicated right at the outset that the
observables and fluxes are related by the fundamental
exponentH, viz: Dv�jDxH; indeed, we exploited this
relationship in order to estimate the fluxes (j) from
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Fig. 4.3 The zonal analysis of the Lévy
collapse. The vertical scale is log10Mʹq

(Eqn. 4.17). ECMWF interim q ¼ 0, 0.1,
0.2, 0.3, . . . 2). The value of a used in all
the collapses was a ¼ 1.9. Reproduced
from Lovejoy and Schertzer (2011).
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the fluctuations in the observables (Dv). In the non-
intermittent, quasi-Gaussian framework for j of clas-
sical turbulence (e.g. Chapter 2), H is the unique
exponent; j has no scale dependence (K(q) ¼ 0) so
that it characterizes the variation of the mean fluctu-
ations with size Dx. When, on the contrary, j is an
intermittent multifractal cascade process, the expo-
nent H remains fundamental, but additional expo-
nents are needed for a full characterization of the
process. In this case, H characterizes the degree of
scale-by-scale conservation of a quantity since
hDvðDxÞi ¼ hjiDxH , and <j> is independent of
Dx so that the mean fluctuation is proportional to
DxH; for a pure cascade quantity, H ¼ 0. We also see
that it has fundamental implications for the scaling of
the fluctuations, since for example H> 0 implies that
they grow with scale whereas H< 0 implies that they
decrease with scale. This distinction is of fundamental
importance in the temporal variability of the atmos-
phere since the sign changes twice, at about 10–20 days
and at 10–100 years: see Chapter 10. Although the
symbol H is used in honour of Harold E. Hurst
and his pioneering work on long-range statistical
dependency (Hurst, 1951), the H here is generally not
identical to Hurst’s; indeed, for multifractal processes,
there appears to be no simple relation between the two.

A simple way to estimate H is to square this
relation (Eqn. (4.2) for v) and take ensemble averages
to obtain the (second-) order structure function:

D

DvðDxÞ2
E

¼
D

j2
Dx

E

Dx2H / Dx2H�Kð2Þ ð4:18Þ

where we have used
�

j2
l



¼ lKð2Þ and Dx / l�1. We
now use the Wiener–Khinchin and Tauberian

theorems (Appendix 2A) to relate the scaling of the
spectrum to that of the structure function, to obtain:

b ¼ 1þ 2H � Kð2Þ ð4:19Þ

From this we see that given C1, a (which determines
K(2)) and the spectral exponent b, we can easily
find H. Methods for estimating H in real space
(essentially the direct use of classical different struc-
ture functions and their generalizations) will be
discussed in Section 5.5 and Appendix 5E. Table
4.1 shows the results when the angle integrated
spectrum was used to estimate b. When E(k) is
obtained by integrating P(k) (Eqn. (2.103)) over
angles in Fourier space, it is more statistically
robust. However, for estimating b, the usual inter-
pretation is only fully justified if the fields are in
fact isotropic. We come back to this question and
re-evaluate these analyses in Chapter 6.

In order to understand the H values for the wind,
humidity and temperature, we have constructed
Table 4.3. This compares the ECMWF reanalyses
and aircraft (Lovejoy et al., 2010) and dropsonde
estimates (Lovejoy et al., 2009b). Starting with the
wind, and concentrating on the zonal component,
we note that there is excellent agreement between the
dropsonde (vertical) value and the ECMWF isobaric
value, so it is significant that the reanalyses assume
hydrostatic equilibrium. As argued in Lovejoy et al.
(2009b), this agreement is likely because the isobars
are gently sloping so that at large enough scales, one
obtains the vertical rather than horizontal values. As
a consequence, the aircraft wind value given in the
table is the theory value 1/3 which was argued to be
compatible with the small-scale aircraft statistics

Table 4.3 A comparison of the ECMWF interim multifractal parameters (isobaric) with those estimated for aircraft (horizontal) and
dropsonde (vertical). The aircraft C1’s have been multiplied by the factor (3/2)1.8 ¼ 2.07 in an attempt to take into account the fact that the
aircraft flux estimates are in the scaling regime whereas the ECMWF estimates are in the dissipation regime.

Source h T v

α ECMWF 1.77 � 0.06 1.90 � 0.006 1.85 � 0.012

aircraft 1.81 1.78 1.94

dropsonde 1.85 1.70 1.90

C1 ECMWF 0.102 � 0.009 0.077 � 0.005 0.084 � 0.006

aircraft 0.083 0.108 0.083

dropsonde 0.072 0.091 0.088

H ECMWF 0.54 0.77 0.77

aircraft 0.51 � 0.01 0.50 � 0.01 1/3a

dropsonde 0.78 � 0.07 1.07 � 0.18 0.75 � 0.05

a Because of the issue of vertical aircraft movement, this (Kolmogorov) value was inferred, not directly estimated (see Lovejoy et al., 2010).
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when corrected for intermittent turbulent motions.
The H value for the humidity (0.54) is at least close
to the in-situ value (0.51), although to our know-
ledge it is not predicted by any existing theory.
Similarly, the temperature value is far from the air-
craft value, although it is close to the isobaric wind
value, suggesting that at least in the reanalysis it is
estimated as a passive scalar – i.e. advection domin-
ates diabatic processes. In this case, it would be an
isobaric estimate rather than an isoheight estimate
similar to the H for the horizontal wind.

4.2.6 Latitudinal variations in the cascade
structure
Up until now, we have taken statistics from � 45�

latitude in order to concentrate on the basic variation
with direction (zonal, meridional, temporal). How-
ever, a basic aspect of atmospheric dynamics is its
latitudinal dependence, notably due to the Coriolis
force. Paradoxically, the fairly limited analysis of
latitudinal variation in Stolle et al. (2009) found that

it was small; this is presumably because the cascade
structure is mostly dependent on nonlinear inter-
actions whereas the most important north–south
effects involve linear terms and boundary conditions.
Let us now investigate this more systematically.

In order to study the latitudinal dependence, we
broke up the earth into 15� bands. Fig. 4.4 shows the
zonal analysis of several of these bands for the zonal
wind (the other fields showed similarly small vari-
ations and are not shown, to economize on space);
in Chapter 8 we discuss the corresponding temporal
cascade structure. The main difference is a small but
systematic change in the outer scales. The evolution
is pretty small and is confirmed in the other bands.
Also, there is generally a good degree of north–
south symmetry. In order to quantify this, we turn
to Figs. 4.5a and 4.5b, which show (4.5a) the evolu-
tion of the exponents C1, a, and (4.5b) the external
spatial scales. We see that for some of the fields
(essentially the geopotential and specific humidity
near the equator), the a values are a bit larger than
the theoretical maximum (2), so that the curvature
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Fig. 4.4 The zonal wind (u) analyzed
in the zonal direction for the ECMWF
interim reanalysis, 700 mb level for the
year 2006. The top row is the band 75–
90� , the middle is 30–45� , the bottom
is 0–15� ; the left-hand column is the
northern hemisphere, the right-hand
column is the southern hemisphere
(spatial finite difference Laplacians
were used to estimate the fluxes). The
moments are q ¼ 0.1, 0.2, . . .1.9, 2.0.
The outer scale is 20 000 km
(corresponding to l ¼ 1). Note that at
the higher latitudes the largest
accessible scales are reduced due to
the map projection.
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(a) estimates (which were made here using a ¼
K00(1)/K0(1)) are not too accurate; their excesses
above 2 are probably not statistically significant.
We notice a slight tendency for the intermittency
to increase away from the equator, especially in the
southern hemisphere; it is sufficiently systematic
that it is probably a real change in C1.

Even though the exponents show remarkably little
latitudinal variation, that does not imply that the cas-
cade structure is nearly independent of latitude. Fig.
4.5c shows the variation of the external spatial scale.
The main noteworthy features are: (1) the latitudinal
variations (except perhaps the geopotential height) are
relatively small in space, almost all between 10 000 and
20 000 km; (2) the external scales have significant
north–south asymmetry. The reason for the asym-
metry is not clear, and it may be partly due to (spuri-
ous) factors such as differences in data density or to
(real) factors such as differences in land cover between
the two hemispheres (Fig. 8.8a). We return to discuss
the physical significance (and comparisons) of param-
eters at the end of the chapter.

4.3 The cascade structure of in-situ
aircraft measurements: wind,
temperature and humidity fields

4.3.1 The biases in the wind statistics
In Section 2.6, we discussed the fact that aircraft do not
fly on perfectly flat trajectories, that over significant
ranges of scales their trajectories are typically fractal;
and more importantly that over long distances they
typically have small but nonzero mean slopes. This
opens up the possibility that their vertical fluctuations
significantly influence their measurements. In order to
understand this, we need a theory of anisotropic

0.05

0.10

0.15

(a) C1

–60 –20–40 20 40 60
θ

1.2

1.4

1.6

1.8

2.0

2.2

–60 –40 –20 20 40 60

α

θ

(b)

–60 –40 –20 20 40 60

4.1

4.2

4.3

4.4

4.5

4.6

Log10Leff

20000 km

θ

(c)

Fig. 4.5 (a) The cascade exponents C1 from the spatial (zonal)
analysis. From bottom to top this shows the zonal wind (u), the
meridional wind (v), the temperature (T), the geopotential height (z),
the vertical velocity (w), the specific humidity (hs). The extreme
latitude bands (� 75–90�) were not used, since the mean map factor
is very large and the results were considered unreliable. Reproduced
from Lovejoy and Schertzer (2011). (b) Same as Fig. 4.5a except for a.

From bottom to top this shows the specific humidity (hs), the
meridional wind (v), the zonal wind (u), the temperature (T), the
vertical velocity (w), the geopotential height (z). Since theoretically
multifractal indices a must be � 2, the estimates a > 2 are
presumably unreliable, although error estimates are hard to
obtain. Reproduced from Lovejoy and Schertzer (2011). (c) The
effective external scales Leff as functions of latitude (in units of km)
from the zonal cascade analyses. The dashed line is a convenient
reference line, corresponding to the largest great-circle distance
on the earth, 20 000 km. From bottom to top (at the extreme left)
this shows the zonal wind (u), the meridional wind (v), the
geopotential height (z), the temperature (T), the specific humidity
(hs), the vertical velocity (w). Reproduced from Lovejoy and
Schertzer (2011).
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turbulence as well as a model of how it affects the
aircraft trajectories. Since a detailed discussion of
anisotropic scaling is given in Chapter 6, we post-
pone a full treatment until then. However, we find
that it is primarily the wind which is affected by the
aircraft motions (especially the sensitive longitudinal
or along-track component). Indeed, it is sufficient
for the sphero-scales (the scales where typical struc-
tures have “roundish” vertical sections) for the
temperature and humidity to be sufficiently large
that they are relatively unaffected. This is confirmed
by an analysis of the spectral coherence between
the aircraft altitude and wind, temperature and
humidity, which shows that while there is a strong
coherence with the wind (and whose phase with
respect to the altitude and pressure changes by 180�

precisely at the k�5/3 to k�2.4 transition scale), there
are only very low coherences with the temperature
and humidity (Appendix 6B). It is therefore worth
presenting the cascade analyses for these fields here.
The data analyzed are from the same Pacific Winter
Storms 2004 experiment described in Chapter 1,
where the spectra were shown (Fig. 1.6c). Here we
use 24 legs, each with 4000 � 280 m measurements,
i.e. 1120 km long.

4.3.2 Aircraft estimates of horizontal
cascade parameters
Figs. 4.6a and 4.6b show the flux analysis results for
the longitudinal wind, transverse wind, pressure,
temperature, humidity and potential temperature.

Lovejoy et al. (2010) analyzed this in detail, conclud-
ing that as far as estimating horizontal scaling param-
eters is concerned the range 4–40 km is optimal
(between the dashed lines in the figures); at smaller
scales the trajectory is too intermittent, while at the
longer scales one obtains isobaric rather than iso-
height statistics. We nevertheless see a fairly convin-
cing cascade structure for the wind (Fig. 4.6a), while
the temperature, humidity and potential temperature
show excellent scaling throughout (Fig. 4.6b). Once
again, the outer scales are of the order of the size of
the earth, although the Leff for the wind is somewhat
larger, the variability being presumably increased by
the variability of the altitude – which, due to the
aircraft response to turbulence, is also cascade-like.

Table 4.4 compares the parameter estimates using
the “optimal range” where the statistics are least
affected by the aircraft trajectory issues: 4–40 km.
We have included the analysis of the vertical coord-
inate (z) of the aircraft, which was found to follow its
own cascade with outer scale very close (� 50 km) to
the k�5/3 to k�2.4 transition scale. The interpretation
given in Lovejoy et al. (2010) is that this scale
marked the transition from a turbulence-dominated
trajectory to a trajectory dominated by a slowly
sloping pressure surface, where the vertical variabil-
ity in the horizontal wind dominates over its hori-
zontal variability.

We should mention that the aircraft did not fly in
particular orientations with respect to meridians so
that the exponents and outer scales are “isotropic”
estimates. It will be necessary to perform special
experiments to properly distinguish the zonal and

Table 4.4 Horizontal parameters estimated over the range 100 km down to 2 km, except for z, which is over the range 20 km to 0.5 km. Error
estimates are made only for those which are apparently unaffected by aircraft trajectory: they are half the difference of parameters when
estimated over the range 200 km to 20 km and 20 km to 2 km. Note that the aircraft α estimates are a bit too big, since the theoretical
maximum is α ¼ 2. They were estimated with the double trace moment technique (Section 5.5.3), which depends largely on the statistics
of the weaker events, and these could be affected by the intermittency of the aircraft altitude. The H parameters were estimated from the
spectral exponent b and the value K(2) using the equation H ¼ (β – 1 þ K(2))/2. Since the humidity is very low at the aircraft altitude, the
equivalent potential temperature was extremely close to the potential temperature, so that the statistics were indistinguishable and are given
in the table. The parameter values for the pressure should be taken with caution, since the aircraft was attempting to follow an isobar.

T Logθ h vlong vtrans p z

H 0.50 � 0.01 0.51 � 0.01 0.51 � 0.01 0.46 0.37 0.36 0.43

C1 0.052 � 0.012 0.052 � 0.010 0.040 � 0.012 0.033 0.046 0.031 0.068

α 1.78 1.82 1.81 2.10 2.10 2.2 2.15

Leff (km) 5000 10 000 10 000 105 25 000 1600 50

δ (%) 0.5 2.0 0.5 0.4 0.8 0.5 2.6
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meridional variabilities. For the moment, using the
reanalyses (previous section) as a guide, we can
assume that this will not affect the C1, a (and prob-
ably H, although see Chapter 6) exponents while it
will affect the external scale estimates. In this regard,
we can already remark that when comparing with the
reanalysis estimates, that for h, the aircraft exponents

and external scales are very close while for T both the
exponents and external scales are significantly differ-
ent (due to the problems due to aircraft intermittency,
the difference between the horizontal wind external
scales is not significant). We further compare the
aircraft parameters to those of the reanalyses (and
others) in Box 4.1.
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Fig. 4.6 (a) Cascade structures for the
fields strongly affected by the
trajectories: the longitudinal wind (top
left), the transverse wind (top right),
pressure (lower left). Reproduced from
Lovejoy et al. (2010). (b) Same as Fig. 4.6a
but for the fields that are relatively
unaffected by the trajectory:
temperature (top left), relative humidity
(top right), log potential temperature
(lower left right). Reproduced from
Lovejoy et al. (2010).
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Box 4.1 Overview of the horizontal scaling properties of atmospheric fields

We have rapidly surveyed some of the recent studies of the large-scale cascade properties of atmospheric fields and

boundary conditions (topography and, in Chapter 1, ocean colour, soil and vegetation indices). These studies profit

from the ready availability of massive quantities of high-resolution state-of-the-art data, and most of the analyses

would not have been possible more than 10 years ago. Nevertheless, each has its own problems/limitations:

nontrivial aircraft trajectories, problems with zero and low rain rates, problems estimating areal rainfall, problems

with the hyperviscous smoothing and hydrostatic nature of the reanalyses (see Chapter 6); we must consider that

the analyses we have presented are only the first steps towards a full scale-by-scale understanding of the horizontal

statistics. Before continuing (in the next chapter) to a more advanced understanding of cascades and multifractals, it

is nevertheless worth taking an overview of the basic empirical results presented so far.

Table 4.5 summarizes different categories of values (e.g. radiances) or gives approximate values when there are

several sources (e.g. the rain rate but also some of the state variables). The values given for the state variables are

those of the in-situ measurements (when available), with parentheses indicating the reanalysis values in those cases

where they differ significantly from the former. We can see from the table that the C1 values are remarkably constant

at around 0.1 – the main exception is the very intermittent R field (high C1) – and that the a values vary in a fairly

narrow range around 1.5–1.9.

We should note that the C1 values for the state variables are from dissipation-scale estimates and will thus be

different from the in-situ (aircraft) results, which are for scaling-range estimates (see Eqn. (4.15)); in each case, C1
effectively characterizes a different flux (e.g. ε1/2 or ε1/3 in the case of the wind). The H values, with the exception of

the vertical wind, are > 0, indicating that the fields are smoother than the fluxes and that fluctuations grow with

increasing scale Dx. Although the values of H have classically been determined by dimensional analysis, only the

value for the horizontal wind – and this is indirectly inferred through data from problematic aircraft trajectories – has

a theoretically explained value (1/3). In comparison, Corrsin–Obukhov theory for passive scalars (Chapter 2)

also yields H ¼ 1/3 (apparently verified for aerosol concentrations: see the table and Section 6.5.1) whereas

the Bolgiano–Obukhov buoyancy-driven turbulence (Chapter 6) gives H ¼ 3/5 for the wind (close to the

observations), but only 1/5 for the temperature. Paradoxically, the value H � 1/2 (for T, SST, h) corresponds to

“normal” diffusion in a solid, but is quite anomalous with respect to the turbulent Corrsin–Obukhov value of 1/3 and

we know of no theory that predicts it.

Table 4.5 A comparison of various horizontal parameter estimates, attempting to summarize categories of values (radiances) or
approximate values. When available (and when reliable), the aircraft data were used in precedence over the reanalysis values, with the
latter given in parentheses in those cases where there was no comparable in-situ value or when it was significantly different from the
in-situ value. The aircraft values were also increased by a factor 2.07 to take into account the difference between dissipation and scaling
range estimates: cf. Eqn. (4.15). For Leff where the anisotropy is significant, the geometric means of the north–south and east–west estimates
are given; the average ratio is 1.6 : 1 EW/NS (although for the precipitation rate, the along-track TRMM estimate was used). Finally, the
topography estimate of Leff is based on a single realization (one earth!), so we only verified that there was no obvious break below
planetary scales. The aerosol concentration was estimated from the lidar backscatter ratio as discussed in Section 6.5.1.

C1 α H β Leff

State variables u, v 0.09 1.9 1/3, (0.77) 1.6, (2.4) (14 000)

w (0.12) (1.9) (�0.14) (0.4) (15 000)

T 0.11, (0.08) 1.8 0.50, (0.77) 1.9, (2.4) 5000 (19 000)

h 0.09 1.8 0.51 1.9 10 000

z (0.09) (1.9) (1.26) (3.3) (60 000)

Precipitation R 0.4 1.5 0.00 0.2 32 000

Passive scalars Aerosol concentration 0.08 1.8 0.33 1.6 25 000

Radiances Infrared 0.08 1.5 0.3 1.5 15 000

Visible 0.08 1.5 0.2 1.5 10 000

Passive microwave 0.1–0.26 1.5 0.25–0.5 1.3–1.6 5000–15 000

Topography Altitude 0.12 1.8 0.7 2.1 20 000

Sea surface temperature SST (see Table 8.2) 0.12 1.9 0.50 1.8 16 000
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4.4 The cascade structure
of precipitation

4.4.1 The special role and properties
of precipitation
Precipitation is highly significant not only for meteor-
ology, where it plays a key role in the earth’s energy
and water budgets, but also in hydrology, where it is
the input field. Yet it has a number of peculiarities
that make it somewhat different from most other
atmospheric variables. First, from the empirical
standpoint, the problem of estimating areal rain-rate
fields – whether from (typically sparse) in-situ
networks of gauges or from remote sensing (especially
radar reflectivities) – is still open. Strictly speaking –

due to intermittency, the fact that K(q) 6¼ 0 – this
could also be said of any of the other techniques used
to produce smooth fields from in-situ data (such as
“Kriging,” “optimal interpolation,” or “3D and 4D
var”); however, since rain is much more intermittent
(it has a much larger C1; see Table 4.7, below) than the
other fields its effect is much stronger and more
difficult to ignore. Second, intermittency in rain prob-
ably has a significant on/off component: it is appar-
ently zero at most times and places; yet even the exact
definition of the (nonzero) “support” – the distinction
between rain and no rain – is quite ad hoc, typically
depending of the sensitivity of the instrument.
Indeed, it may be that the on/off intermittency is a
threshold-type effect, in which case it is not scaling at
all, since the scale at which the threshold is introduced
breaks the scaling. (The alternative – to modulate the
rain rate process by another fractal rain/no rain pro-
cess as proposed by Gupta and Waymire (1993) is
also problematic since it would imply, in the small-
scale limit, zero rain areas.) Finally, from a modelling
viewpoint, there are no theoretically “clean” ways to
represent the rain rate in the same way as the main
state variables – i.e. as coupled nonlinear partial

differential equations – without resorting to strong,
unsatisfactory “parametrizations.”

The use of scaling in rain – especially in the hydrol-
ogy literature, where it is mostly implicit as the input
field – goes back to at least Hurst (1951), and it includes
early contributions on long-range statistical dependen-
cies and extremes (essentially fractional Brownian
motion and Lévy processes (Mandelbrot and Wallis,
1968), and wide-range spatial scaling (Lovejoy, 1982).
It was also the first field to be used to test multiplicative
cascades (Schertzer and Lovejoy, 1987): an early review
(Lovejoy and Schertzer, 1995) already included over 50
references. Rather than provide a comprehensive
review, which would be too extensive for this book,
we will touch upon the main strands of scaling in
precipitation and follow this by more in-depth discus-
sion of some recent global-scale analyses.

The scaling precipitation literature is still far from
consensual. For example, a key issue is the value of H:
is the rain-rate field itself the direct outcome of a
cascade process or is it only driven/forced by a turbu-
lent cascade-generated flux? Certainly – although
many papers on precipitation simply assume H ¼ 0
without discussion – the answer is not self-evident. In
rain, it seems likely that H > 0 – as theoretically
expected for passive scalars in turbulence – at small
scales in space H � 1/3 (as for the liquid water
density: Lovejoy and Schertzer, 2008). However, at
larger scales – at least for the related radar reflectivity
and in the horizontal direction – it was found that
H ¼ 0.00 � 0.01 (Lovejoy et al., 2008). The low H
result gives an ex post facto justification for the
common assumption in the precipitation literature
that H is indeed exactly zero. However, this result
could be biased by the satellite radar data, which
had a high threshold (only detecting rain in 3.5% of
the pixels). Using the huge CPC hourly precipitation
database discussed below, we find in time for rain
rates H � 0.17 � 0.11 up to 2–3 days (see Serinaldi,
2010, who finds in time series H � 0.19), a result

Box 4.1 (cont.)

Finally, not shown in the table is the remarkable agreement on the outer scales in both north–south and east–

west directions. First, they are all within about a factor of 2 of the planetary scale; second, the north–south and east–

west exponents seem to be about the same (although for the precipitation this is not totally clear, and for the

aircraft data this has not yet been evaluated); third, even the typical east–west/north–south aspect ratios of

structures is nearly constant at about 1.6 : 1.
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which itself is somewhat dependent on the rain/no
rain threshold of the gauges, notably descending to
0.05 � 0.10 if the detection threshold is chosen to be
so large that it is only exceeded 3.5% of the time. This
new value is somewhat larger than several older pub-
lished results on rain; both Tessier et al. (1996) and De
Lima (1998) estimate H � –0.1 in time (see also
Larnder, 1995, for theoretical and numerical investi-
gations). Recently there has been some interesting
work on this by de Montera et al. (2009, 2010) and
Verrier et al. (2010), who find important differences in
exponents for the rain rate over all the data (i.e. dom-
inated by zeroes) or for only the raining part (the
support). Using radar data on regions without rain-
free “holes,” they find H � 0 for data with holes, but H
� 0.4 for purely raining regions. They also perform
numerical simulations that confirm the strong impact
of zeroes on the parameter estimates, including C1. In
Verrier et al. (2011) it is further shown, using a unique
two-year rain series at 15 s resolution, that by using
rain-rate moments weighted to compensate for raining
fractions the scaling in the rain is much improved. The
value H � 0.4 for rain rates in raining regions is close
enough to that of passive scalars (H¼ 1/3), as found for
liquid water concentrations (see Figs. 1.8a, 1.8b), that
Lovejoy and Schertzer (2008) and de Montera et al.
(2010) propose turbulent models to explain it.

Other issues where divergences of views persist
include the now old debate about multifractal
universality (Schertzer and Lovejoy, 1987, 1997;
Gupta and Waymire, 1993), which continues today
in the guise of (weak) log-Poisson universality
(Deidda et al., 1999; Onof and Arnbjerg-Nielsen,
2009; Wang et al., 2010) versus (strong) log-Lévy
universality (Olsson and Niemczynowicz, 1996; Ols-
son, 1998; Olsson and Berndtsson, 1998; De Lima,
1998; Douglas and Barros, 2003; Pathirana et al.,
2003; Veneziano et al., 2006; Lovejoy et al., 2008; de
Montera et al., 2009, 2010; Verrier et al., 2010, 2011;
Serinaldi, 2010; Sun and Barros, 2010). Similarly, the
nature of the low and zero rain rates (which are
notoriously difficult to accurately measure, and which
are prone to spurious breaks and spurious behaviours
(Hoang et al., in press) has led to two alternative
modelling approaches: that the support (i.e. the
region where it is raining) is a fractal set (Over and
Gupta, 1994, 1996; Güntner et al., 2001; Pathirana
and Herath, 2002; Paulson and Baxter, 2007; Rupp
et al., 2009; Wang et al., 2010) or, on the contrary,
that the zero rain-rate values are the consequence of a

combined physical and instrumental thresholding
mechanism wherein the rain below some low value
is set to zero (Lovejoy and Schertzer, 2008; Lovejoy
et al., 2008; de Montera et al., 2009; Verrier et al.,
2010). The former hypothesis is somewhat unsatis-
factory – if only because it implies that in the small-
scale limit the rain areas are strictly zero, so that finite
raining areas depend sensitively on the inner and
outer cascade scales. In comparison, the thresholding
mechanism implies – as found empirically – that the
regions with low (and zero) rates will have poor/
broken scaling.

A final important subject of controversy is the
nature of the extremes. Although – as discussed in
Section 5.3.3 – the general cascade process has “fat”
algebraic probability tails, there are several ways in
which artificial restrictions on the process can lead to
more classical “long-tailed” or simply “thin-tailed”
distributions. For example, microcanonical cascades,
discussed in Section 3.2.3 and favoured by Carsteanu
and Foufoula-Georgiou (1996), Güntner et al. (2001),
Paulson and Baxter (2007), Rupp et al. (2009) and
Wang et al. (2010), restrict the extremes – as do the
log-Poisson models mentioned above. Similarly, the
“bounded cascades” (Box 3.3) applied to rain in
Menabde (1997) leads to quasi-Gaussian thin tails.

4.4.2 The cascade properties of ground
and space radar, gauge networks and
reanalysis rain fields
We start our survey of precipitation by considering
radar reflectivities of rain which were used for one of
the first empirical tests of multiplicative cascade
models (Fig. 4.7a: Schertzer and Lovejoy, 1987). This
analysis extended over the range 1–128 km, which –

due to the curvature of the earth – is about the widest
possible range for a single ground-based radar. From
both the linearity of log Mq versus log l shown in the
figure and the converging nature of the lines, we see
that it gives strong support to the multiplicative cas-
cade idea. The radar reflectivity field is proportional
to the sum of the squares of the drop volumes so that
it is nontrivially related to the rain rate (which is
proportional to the sum over the drops of the prod-
ucts of the volumes with the vertical fall speeds).
However – at least above a minimum detectable
threshold – the radar reflectivity is an accurately
measured atmospheric signal and is strongly coupled
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with the rain-rate field, so the cascade structure of the
reflectivities provides strong evidence in favour of the
cascade hypothesis.

In order to achieve estimates at scales > 128 km,
networks of ground-based radar can be used to obtain
continental-scale reflectivities. These mosaics involve
large numbers of radars partially overlapping at their
extreme ranges where their resolutions are lowest; the

resulting coverage is far from uniform, and in any
case it is at most continental in scale. In order to
directly verify the cascade behaviour up to planetary
scales, we must use satellite data. Fig. 4.7b shows the
result using the first orbiting weather radar, the pre-
cipitation radar (PR) instrument on the Tropical
Rainfall Measuring and Mission (TRMM) satellite
(Lovejoy et al., 2008). From the figure we see that,
again, the scaling (log-log linearity) is excellent, the
main exception being for the low q values. Adopting
the convention that any number x0 ¼ 1 if x 6¼ 0 and
x0 ¼ 0 if x ¼ 0, we find that the q ¼ 0 curve
corresponds to the scaling of the raining areas (the
“support”). However the PR instrument has a very
high minimum detectable signal: it is in fact double
the mean value, and such thresholding breaks the
scaling. In Lovejoy et al. (2008), with the help of
numerical multifractal simulations, this scale break-
ing (curved lines for low q) was reproduced as a
simple threshold effect. If we use a standard power
law Z–R relation, Z ¼ aRb, and assume the statistics
follow the universal multifractal form, then Eqn.
(4.14) shows that ba ¼ C1Z/C1R ¼ 0.63/0.50 ¼ 1.26.
Taking the (spatial) a ¼ 1.5 (an estimate sensitive to
low and zero rain rates, hence to be taken with cau-
tion), then we find b � 1.2, which is a little lower than
the usually cited b � 1.4 for TRMM reflectivities. We
return to this question when considering the corres-
ponding temporal cascades in Chapter 8.

In order to compare the results to in-situ gauge
networks and to reanalyses in the zonal, meridional
and temporal directions, we gridded 5300 TRMM
orbits (the year 1998) onto a 100 � 100 km grid
(between � 40�; the limits were imposed by the
orbital parameters) with a four-day temporal reso-
lution (which is roughly the mean time for the satel-
lite to return to a given location). The reflectivities
were converted into rain-rate estimates using a power
law with the (recommended) value b¼ 1.4. They were
then degraded over 100 � 100 km boxes: all the data
within a four-day period were averaged (see Table 4.6
for a summary of the characteristics of this and the
following precipitation products). Finally, the flux
was estimated by the centred differences in time
(jRðtÞ � ðRðt þ DtÞ þ Rðt � DtÞÞ=2j). This definition
of the flux was also used in CPC and ECMWF prod-
ucts discussed below; not much difference was found,
so the corresponding spatial flux estimate (the abso-
lute Laplacian) was used instead. Indeed, in space it
was found that H � 0, so the results were nearly the

(a)

(b)

Fig. 4.7 (a) The momentsMq of the normalized radar reflectivity for
70 constant-altitude radar maps at 3 km altitude from the McGill
weather radar (10 cm wavelength, 1 km pulse length). The basic
figure was adapted from Schertzer and Lovejoy (1987) by Lovejoy
et al. (2008), who added the straight lines converging to an outer
scale at 32 000 km. (b) Same as Fig. 4.7a except for the TRMM
reflectivities (4.3 km resolution). The moments are for q ¼ 0, 0.1,
0.2, . . . 2, taken along the satellite track. The poor scaling (curvature)
for the low q values can be explained as an artefact of the fairly high
minimum detectable signal. Lref ¼ 20 000 km so that l ¼ 1
corresponds to 20 000 km, the lines cross at the effective outer scale
� 32 000 km, C1 � 0.63. Reproduced from Lovejoy et al. (2009a).
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same if no differences were used; the R field being
directly taken as a conserved flux.

The results are shown in Figs. 4.8a (east–west) and
4.8b (north–south); these are not too different from
the typically NE or SW along-orbit results (Fig. 4.7b)
except that a strong NS/EW anisotropy is evident (at
least for the outer scales; see Table 4.7 and discussion
below), and the fact that the slopes (KR(q)) are much
smaller than those for Z due to the power-law
transformation.

Since the Z–R transformation can only be theor-
etically justified using various problematic assump-
tions (such as the spatial uniformity of the drop size
distribution; see e.g. Section 1.2.5), it is important to
compare this satellite rain to in-situ (gauge) measure-
ments and to reanalyses. For this purpose, we used
NOAA’s Climate Prediction Center (CPC) US hourly
gridded precipitation (rain-rate) product. This prod-
uct is unique in its high temporal resolution over a
large number of contiguous grid points. We selected a
(near complete) subset of the CPC data for the 29
years 1948–1976. The data were detrended annually
and daily, which somewhat improves the low q
scaling without affecting the high q statistics much.
The CPC gridded the station data into 2.5� � 2.0�

boxes by using a modified Cressman scheme (a kind
of interpolation method); we used the central 13 � 21
point region from –122.5� to –72.5� longitude (every
2.5� � 210 km at these latitudes), and from 30� to 54�

latitude (every 2�, about 220 km; each grid point has a
near-complete 257 000-point-long hourly series). The
analysis results are shown in Figs. 4.8a and 4.8b,
showing that the gridded data also have a clear cas-
cade structure in the east–west and north–south

directions, and that the extrapolated outer scale is
nearly the same as for the ground- and satellite-based
radar reflectivities (Figs. 4.7a, 4.7b).

Before making a quantitative satellite/gauge com-
parison, let us first consider the corresponding ana-
lyses on the ECMWF interim “stratiform rain”
product (since this analysis was made, another “con-
vective rain” product has been released). We used the
first three months of 2006 at the full (three-hour)
resolution. The results in the east–west and north–
south directions are also shown in Figs. 4.8a and
4.8b, and the parameters and those of the other prod-
ucts are shown in Table 4.7. As a first comment, we
could note the much higher values of all the C1 esti-
mates when compared with any of the meteorological
fields considered so far; this confirms our intuition
about rain, that it is much more intermittent than the
other atmospheric fields. We also note the reasonable
agreement between the outer scale estimates: 43� 6�
103 km in the east–west direction and 27� 9� 103 km
in the north–south direction (the spread is the vari-
ation from one product to another, and the raw outer
scale estimates in the table – and throughout this book
– are only quoted to within 1 dBl, i.e. to the nearest
tenth of an order of magnitude, i.e. to within a factor�
1.25). Taking the ratio of the east–west to north–south
outer scales gives us the trivial anisotropy, i.e. the
typical aspect ratio in the horizontal (assuming that
there is no differential, i.e. scale-by-scale, anisotropy).
The ratios of the means gives a factor 1.61, which is
almost the same as for the mean of the ECMWF
interim fields discussed above.

The variations of the C1 values in Table 4.7 are not
so easy to explain. First, the east–west C1 values are

Table 4.6 The characteristics of the various precipitation datasets discussed in the text.

Spatial resolution

(EW × NS)

Spatial

extent EW

Spatial extent

NS

Temporal

resolution

Length of

record

ECMWF (interim

reanalysis)

1.5� � 1.5� 360� 180� 3 hours 3 months

(1/06–3/06)

CPC (Climate Prediction

Center, gauges)

2.5� � 2� 122.5� –

72.5� W

(� 4000 km)

30� – 54�

(� 3000 km)

1 hour 29 years

(1948–1976)

TRMM (satellite radar) 100 � 100 km 360� 40� S – 40� N 4 days 1 year (1998:

5300 orbits)

20CR (reanalysis) 2� � 2� 360� 2� (only 44–46�

analyzed)

6 hours 138 years

(1871–2008)
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not quite the same as the north–south exponents. The
differences are between 4% and 16% in the exponents,
and if they are statistically significant it would indi-
cate systematic scale-by-scale scaling anisotropy (as
discussed in Chapter 6). However, it is not obvious

that they are in fact significant. On the one hand, even
with all these data, statistical exponents are very hard
to accurately estimate; this is especially true since the
large C1 values indicate huge sample-to-sample vari-
ability (intermittency). On the other hand, there are

(a)

(b)

Fig. 4.8 (a) East–west analyses of the
gridded precipitation products
discussed in the text. Upper left: The
TRMM 100 � 100 km, 4-day averaged
product. Upper right: The ECMWF
interim stratiform rain product (all
latitudes were used). Note that the
data were degraded in constant-angle
bins so that the outer scale is 180� . To
compare with the other analyses, a
mean map factor of 0.69 has been
applied (the mean east–west outer
scale was~14 000 km). Lower left: The
CPC hourly gridded rainfall product
(USA only). Reproduced from Lovejoy
et al. (2012). (b) Same as Fig. 4.8a but
for the north–south analyses (see
Fig. 8.7e). Upper left: The TRMM
100�100 km, 4-day averaged product.
Upper right: The ECMWF interim
stratiform rain product. Lower left:
The CPC hourly gridded rainfall
product (USA only). Reproduced from
Lovejoy et al. (2012).
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fairly large variations from one product to another –
larger than the NS/EW differences – and in any case,
the east–west values are not even systematically larger
than the north–south ones (they are smaller in the
ECMWF product, larger in the others). For the
moment we conclude that probably the trivial anisot-
ropy is real, but not the scale-by-scale anisotropy (i.e.
we may reasonably consider that the C1’s are the same
in the east–west and north–south directions). There
remains the interesting task of understanding the
product-to-product differences, and this should shed
light not only on the fundamental nature of rain but
also on the optimum way of estimating rain rates
from in-situ and remote measurements and of simu-
lating rain in numerical models. Recall that since we
are discussing exponents characterizing the scale-by-
scale statistical properties, for the products to agree
about the rain rate at any particular space-time point
it is a necessary – but not a sufficient – condition that
they have identical cascade parameters (exponents
and outer scales).

In Table 4.7 we did not include estimates of the
Lévy index a, since its estimation depends sensitively
on the low values of the rain rate, and these are poorly
measured. Lovejoy et al. (2008) pay much attention to
this, and with the help of cascade models conclude
that a � 1.5, but the evidence is still not compelling
(see e.g. Lilley et al., 2006, for an review of empirical
estimates). Also shown in the table are the MTSAT
thermal IR parameters; these are included because the
thermal IR field is correlated with high cloud tops and
hence precipitation.

The spatial values of C1 can be compared with
others in the literature, notably Tessier et al. (1993):
C1 � 0.16; Olsson and Niemczynowicz (1996): C1 �
0.02 – 0.1; Hubert et al. (2002): C1 � 0.35 � 0.2;

de Montera et al. (2009) and Verrier et al. (2010):
C1 � 0.5, H � 0 for data with zeroes, C1 � 0.15, H
� 0.4 for data without zeroes. See also Veneziano
et al. (2006) for estimates obtained by assuming a
fractal support (and which are thus not directly
comparable). These estimates are (mostly) from
gauges (although the latter also consider radar
scans); we see that our values are more in accord
with the more recent estimate, but there is still
much uncertainty in the estimates. The sensitivity
to zeroes thus seems to hold the key to a better
understanding of the variation in the literature of
both H and C1 parameters.

The temporal estimates of C1 in Table 4.7
can be compared with those in the literature, notably
C1 � 0.6 (Tessier et al., 1993); C1 � 0.2 (Hubert et al.,
1993); C1 � 0.6 (Ladoy et al., 1993); C1 � 0.04–0.19
(Harris et al., 1996); C1 � 0.30–0.51 (De Lima, 1998;
De Lima and Grasman, 1999); C1 � 0.344,
0.303 (Hubert et al., 2002; Kiely and Ivanova, 1999);
C1 � 0.38 � 0.02, 0.40 � 0.1 (Hubert et al., 2002); C1

� 0.345 � 0.038 (Pathirana et al., 2003); C1 � 0. 434
� 0.005 (Garcia-Marin et al., 2008; Pathirana et al.,
2003); C1 � 0.38 (Serinaldi, 2010); C1 � 0.3–0.6 (Sun
and Barros, 2010); C1 � 0.47�0.08 (Schertzer et al.,
unpublished manuscript); C1 ¼ 0.59 for full sample
(32-minute resolution), C1 ¼ 0.10 for “rain only”
conditional samples (Verrier et al., 2011). These are
all from gauges; a radar estimate from Tessier et al.
(1993) gives C1 � 0.6. We see that, as for the spatial
C1 estimates, our values are more in accord with the
more recent values but there is still much uncertainty
in the estimates, and again the zero/low rain-rate issue
is a likely source of this uncertainty (Lovejoy and
Schertzer, 2008; Verrier et al., 2010, 2011; Gires
et al., 2012).

Table 4.7 A comparison of some of the cascade parameters for the three precipitation products discussed in the text and MTSAT (thermal
IR). The a estimates for MTSAT were all 1.5; for the precipitation products, they were not considered reliable since they were sensitive to
the low and zero rain rate regions which were poorly determined. The temporal analyses will be discussed in Chapter 8. The zonal/
meridional aspect ratios a are: 1.6, 1.3, 2.5, 1.6 for the ECMWF, CPC, TRMM and MTSAT fields respectively. Only the 45� N 20CR data were
analyzed (zonally and in time).

ECMWF CPC TRMM R/Z1/1.4 20CR MTSAT

C1 Leff or Teff C1 Leff or Teff C1 Leff or Teff C1 Leff or teff C1 Leff or Teff

East–west 0.41 50 000 km 0.49 40 000 km 0.27 40 000 km 0.26 25 000 km 0.07 50 000 km

North–south 0.45 32 000 km 0.51 32 000 km 0.32 16 000 km _ _ 0.07 32 000 km

Time 0.34 71 days 0.37 42 days 0.30 1 100 days 0.22 50 days 0.07 48 days
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4.5 The scaling of atmospheric
forcings and boundary conditions

4.5.1 The scaling of the earth’s energy
budget: long- and short-wave radiances,
passive microwaves
We have argued that the dynamical equations are
compatible with anisotropic scaling over most of their
range. However, in order to justify the scaling of the
solutions – the state variables – we must also demon-
strate the scaling of the forcings and boundary
conditions. Basic boundary conditions are the
topography (land) and sea surface temperatures (SST,
oceans), and the main meteorological forcings are
short-wave solar heating and long-wave (thermal
infrared) cooling (this implicitly includes the climate
forcings discussed in Section 11.3). The scaling and
cascade properties of the SST are discussed inChapter 8;
here we consider the forcings and the topography.
Other boundary conditions include soil moisture and
vegetation (see Fig. 1.12 for relevant spectra and Lovejoy
et al., 2007, for cascade analyses).

By estimating the Laplacian of the horizontal wind
at the model and reanalysis dissipation scales, we have
already given evidence that the energy flux does indeed
cascade over the entire available range of scales. By
using satellite radiance data (whose spectra were ana-
lyzed in Chapter 1), we now show that the correspond-
ing energy forcings and sinks (i.e. the short- and long-
wave radiances) are also scaling with corresponding
cascade structures whose parameters we estimate. This
is in accord with the spectral transfers analyzed in
Section 2.7, which did not indicate a clear cascade
direction (upscale or downscale). For this analysis, we
again used the TRMM satellite which, in addition to
the Precipitation Radar instrument had a visible and
infrared instrument (VIRS; with 5 wavelengths) as well
as a passive microwave instrument (TMI; with 5 wave-
lengths at 2 polarizations each). The spectra were
already shown in Figs. 1.2 and 1.3, and the full analysis
is given in Lovejoy et al. (2009a). The cascade analyses
for the key energy-containing short-wave (visible) and
long-wave (thermal IR) wavelengths are shown in Figs.
4.9a and 4.9b. We see once again excellent scaling;
Tables 4.7a and 4.7b show the details and comparison
with a more limited earlier study (Lovejoy et al., 2001).

These TRMM results are suppported by those
from thermal infrared data from the geostationary

satellite MTSAT (Fig. 4.10; Pinel et al., 2012). Sections
from 30� S to 40� N, about 13 000 km in the east–west
over the Pacific Ocean were used at 30 km resolution,
every hour for two months (1440 images in all). It is
interesting to note that the MTSAT analyses were
carried out in both east–west and north–south direc-
tions; Fig. 4.10 is the mean, presumably closer to the
TRMM analyses made along the satellite track which
was typically oriented northeast or southeast. The
scaling behaviour of these radiances is consistent with
the large-scale cascade structure of the wind and
temperature fields because it shows that the energy
sources and sinks are themselves scaling so that the
basic assumptions of the cascade model are still pre-
sumably satisfied. In addition, the radiances and
cloud fields are strongly nonlinearly coupled, so that
the scaling of the radiances is in itself strong evidence

(a)

(b)

Fig. 4.9 (a) TRMM visible data (0.63 mm) from the VIRS instrument,
channel 1 with fluxes estimated at 8.8 km. Only the well-lit 15 000
km orbit sections were used. Lref ¼ 20 000 km so that l ¼ 1
corresponds to 20, 000 km, the lines cross at Leff � 9,800 km.
Reproduced from Lovejoy et al. (2009a). (b) Same as Fig. 4.9a
except for VIRS thermal IR (channel 5, 12.0 mm), Leff � 15 800 km
(see Table 4.8a for details). Reproduced from Lovejoy et al. (2009a).
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for the scaling of the clouds (i.e. the liquid water field)
and hence presumably of the dynamics.

In spite of the variation in the wavelengths from
visible through near to thermal IR, the values of the
parameters in Table 4.8a are all roughly compatible
with a ¼ 1.5, C1 ¼ 0.08 – this is indicated directly in
the table for the TRMM VIRS data, but the AVHRR
and MTSAT results are also quite close. The H values
are also in a fairly narrow interval between 0.19 and
0.36, although there seems to be a tendency for H to
decrease with wavelength. It is significant that these

values are in turn close to those of passive scalars:
Table 4.5 indicates the results from lidar backscatter
ratio, which is a surrogate for the aerosol concen-
tration (see Figs. 1.7b, 1.7c, 1.7d and Section 6.5.1):
a � 1.8, C1 � 0.07, H � 0.33 (the latter being close
the theoretical Corrsin–Obukhov value H ¼ 1/3,
Section 2.3).

A possible explanation for these results emerges as
follows. First consider the visible wavelengths which –

ignoring reflection from the surface – are essentially
pure scattering (very little emission and absorption).

Table 4.8a The statistical characteristics of various sensors in the visible and IR wavelengths. VIRS is the visible-IR instrument on the TRMM
satellite. The AVHRR satellite series is an operational NOAA satellite, MTSAT is a Japanese geostationary satellite, and “photography” is
ground-based large-format imagery (see Figs. 1.4a and 1.4b; from Sachs et al., 2002). The H estimates are based on structure functions.
The mean residues (δ, Eqn. (4.16)) are given both with respect to the restrictive hypothesis that the cascades are universal multifractals
(i.e. they respect the cascade, Eqn. (4.1), with the universal form for K(q), Eqn. (3.46) with a ¼ 1.5, C1 ¼ 0.08), and for the less restrictive
hypothesis, that they only respect Eqn. (4.1).

Channel Wavelength Resolution

(km)

δ (%) linea δ (%) unib α C1 H Leff (km)

VIRS 1 0.630 mm 8.8 0.60 0.71 1.35 0.077 0.19 9800

VIRS 2 1.60 mm 8.8 0.83 1.37 1.41 0.079 0.21 5000

VIRS 3 3.75 mm 22. 1.10 1.58 1.99 0.065 0.27 17 800

VIRS 4 10.8 mm 8.8 0.48 0.53 1.56 0.081 0.26 12 600

VIRS 5 12. 0 mm 8.8 0.47 0.81 1.63 0.084 0.33 15 800

AVHRR 14 visc 0.58–0.68 mm 2.2 _ _ 1.92 0.075 0.32 18 700

AVHRR 14 IRc 11.5–12.5 mm 2.2 _ _ 1.91 0.079 0.36 25 200

MTSATd 10.8 mm 30 _ _ 1.5 0.74 0.31 40 000

Photography 0.3–0.7 mm 0.5–5 m _ _ 1.77 0.061 0.61 _

a This is the residual with respect to pure power-law scaling.
b This is the residual with respect to universal multifractal scaling with a ¼ 1.5, C1 ¼ 0.08, only the outer scale is fit to each channel.
c These were from 153 visible, 214 IR scenes each 280 � 280 km over Oklahoma, from Lovejoy et al. (2001), Lovejoy and Schertzer (2006).
d This is the average of the north–south and east–west parameters; see Table 4.7.

Table 4.8b The characteristics of the five (TRMM) TMI channels and the Precipitation Radar reflectivity (not rain rate), from Lovejoy et al.
(2009a). All used vertical polarization. The H estimates are based on structure functions.

Channel Wavelength Resolution

(km)

δ (%) line2 δ (%) uni3 α C1 H Leff (km)

TMI1 3.0 cm (10.6 GHz) 111.4 1.40 1.55 1.35 0.255 0.50 15 900

TMI 3 1.58 cm (19.35 GHz) 55.6 1.71 1.93 1.76 0.193 0.331 6900

TMI 5 1.43 cm (22.24 GHz) 27.8 1.62 1.82 1.93 0.157 0.453 5000

TMI 6 8.1 mm (37 GHz) 27.8 1.73 1.95 1.76 0.15 0.377 4400

TMI 8 3.51 mm (85.5 GHz) 13.9 1.40 1.70 1.90 0.102 0.238 6300

TRMM Z 2.2 cm (13.2 GHz) 4.3 6.0* 4.6* 1.50 0.63 0.00 32 000
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If the clouds are on average sufficiently optically thin
and the cloud liquid water density is roughly a passive
scalar, then their effect will be roughly a linear modu-
lation of the horizontal radiances, which will then
have passive scalar characteristics. However, two
effects tend to counter this. First, the surface reflect-
ance, at least over land, is quite “rough,” i.e. it has low
H values; over relatively cloud-free volcanic terrain,
Harvey et al. (2002) and Gaonac’h et al. (2003) find H
in the range 0–0.2 with C1 � 0.03–0.08, a � 2 – so
this would tend to lower H below the passive scalar
value, perhaps to the observed value (H � 0.19 for the
TRMM visible wavelength result: Table 4.8a). The
second effect is that as the cloud gets optically thicker
the radiation tends to integrate the optical density,
effectively increasing H. The combination of this
effect and a smooth (sky) background could explain
the visible results from ground-based photography
(see Figs. 1.4a and 1.4b), which yield H � 0.6 (Table
4.8a). Consider now the thermal IR results, which are
closer to the passive H values. First, for a given cloud,
the optical thickness is much higher in the infrared
when compared to the visible but there is very little
scattering, so the transfer is dominated by absorption
and thermal emission. This makes the clouds less
penetrable and makes most of the absorption/emis-
sion take place near the cloud “surface.” However, the
temperature dependence itself is not far from a pas-
sive scalar (see Box 4.1, Table 4.5: H � 0.5, C1 � 0.1),

so it is plausible that the resulting radiances would
have statistics with higher H, thus closer to passive
scalars (as observed).

These results are bolstered by the TRMM
microwave results shown in Table 4.7b. Recall that
the thermal microwave radiation has contributions
from surface reflectance, water vapour and cloud
and rain. Since the particles are smaller than the
wavelengths this is the Rayleigh scattering regime,
and as the wavelength increases from 3.5 mm to
3.0 cm the emissivity/absorptivity due to cloud and
precipitation decreases so that more and more of the
signal originates in the lower reaches of clouds and
the underlying surface. Also, the ratio of absorption
to scattering decreases so that at 3 cm multiple scat-
tering can be important in raining regions. The over-
all result is that the horizontal gradients – which we
have used to estimate the cascade fluxes – will increas-
ingly reflect large internal liquid-water gradients. We
therefore expect the longer wavelengths to give flux
statistics close to those of the (2.2 cm) radar reflectiv-
ity signal (which is proportional to the second
moment of the particle volumes). This explanation
is consistent with the trend mentioned above for C1

to increase sharply at the longest wavelengths towards
the reflectivity (Z) value. The relative similarity of the
TMI 1 band and Z (and the other bands with the
VIRS) is also supported by the fact that the outer
scale is in the 5000–7000 km range for the longer
wavelengths but is nearly 16 000 km – approaching
the reflectivity outer scale – in the TMI 1.

Actually, it is a bit embarrassing that at the
moment we cannot improve much on these admit-
tedly hand-waving arguments linking cloud liquid
water and radiances. This is indeed frustrating,
because work on the interesting statistical physics
problem of radiative transfer in fractal (Lovejoy
et al., 1990; Gabriel et al., 1990; Davis et al., 1990)
and in multifractal clouds (Davis et al., 1991; Lovejoy
et al., 1995; Borde and Isaka, 1996; Naud et al., 1996)
is hardly new – and as the simulations in this book
testify, can give highly realistic-looking cloud fields
(see especially Chapters 7 and 9, where the renditions
are made using single scatter radiative transfer and a
simple linear temperature model for the IR field in
Fig. 7.10e). There are also related interesting results
for the simpler and different problem of diffusive
transfer on multifracals (Meakin, 1987; Weissman
and Havlin, 1988; Marguerit et al., 1998; Lovejoy
et al., 1998). However, in an effort to understand the
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Fig. 4.10 Logs of normalized moments Mq versus log10l for 2
months (1440 images) of MTSAT, thermal IR, 30 km resolution over
the region 40� N to 30� S, 130� east–west over the western Pacific,
the average of east–west and north–south analyses. Lref ¼ 20 000 km
so that l ¼ 1 corresponds to 20 000 km, the lines cross at the
effective outer scale � 32 000 km (from Pinel et al., 2012) and C1 �
0.074 (close to the TRMM thermal IR results, Table 4.8a, VIRS 4, 5).
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basic science issues, the work to date has been largely
confined to isotropic conservative (H ¼ 0) multifrac-
tals, and to the bulk statistical characteristics such
as the mean transmission and albedoes (see however
Watson et al., 2009; Lovejoy et al., 2009c, for exten-
sions toH> 0; see Box 7.2). Before we can confidently
apply these results to real clouds, we must extend them
to stratified clouds (see Chapter 6), to clouds over
reflecting surfaces (themselves having scaling
statistics), and to an understanding of the statistical
relationship between the cloud and radiation fields.
These results promise to lead to more realistic cloud-
radiation parametrizations in GCMs, where at the
moment clouds are assumed to be plane parallel slabs.
Such work is also important in estimating the earth’s
energy budget, since the multifractal resolution
dependencies are currently not taken into account,
and this will surely lead to biases in the results.

4.5.2 Atmospheric boundary conditions:
the topography
Physically, the TRMM reflectivity signal comes purely
from the atmosphere, whereas the visible and infrared
radiances depend on the states of both the atmosphere
and the surface. Just as various surface features affect
the radiances, so they also directly effect the atmos-
phere; they are important lower boundary conditions.
Another important atmospheric boundary condition
is the topography; if it had a strong characteristic scale
then it could impose this on the atmospheric fields
and break the scaling. In Fig. 1.10b we showed the
spectral analysis of the largest statistical study of the
topography to date, demonstrating that it has accurate
spectral scaling (roughly E(k) � k�2.1) over a range of
105 in scale.

Fig. 4.11 shows the cascade structure of the topo-
graphic gradients obtained by combining the four
different datasets used in Fig. 1.10, spanning the range
20 000 km down to sub-metric scales. As for the
spectrum, the scaling holds quite well until around
40 m. Gagnon et al. (2006) argue that this break is due
to the presence of trees (for the high-resolution data-
set used over Germany, 40 m is roughly the horizontal
scale at which typical vertical fluctuations in the
topography are of the order of the height of a tree).
Over the range of planetary scales down to ~40 m, it
was estimated that the mean residue of the universal
scaling form with parameters C1 ¼ 0.12, a ¼ 1.79 (for
all moments q � 2) was � 45% over this range of

nearly 105 in scale (this error estimate was for the
“reduced” moments hjqi1=q, e.g. for q ¼ 2 root mean
square moments – i.e. the definition of the errors is a
little different than those used here (Eqn. (4.16)), so the
values are not directly comparable); themain difference
is that Eqn. (4.16) characterizes the errors in logs of the
moments whereas for the reduced moments the errors
were in the values themselves (hence they are larger).

4.6 Summary of emergent laws
in Chapter 4
The basic prediction of multiplicative cascade pro-
cesses is that there exists a (scale-by-scale) conservative
process (“flux”) j0 whose statistical moments change
with resolution (scale ratio l0 ¼ largest scale of cas-
cade/observation scale ¼ Leff/L) in a power-law way:

Mq ¼<j'ql>� l0
KðqÞ

ð4:20Þ

Testing this requires:

(a) Estimating a normalized flux j0. In the
scaling range, this can be done using
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Fig. 4.11 Log-log plot of the normalized trace moments Mq versus
the scale ratio l ¼ Lref/l (with Lref ¼ 20 000 km) for the three DEMs
(circles correspond to ETOPO5, X’s to the continental USA and
squares to Lower Saxony). The solid lines are there to distinguish
between each value of q (from top to bottom, q ¼ 2.18, 1.77, 1.44,
1.17, 0.04, 0.12 and 0.51). The trace moments of the Lower Saxony
DEM with trees for q ¼ 1.77 and q ¼ 2.18 are on the graph
(indicated by arrows). The theoretical lines are computed with the
global K(q) function. Figure reproduced from Gagnon et al. (2006).
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fluctuations Df, which are generally related to the
underlying flux ε via:

Df ¼ εZsDxHs ð4:21Þ

If, instead, the finest resolution of the data is in the
dissipation range, then we have similar relation
but with different exponents Zd, Hd. In both cases,
we can estimate normalized fluxes j0

Z as:

j
0

Z ¼
εZ

hεiZ
¼

Df

hDf i
ð4:22Þ

(we temporarily add the subscript Z to stress the
power with which it is related to the underlying
flux ε). For universal multifractals the fluxes j0

Z

have the same a but the C1’s vary as:
C1,Z ¼ ZaC1, 1. Comparing scaling-range and dis-
sipation-range cascades, we therefore have:

C1, d ¼
Zd

Zs

� �a

C1, s ð4:23Þ

(b)
Estimating the ensemble average of j0 using “trace
moments,” i.e. by (spatial, temporal) averaging the
flux over intermediate resolutions L (scale ratio l)
over disjoint “boxes” (intervals in 1D) and then

statistically averaging the qth power over all the
boxes (intervals) in all the available realizations of
the process (the entire sample).

(c) Empirically, the effective outer scale of the
process Leff is unknown and must be estimated
from the data. Therefore a convenient reference
scale Lref and reference scale ratio l ¼ Lref/L is
chosen.

(d) A plot of logMq versus logl is made using positive
order moments q not too large (in order to avoid
possible theoretical divergences for q < 0 or for
sample-size-limited estimates for large q). The
“signature” of multiplicative cascade is the
convergence of straight lines to a point l ¼ Lref/
Leff (corresponding to l0 ¼ 1). The slopes of the
lines determine K(q), the intercept, logLref/Leff.
And hence the effective outer scale of the cascade.

In this chapter, we applied this trace moment analysis
to the empirical verification and parameter estimation
of horizontal multiplicative cascades on various fields,
including (a) reanalyses: ERA40, ECMWF interim,
20CR; (b) meteorological models: GFS, GEM;
(c) aircraft data of T, u, h, logy; (d) lidar backscatter
data; (e) precipitation data; (f) satellite radiances
including the energy-significant visible and thermal
IR data; (g) the topography.
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Appendix 4A: Trace moments of

quasi-Gaussian processes

Classical stochastic processes based on adding rather
than multiplying random variables are nonintermit-
tent, with K(q)¼ 0, the prototypical example being the
“quasi-Gaussian” processes obtained by filtering
Gaussian white noises. In Chapter 8 we note that a
common model for the weather/macroweather transi-
tion is the Ornstein–Uhlenbeck (OU) process that
results from smoothing white noises by integration
down to frequency o0, yielding a Gaussian white noise
with spectrum E(o) � 1/(o2 þ o0

2). As discussed in
Appendix 10A, multivariate versions of this form the
basis of stochastic linear modelling approaches, which
are used for example in stochastic forecasting of sea
surface temperatures. For relevant empirical spectra,
see the SST spectra (Fig. 8.6d) or those of the first
principal component of the Pacific SST (called the
Pacific Decadal Oscillation, PDO: Fig. 10.8). These
show that while there is indeed a transition between
two scaling regimes, the exponents are not 0 and 2 as
required for OU processes.

Since K(q) ¼ 0, applying our analysis technique
should theoretically give constant trace moments –

indeed, for a large enough range of scales (small l
corresponding to integrating the flux over a wide
range of scales) logMq should asymptotically converge
to 0. However, if the scaling range of the data is not
very large (and this is often a problem with meteoro-
logical data at daily scales, since the outer cascade
scale is only of the order of 10 days: see Chapter 8),
then the convergence of the quasi-Gaussian process
may be slow enough that it might be hard to convin-
cingly distinguish a quasi-Gaussian process from a
scaling process with a short range of scaling.

Let us therefore apply our trace moment analysis
procedure (summarized in Section 4.6) to a quasi-
Gaussian process; this will be a useful point of com-
parison. In this example, we analyse an OU process,

treating it as an unknown data field. The first step is to
estimate the flux by taking the absolute second differ-
ences. Since the OU process is essentially a summed
Gaussian white noise, this “flux” will be a quasi-
Gaussian process (essentially independent of the tran-
sition frequency o0) and by the central limit theorem,
as we degrade the fluxes in order to estimate the
moments at lower and lower resolutions, we expect
rapid convergence to a flat (K(q) ¼ 0) regime. Finally,
since the flux is normalized by dividing by its ensemble
average, the overall result is a “universal” set of
moments valid for any quasi-Gaussian process (at least
with b < 4, the limit is due to the second differencing
used to estimate the flux). In Fig. 4A.1, we show these
“universal” moments up to order 2.9 obtained from
100 realizations of an OU process 213 points long with
o0¼ (128)–1 (grid points)–1. As expected, the result was
essentially identical to that of a pure Gaussian white
noise. The basic characteristics of the graph that will be
useful when comparing with the corresponding model
output analyses are (a) the maximum log10M � 0.46
(q¼ 2.9; the corresponding value for q¼ 2 is log10M�
0.20); (b) the outer scale� a factor of 10 larger than the
inner scale; (c) the curves start to deviate significantly
from the lines at scales larger than about 5 grid points;
(d) at scales of a factor of 100 grid points log10M is
already < 0.01; (e) the corresponding universal multi-
fractal parameters (estimated over the range 2–10 grid
points) are C1 � 0.082, a �1.79.

Consider an empirical trace moment logMq versus
logl graph with the largest analysis moment q¼ qmax.
Since theMq for q> 0 is an increasing function with q,
the logMq versus logl curve for qmax is an envelope
bounding all the empirical curves (for q < qmax). This
suggests a straightforward way to use the “universal”
quasi-Gaussian curve in Fig. 4A.1 to see how signifi-
cantly the data deviate from a quasi-Gaussian process.
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One need only superpose the envelope of the univer-
sal quasi-Gaussian trace moments on the data and
compare the corresponding envelopes. Numerous
examples of this are given in Chapters 8 and 10 (the
spatial analyses in this chapter have such wide ranges
of scaling that it is not necessary to make the
comparison).

Unfortunately, if the scaling range is of the order
of only a factor of 10, then it is hard to come to more
definite conclusions, although it isn’t easy – without
using cascades – to obtain large deviations from the
universal quasi-Gaussian curve. For example, we can
reproduce the OU process but rather than using
random variables with Gaussian distributions we
can use (extreme) stable Lévy random variables index
a (discussed in Section 5.4.1) with infinite variance
(i.e. a < 2). In this case, for those finite moments
(order q < a) it turns out that the trace moments are
not very strongly affected. For example, with a ¼ 1.8,
we obtain an outer scale of 20 pixels (rather than 10
for a Gaussian) and for q ¼ 1.7, log10M ¼ 0.29 rather
than log10M ¼ 0.13 for a Gaussian OU process (see
the thick lines in the figure). This indicates that not
only is strong variability at the smallest scales import-
ant, but also that strong statistical dependences are
necessary to produce moments and outer scales sig-
nificantly larger than 10–20 grid points.
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q = 1.7 
α = 1.8 

factor 10

q = 2.9 

Log10M
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Fig. 4A.1 The “universal” trace moments for quasi-Gaussian
processes obtained from 100 realizations of an OU process with o0

¼ (128)–1 (grid points)–1 using 100 realizations of process 213 points
long. This shows the convergence of the moments up to order 2.9
(at increments of 0.1) to the small l asymptote logM ¼ 1. Although
this is for an OU process, the result is essentially identical to that of a
pure Gaussian white noise (and to other quasi-Gaussian processes
with b < 4). The thick curves are for q ¼ 2, 2.9. The thin straight lines
correspond to C1 ¼ 0.082, a ¼ 1.79 and an outer scale of~10 pixels.
The thick black lines compare the log-log linear fit for moments
q ¼ 1.7 for quasi-Gaussian processes (bottom) and Lévy processes
(a ¼ 1.8, top; moments for q> a are infinite). Even though the
probability distribution is extreme, the outer scale only increases to
20 grid points and the nondimensional M for the q ¼ 1.7 moment at
the smallest scales is only about 50% larger. In order to obtain
significantly stronger variability, strong long-range statistical
dependencies are needed.
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Chapter

5
Cascades, dimensions and codimensions

5.1 Multifractals and the
codimension function

5.1.1 Probabilities and codimensions
We have given evidence that the atmosphere is scaling
over wide ranges of scale (Chapter 1), we have argued
that the dynamics are also scaling (Chapter 2) and
lead to multiplicative cascades (Chapter 3), and finally
we have given empirical support for this (Chapter 4).
Throughout, our approach has been to provide the
minimal theoretical framework necessary for under-
standing the most straightforward data analyses
(e.g. the trace moments method, hϕ

q
li). We men-

tioned that specification of all of the statistical
moments is generally a complete statistical character-
ization of the process and hence this was equivalent to
their specification in terms of probabilities. However,
we did not go further to specify the exact relation; the
moment characterization was convenient and
adequate for our purposes. We now turn to the com-
plete formalism needed to understand the probability
structure of the cascades. In this chapter, we thus
continue to study the properties of cascades, this time
emphasizing their probability distributions and their
exponents, the codimensions.

5.1.2 Revisiting the βmodel
We have already described the monofractal stochastic
βmodel in Chapter 3. It is said to be “monofractal” or
“unifractal” because it can be defined with the help of
a unique codimension; let us examine its probability
structure as the cascade develops. Recall fromChapter 3
that it has one parameter c > 0 and that two states
specify the statistics of the multipliers me:

Prðme ¼ lc0Þ ¼ l�c
0 ðaliveÞ

Prðme ¼ 0Þ ¼ 1� l�c
0 ðdeadÞ

ð5:1Þ

where l0 is the single step (integer) scale ratio. Recall
that the magnitude of the boost me ¼ lc0 > 1 is

chosen so that at each cascade step the ensemble
averaged e is conserved:

hmei ¼ 1 , heni ¼ he0i ð5:2Þ

Indeed, at each step in the cascade the fraction of the
alive eddies decreases by the factor b ¼ l�c

0 (hence
the name “β model”) and conversely their energy
flux density is increased by the factor 1 / β to assure
(average) conservation. Rather than follow Chapter 3
and consider how the moments change with scale, let
us now consider how the probabilities evolve as we
increase the number of cascade steps. After n steps,
the effect of the single-step dichotomy of “dead” or
“alive” is amplified by the total (n step) scale ratio
l ¼ l0

n:

Pr
�

en ¼ ðln0Þ
c ¼ lc

	

¼ ðln0Þ
�c ¼ l�c ðalive

	

Prðen ¼ 0Þ ¼ 1� ðln0Þ
c¼ 1�l�c ðdeadÞ

ð5:3Þ

Hence the density either diverges en with an (alge-
braic) order of singularity c, but with an (algebraic-
ally) decreasing probability, or is “calmed” down to
zero.

Following the discussion (and definitions) given
in Section 3.2, c is the codimension of the alive eddies,
and hence their corresponding dimension D is:

D ¼ d � c ð5:4Þ

(d is the dimension of the embedding space, equal to 2
in Figs. 3.4 and 3.9). D is the dimension of the “sup-
port” of turbulence, corresponding to the fact that
after n steps the average number of alive eddies in
the β model is

hNni ¼ ld Prðel ¼ lcÞ ¼ ld�c ð5:5Þ

5.1.3 Revisiting the amodel
In Chapter 3, we introduced the amodel, which more
realistically allows eddies to be either “more active”
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or “less active” according to the following binomial
process:

Prðme ¼ l
gþ
0 Þ ¼ l�c

0 ð> 1 ) INCREASEÞ

Prðme ¼ l
g�
0 Þ ¼ 1� l�c

0 ð< 1 ) DECREASEÞ

ð5:6Þ

where gþ, g– correspond to boosts and decreases
respectively, the β model being the special case where
g� ¼ �1 and gþ ¼ c – due to conservation <me> ¼
1, there are only two free parameters, Eqn. (3.6):

l
gþ�c
0 þ l

g�
0 ð1� l�c

0 Þ ¼ 1 ð5:7Þ

Taking g� > �1, the pure orders of singularity g�
and gþ lead to the appearance of mixed orders of
singularity, of different orders g (g�� g � gþ). These
are built up step by step through a complex succes-
sion of g� and gþ values as illustrated in Fig. 3.7b.

What is the behaviour as the number of cascade
steps, n ! 1? Consider two steps of the process: the
various probabilities and random factors are:

Prðme ¼ l
2gþ
0 Þ ¼ l�2c

0 ðtwo boostsÞ

Prðme ¼ l
gþþg�
0 Þ ¼ 2l�c

0 ð1� l�c
0 Þ

ðone boost and one decreaseÞ

Prðme ¼ l
2g�
0 Þ ¼ ð1� l�c

0 Þ2 ðtwo decreasesÞ

ð5:8Þ

This process has the same probability and
amplification factors as a new three-state a model
with a new scale ratio of l0

2 defined as:

Prðme ¼ ðl20Þ
gþÞ ¼ ðl20Þ

�c ðone largeÞ

Prðme ¼ ðl20Þ
ðgþþg�Þ=2Þ ¼ 2ðl20Þ

�c=2 � 2ðl20Þ
�c

ðintermediateÞ

Prðme ¼ ðl20Þ
g�Þ ¼ 1� 2ðl20Þ

�c=2 þ ðl20Þ
�c

ðlarge decreaseÞ

ð5:9Þ

Iterating this procedure, after n ¼ nþ þ n
–
steps we

find:

gnþ, n� ¼
nþgþ þ n�g�

nþ þ n�
, nþ ¼ 1, . . ., n

Pr
�

me¼ðln0Þ
gnþ, n�

	

¼
�

n
nþ

	

ðln0Þ
�cnþ=n

�

1�ðln0Þ
�c=n
	n�

ð5:10Þ

where
�

n
nþ

	

is the number of combinations of n

objects taken nþ at a time. The Stirling formula enables
us to explicitly compute forN!1, r¼ nþ/n fixed the
asymptotic codimensions Cij that define the probabil-
ity distribution (Schertzer and Lovejoy, 2011):

Pr
�

eln0 � ðln0Þ
gi
	

¼
X

j

pi, j
�

ln0
��ci, j ð5:11Þ

The pij’s are the “submultiplicities” (the prefactors
in the above) and ln0 is the total ratio of scales from
the outer scale to the smallest scale. Notice that the
requirement that hmei ¼ 1 implies that some of the lgi

are > 1 (boosts) and some are < 1 (decreases), that is,
some gi > 0 and some gi < 0. Note also that the a

model has bounded singularities:

g� � g � gþ ð5:12Þ

so that the important maximum attainable singularity
gmax is equal to gþ. The final step in “renormalizing”
the cascade is to replace the above n-step, 2-state
cascade with ratio l0 by a single-step cascade with
ratio l ¼ ln0 and with n þ 1 states. Note that we are
not saying that there is absolutely no difference
between the n-state a model with ratio l and the
corresponding (n þ 1)-state model with l ¼ ln0 : their
properties will however be identical for integer
powers of l. Finally, doing this and making the
replacement ln0 ! l, and taking the limit l ! 1,
one of the terms in the sum (Eqn. (5.11)) will domin-
ate (that with the smallest cij). Hence defining:

ci ¼ min½cij
 ¼ cðgiÞ ð5:13Þ

yields for l ! 1:

Prðel � lgiÞ ¼ pil
�ci ð5:14Þ

where ci is the codimension and pi is the correspond-
ing multiplicity. If we now drop the subscripts “i”
(this allows for the possibility of a continuum of
states, e.g., the original process being defined by a
uniform or other continuous distribution) then we
obtain:

Prðel � lgÞ ¼ pðgÞl�cðgÞ;
dc

dg
> 0 ð5:15Þ

This is a basic multifractal probability relation for cas-
cades. We now simplify this using the ~ sign, which
absorbs the multiplicative (pi) as well as taking into
account the logarithmic number of terms in the sum
(which can lead to logarithmic prefactors corresponding
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to “subcodimensions”). With this understanding about
the equality sign, we may thus write:

Prðel � lgÞ 	 l�cðgÞ ð5:16Þ

Each value of el corresponds to a singularity of order
g and codimension c(g) (Fig. 5.1). Note that since the
smallest scale ¼ l�1, strictly speaking the expression
“singularity” applies to g > 0 (el ! 1 for l ! 1),
when g < 0 it is rather a “regularity.” Note that
Eqns. (5.11), (5.14)–(5.16) consider probability distri-
butions of events above a given (scaling) threshold;
therefore we consider “exceedance probability
distributions” Pr(el� lg) rather than the standard
“cumulative probability distribution function” CDF ¼
Pr(el < lg). However, both are obviously related by
Pr(el� lg) ¼ 1 – CDF. Here and throughout,
this book will always use the term “probability
distribution” in the sense of exceedance probability
distribution, and therefore for events above a given
(scaling) threshold.

5.2 The codimension multifractal
formalism

5.2.1 Codimension of singularities c(g)
and its relation to K(q)
In this section we continue our discussion of multi-
fractal fields in terms of singularities, but also relate
this to its dual representation in terms of statistical

moments, which we already discussed in Chapter 3.
Contrary to the popular dimension f(a) formalism,
which was developed for (low-dimensional) deter-
ministic chaos (see Box 5.5), we develop a
codimension formalism necessary for stochastic pro-
cesses; it is therefore more general than the dimension
formalism.

The measure of the fraction (at resolution l with
corresponding scale L ¼ L / l) of the probability
space with singularities higher than g is given by the
probability distribution (Eqn. (5.16)). The previous
section underlines this new feature; the exponent c
(g) is a function, not a unique value. Rather than
dealing with just a scaling geometric set of points,
we are dealing with a scaling function (in the limit l
! 1, the density of a measure); from this function
we can define an infinite number of sets, e.g. one for
each order of singularity g (Fig. 5.1).

We now derive the basic connection between
c(g) and the moment scaling exponent K(q). To
relate the two, write the expression for the moments
in terms of the probability density of the
singularities:

pðgÞ¼
dPr

dg
¼ c0ðgÞðloglÞl�cðgÞ 	 l�cðgÞ ð5:17Þ

(where we have absorbed the c0(g)logl factor into the
“	” symbol since it is slowly varying, subexponential).
This yields:

�

e
q
l



¼

ð

dPrðelÞe
q
l 	

ð

dgl�cðgÞlqg ð5:18Þ

where we have used el ¼ lg (this is just a change of
variables el for g; l is a fixed parameter).

Hence:

he
q
l



¼ lKðqÞ ¼ eKðqÞlog l 	

ð1

�1

dgexf ðgÞ;

x ¼ log l; f ðgÞ ¼ qg� cðgÞ; l>> 1 ð5:19Þ

We see that our problem is to obtain an asymptotic
expansion of an integral with integrand of the form
exp(x f(g)) where x ¼ logl is a large parameter and
f(g) ¼ qg – c(g). These expansions can be conveni-
ently performed using the mathematical technique of
“steepest descents” (e.g. Bleistein and Handelsman,
1986) which shows that the dominant term in the
expansion for the integral is exp½xmax

g
ðf ðgÞÞ
 (i.e. the

integral is dominated by the singularity g which yields

el

lg
2

lg
1

l–1

X

Fig. 5.1 A schematic illustration of a multifractal field analyzed over
a scale ratio λ, with two scaling thresholds λγ1 and. λ

γ
2,

corresponding to two orders of singularity: γ2 > γ1. Reproduced
from Schertzer and Lovejoy (1993).
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the maximum value of the exponent) so that as long
as x ¼ log l>>1:

KðqÞ¼max
g

�

qg� cðgÞ
	

ð5:20Þ

This relation between K(q) and c(g) is called a
“Legendre transform” (Parisi and Frisch, 1985); see
Fig. 5.2. We can also invert the relation to obtain c(g)
from K(q); just as the inverse Laplace transform used
to obtain K(q) from c(g) is another Laplace transform,
so the inverse Legendre transform is just another
Legendre transform. To show this, consider the
twice-iterated Legendre transform F(q) of K(q):

FðqÞ ¼ maxgfqg� ðmaxq0fq
0g� Kðq0ÞgÞg

¼ maxg;q0fgðq� q0Þ þ Kðq0Þg ð5:21Þ

Taking @F/@g ¼ 0 ) q ¼ q0, we see that F(q) ¼ K(q).
This shows that a Legendre transform is equal to its
inverse, and hence we conclude:

cðgÞ ¼ max
q

�

qg� KðqÞ
	

ð5:22Þ

The gwhich for a given qmaximizes qg – c(g) is gq and is
the solution of c0(gq)¼ q (Fig. 5.2). Similarly, the value of
q which for a given gmaximizes qg – K(q) is qg so that:

c0ðgqÞ ¼ q
K 0ðqgÞ ¼ g

ð5:23Þ

This is a one-to-one correspondence between moments
and orders of singularities (Figs. 5.2 and 5.3). Note
that if g is bounded by gmax (for example in
microcanonical cascades, g � d, Chapter 3, or for the
a model, g � gþ) there is a qmax ¼ c0(gmax) such that
for q > qmax, K(q)¼ qgmax – c(gmax), i.e. K(q) becomes
linear in q (Fig. 5.4).

5.2.2 Properties of codimension functions
We have seen that for each singularity order g, c(g) is
the statistical scaling exponent characterizing how
its probability changes with scale. The first obvious
property is that due to its very definition (Eqn. (5.16))
c(g) is an increasing function of g: c0(g) > 0. Another
fundamental property which follows directly from the

slope q

K(q)

c(γ)

c(γ)

γq

γ

Fig. 5.2 c(γ) versus γ showing the tangent line c0(γq) ¼ q with
the corresponding chord γq. Note that the equation is the same
as γq ¼ K0(q). Reproduced from Schertzer and Lovejoy (1993).

K(q)
K(q)

slope γ

q

c(γ)

qγ

Fig. 5.3 K(q) versus q showing the tangent line K0(qγ) ¼ γ with the
corresponding chord γq. Reproduced from Tessier et al. (1993).

qg q > c�(gmax)

K(q ) = qgmax –c (gmax)

c�(gmax) = qmax

gmax

c (g)

c (g)

g

Fig. 5.4 Using the Legendre transformation to derive K(q) when
the maximum order of singularity present is γmax; the corresponding
moment is qmax ¼ c0(γmax). When q > qmax the Legendre transform
will have a maximum value for γ ¼ γmax as shown, which implies
that K(q) is linear for q > qmax. Adapted from Schertzer and Lovejoy
(1993).
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Legendre relation with K(q) is that c(g) must be
convex: c’’(g) > 0.

Many properties of the codimension function can be
illustrated graphically. For example, consider the mean,
q ¼ 1. First, applying Eqn. (5.23) we find c0(g1) ¼ 1,
K0(1) ¼ g1, where g1 is the singularity giving the
dominant contribution to the mean (the q ¼ 1
moment). In Chapter 3 we have already defined
C1 ¼ K0(1), so this implies C1 ¼ g1; the Legendre
relation thus justifies the name “codimension of the
mean” for C1. Also at q ¼ 1 we have K(1) ¼ 0 (due to
the scale-by-scale conservation of the flux) so that
from Eqn. (5.22) C1 ¼ c(C1), as indicated in Fig. 5.5
(this is a fixed point relation). C1 is thus simultaneously
the codimension of the mean of the process and the
order of singularity giving the dominant contribution to
the mean. Finally, applying c0(gq) ¼ q (Eqn. (5.23)), we
obtain c0(C1)¼ 1 so that the curve c(g) is also tangent to
the line x ¼ y (the bisectrix). If the process is observed
on a space of dimension d, it must satisfy d � C1,
otherwise, following the above, the mean will be so
sparse that the process will (almost certainly) be zero
everywhere; it will be “degenerate.” We will see that
when C1 > d the ensemble mean of the spatial averages
(the dressed means) cannot converge.

To understand H, take ensemble averages of Eqn.
4.4. We see that <Dfl> ¼ <e>DxH � l�H where we
have taken <e> ¼ constant and Dx � l�1. H thus
determines the deviation from scale-by-scale conserva-
tion of <Dfl>; it is the basic fluctuation exponent. At
the level of random variables, writing el¼ lgwe have
Dfl ¼ lg�H so that Dfl has the statistics of a bare
cascade process with a translation of singularities by –H

(Fig. 5.6). This generalizes the Kolmogorov relation
( f ¼ v, H ¼ 1/3), although we shall see that such
simple change of cascade normalization (g ! g – H)
is a poor model of the observable f fields, which are
best modelled by fractional integration of order H
(see Section 5.4). Finally, since c(g) is convex with
fixed point C1, it is possible (Fig. 5.7) to define
the degree of multifractality (a) by the (local) rate
of change of slope at C1 (the singularity correspond-
ing to the mean); its radius of curvature Rc(C1) is
(Schertzer and Lovejoy, 1992):

RcðC1Þ ¼

�

1þ c0ðC1Þ
	3=2

c
00ðC1Þ

ð5:24Þ

C1
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–H C1–H

Extreme
events

Rare
events

c(γ)

γ

Fig. 5.6 A schematic illustration showing the shift in c(γ) of H for
nonconserved processes. Reproduced from Schertzer and Lovejoy
(1993).
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Fig. 5.5 The special properties of the singularity of the mean, C1.
Reproduced from Schertzer and Lovejoy (1993).
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Fig. 5.7 A schematic illustration showing how the c(γ) curve can
be locally characterized near the mean singularity C1. Reproduced
from Schertzer and Lovejoy (1993).
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Using the general relation c0(C1) ¼ 1 we obtain
Rc(C1) ¼ 23/2 / c00(C1), and hence we can locally
(near the mean g ¼ C1) define a curvature para-
meter a from either of the equivalent relations:

a ¼
23=2RcðC1Þ

C1
¼

1

C1c
00ðC1Þ

ð5:25Þ

These local (q ¼ 1, g ¼ C1) definitions of a are
equivalent to the definition via moments a ¼ K00(1)/
K0(1) (Chapter 3). For the universal multifractals
(Chapter 3), this becomes global (i.e. is sufficient to
describe the entire c(g) function), and we find an
upper bound (maximum degree of multifractality)
a ¼ 2 (a parabola, Eqn. (3.49)). The a ¼ 0 case is
the monofractal extreme β model whose singularities
all have the same fractal dimension.

5.2.3 The sampling dimension, sampling
singularity and second-order multifractal
phase transitions
The statistical properties we have discussed up until
now are valid for (infinite) statistical ensembles.
However, real-world data are always finite so that
sufficiently rare events will always be missed. In order
to understand the effect of finite sample sizes, con-
sider a collection of Ns samples, each d-dimensional
and spanning a range of scales l ¼ L/l (¼ largest/
smallest) so that for example there are ld pixels from
each sample (Fig. 5.8), and introduce the “sampling
dimension” Ds:

Ds ¼
logNs

logl
ð5:26Þ

as well as the singularity gs corresponding to the
largest (and rarest) value el,s, the “sampling
singularity”:

gs ¼
logel, s
logl

ð5:27Þ

The relation between Ns and el,s is thus equivalent
to the relation between their base l logarithms, i.e.
between Ds and gs (Eqns. (5.26), (5.27)).

In order to relate gs and Ds, consider a collection
of satellite images (d ¼ 2). Our question is thus: What
is the rarest event with the most extreme gs that we
may expect to see on a single picture? On a large
enough collection of pictures? The answer to these

questions is straightforward: there is a total of ldþDs

pixels in the sample, so the rarest event has a prob-
ability � l�(dþDs) (Fig. 5.9). However, the probability
of finding gs is simply l�c(gs), so we obtain the
following implicit equation for gs:

Independent

Realizations

Probability

Space

Physical

Space

Physical

Space

A

NS ~ λDS

Fig. 5.8 Illustration showing how in random processes the
effective dimension of space can be augmented by considering
many independent realizations Ns. As Ns ! 1, the entire (infinite-
dimensional) probability space is explored. When the process is
observed on a low-dimensional cut of dimension d (such as the
d ¼ 2-dimensional sketch illustrated by a single rectangle) then we
have Ns ¼ 1, hence Ds ¼ 0. As long as d > c(γ), we may introduce
the (positive) dimension function D(γ) ¼ d – c(γ), which is then the
geometrical dimension of the set with singularities γ. However,
structures with γ > γs (D(γ)< 0) will be too sparse to be observed
(they will almost certainly not be present on a given realization/
picture). In order to observe them we must increase the number of
samples Ns or equivalently the sampling dimension Ds to reach γ.
Reproduced from Schertzer and Lovejoy (1993).
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Fig. 5.9 Schematic illustration of sampling dimension and how it
imposes a maximum order of singularities γs. Reproduced from
Tessier (1993).
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cðgsÞ ¼ d þ Ds ¼ Ds ð5:28Þ

Ds ¼ d þ Ds is the corresponding (overall) effective
dimension of our sample. More extreme singularities
would have codimensions greater than this effective
dimension c > Ds and are almost certainly not present
in our sample.

As an example, we can use the aircraft data shown
in Fig. 3.1 to estimate the largest singularity that we
should expect over a single transect 213 points long.
We saw that the largest normalized flux value was �
26.5, which corresponds to an order of singularity of
gs ¼ loge/logl ¼ log(26.5)/log(213) ¼ 0.364. Using
the estimated multifractal parameters a ¼ 1.8, C1¼
0.06 (these are mean C1, a values for 24 flight legs
1120 km long), we find that in a d ¼ 1 section the
solution of c(gs) ¼ 1.364 is gs ¼ 0.396, which is very
close to the observed maximum.

Let us now calculate the moment exponent Ks(q)
for a process with Ns realizations. To do this, we
calculate the Legendre transform of c(g) but with the
restriction g � gs; this is the same type of restriction
as discussed earlier (Fig. 5.4, take gmax ¼ gs):

KsðqÞ ¼ gsðq� qsÞ þ Kðqs), q � qs
KsðqÞ ¼ KðqÞ; q � qs ð5:29Þ

hence at q ¼ qs there is a jump/discontinuity in the
second derivative of K:

DKs
00 ¼ �K 00ðqsÞ ð5:30Þ

Because of the existence of formal analogies between
multifractal processes and classical thermodynamics,
this is termed a “second-order multifractal phase
transition” (Szépfalusy et al., 1987; Schertzer and
Lovejoy, 1992; Box 5.1).

5.2.4 Direct empirical estimation of c(g):
the probability distribution multiple scaling
(PDMS) technique
In Chapter 3, we saw how to empirically verify the
cascade structure and characterize the statistics using
the moments, and how to determine their scaling
exponent, K(q). In this chapter, we have seen how –

via a Legendre transform of K(q) – this information
can be used to estimate c(g). However, it is of interest
to be able to estimate c(g) directly. To do this, we start
from the fundamental defining Eqn. (5.16), take logs
of both sides and rewrite it as follows:

Log Prlðel > lgÞ ¼ �cðgÞ LogðlÞ þ oð1=LogðlÞÞOðgÞ

ð5:31Þ

o(1/Log(l))O(g) corresponds to the logarithm of the
slowly varying factors that are hidden in the 	 sign
in Eqn. (5.16) and the subscript l on the probability
has been added to underline the resolution depen-
dence of the cumulative histograms. For each order
of singularity g, this equation expresses the linearity
of log probability with the log of the resolution.
The singularity itself must be estimated from the
fluxes by:

g ¼
logðelÞ

logl
ð5:32Þ

We now see that things are a little less straight-
forward than when estimating K(q). First, the
term o(1/Log(l))O(g) may not be so negligible,
in particular for moderate l’s, so that using the
simple approximation c(g)� � log Prl/log l may
not be sufficiently accurate. Second, in Eqn. (5.32),
we assumed that el is normalized such that
<el> ¼ 1; if it is not, it can be normalized by
dividing by the ensemble mean: el ! el/<el>.
However, from small samples, there may be factors
of the order 2 in uncertainty over the mean so that
even the estimate of g may involve some uncer-
tainty. In comparison, if one wants to estimate
K(q), one needn’t worry about either of these issues
since (even for the un-normalized el) the linear
relation logheqli ¼ KðqÞlog l is exact (at least in the
framework of the pure multiplicative cascades): K(q)
is simply the slope of the logheqli versus logl graph
(and if the normalization is accurate, the outer scale
itself can be estimated from the points where the lines
cross: see the examples in Chapter 4). The relative
simplicity of the moment method explains why in
practice it is the most commonly used. c(g) can then
be estimated from K(q) by Legendre transform (either
numerically or using a universal multifractal
parametrization).

In order to exploit Eqns. (5.31) and (5.32) to dir-
ectly estimate c(g), we may thus calculate a series of
histograms Prl of the lower- and lower-resolution
fluxes (obtained from el by the usual degrading/
“coarse-graining”/averaging) and use the transform-
ation of variables in Eqn. (5.32) to write the histograms
in terms of g rather than el. There are then two
variants on this “probability distribution multiple
scale” (PDMS) method (Lavallée et al., 1991). The first
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Fig. 5.10 (a) c(γ) estimated from the
PDMS method, c(γ) � –logPr/logλ
(described in the text), shown for
resolution degraded by factors of 2 from
280 m to ~36 km (longest to shortest
curves). The figure shows aircraft altitude,
pressure (upper left, right), longitudinal
and transverse wind speed (lower left,
right) for 24 flight legs, each 4000 points
long, 280 m resolution (i.e. 1120 km). For
reference, lines of slope 3 (top row) and 5
(bottom row) are given corresponding to
power-law probability distributions with
the given exponents. Since the bisectrix
touches the curve at the point (C1, C1),
we can see graphically that C1’s are
typically � 0.1 (see Chapter 4 for more
precise estimates). (b) Same as Fig. 5.10a
except for the thermodynamic variables
temperature, potential temperature
(upper left, right), humidity and equivalent
potential temperature (lower left and
right). The reference lines all have slopes
of 5. (c) c(γ) estimated from hourly rain
gauge data at Nîme, France, from
1972–1975 with the resolution degraded
by factors of 2–32 hours. The reference
line (added) has slope 3. Adapted from
Schertzer et al. (2010).
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and simplest is to ignore the typically small “slow”
term in Eqn. (5.31) and simply use c(g) � � log Prl/
logl; the second performs (for each of a series of
standard g values) regressions of logPrl versus logl
and then estimates c(g) as the (negative) slope.

In Figs. 5.10a and 5.10b we show some examples
of the first method when applied to the aircraft data
discussed in Chapter 3: 24 legs, each of 4000 points,
were used with a resolution of 280 m (i.e. a total of
24 � 4000 ¼ 9.6 � 104 data points for each field),
and the absolute differences at 280 m resolution were
analyzed. In Chapter 3 we already considered the
temperature flux and showed graphically that the
transformation from el’s into g’s did indeed result
in an apparently stable dynamical range of the g’s
(in comparison, the range of the degraded el’s
kept diminishing as l decreased: Figs. 3.2a, 3.2b).
Figs. 5.10a and 5.10b simply show the logl-
normalized log probability of the histograms at each
resolution. The resolution was degraded systematic-
ally by factors of 2; only the first seven iterations
(i.e. a degradation of resolution factor of 128,
corresponding to � 36 km) are shown (the corres-
ponding moments are shown in Figs. 4.6a and 4.6b).
From the relatively tight bunching of the curves, we
see that the method is reasonably successful: we have
effectively removed almost all of the scale depend-
ency from the histograms. Although the curves tend
to diverge somewhat at large (and rare) values of g
(where the sample size starts to be inadequate), the
basic c(g) shape is discernible. To be a bit more
quantitative, we can use the estimate of the sampling
dimension Ds ¼ logNs/logl ¼ log24/log4000 � 0.38
to determine that the estimates are reliable only up
to c ¼ d þ Ds ¼ 1.38. Also shown in the figures are
straight reference lines, since we shall see in the
next section that one generally expects high-order
moments to diverge, implying asymptotically linear
c(g)’s. Along with both the transverse and longitu-
dinal wind components and the thermodynamic
fields, we have also included the essentially aircraft
measurement/trajectory-specific fields z, p: the
fluxes derived from aircraft altitude and pressure
(recall we used absolute differences). These both
show extreme tails (compare the reference slopes
� 3), and this in spite of the autopilot attempting
to enforce an isobaric trajectory! In fact, as discussed
in Chapter 6, it seems that due to the aircraft
response to wind turbulence the trajectories only
begin to be effectively isobaric for scales around

40 km and greater (i.e. just the resolution of the
curves is shown in the figures).

Finally, in Fig. 5.10c, we show a similar analysis of
hourly raingauge data from Nîme, France (1972–
1975, ~35 000 points). Again we see a good collapse
to a unique c(g), and this time there is evidence for an
asymptotic linear behaviour with slope qD � 3 (see
Section 5.3.3).

5.2.5 Codimensions of universal
multifractals, cascades
When discussing the moment characterization of the
cascades, we have already noted that the two parameters
C1, a are of fundamental significance. C1 characterizes
the order and codimension of the mean singularities of
the corresponding conservative flux, it is the local trend
of the normalizedK(q) near themean;K(q)¼ C1 (q – 1)
is the best monofractal “β-model approximation near
the mean” (q � 1). Finally, a ¼ K00(1)/K0(1) charac-
terizes the curvature near the mean. The curvature
parameter a can also be defined directly from the
probability exponent c(g) by using the local radius of
curvature Rc(C1) of c(g) at the point g ¼ C1, i.e. the
corresponding singularity (Eqn. (5.25)). Finally, for the
observed field f, there is a third exponent H which
characterizes the deviation from conservation
of themean fluctuation<Df>�<e>DxH� DxH; since
<e> ¼ constant, it is a “fluctuation” exponent.
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Fig. 5.11 Universal c(γ) vs γ, for different α ¼ 0 to 2 by increment
Dα ¼ 0.2. Adapted from Schertzer and Lovejoy (1989).
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In Chapter 3 we discussed how the universal
attractors of additive processes can be used to deduce
those of the multiplicative processes by studying their
“generators”, Gl ¼ log el. Since multiplying fields el
is equivalent to adding generators Gl (for a fixed scale
ratio l), the generators which are stable and attractive
under addition are the Lévy generators discussed in
Chapter 3 and to which we return in Section 5.4. The
moment exponent K(q) (see Eqn. (3.49)) is given by:

KðqÞ ¼
C1

a� 1
ðqa � qÞ; a 6¼ 1 ð5:33Þ

KðqÞ ¼ C1qLogðqÞ; a ¼ 1 ð5:34Þ

The top formula is valid for 0 � a � 2; however, as
discussed in Section 5.4, K diverges for all q < 0 except
in the special (“lognormal”) case a ¼ 2. To obtain the
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Fig. 5.12 (a) Multifractal simulations
C1 ¼ 0.1 and α ¼ 0.3, 0.5, . . . 1.9 from
bottom to top, offset for clarity (same
random seed). Adapted from Lovejoy and
Schertzer (2010a). (b) Eleven independent
realizations of α ¼ 0.2, C1 ¼ 0.1, indicating
the huge realization-to-realization
variability: the bottom realization is not
an outlier!
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corresponding c(g), one can simply take the Legendre
transformation (Eqn. (5.22)) to obtain:

cðgÞ ¼ C1
g

C1a0
þ

1

a

0

@

1

A

a0

; a 6¼ 1; 1=a0 þ 1=a ¼ 1

ð5:35Þ

cðgÞ ¼ C1e

g

C1
� 1

0

@

1

A

; a ¼ 1

wherea0 is the auxiliaryvariabledefinedabove (Schertzer
and Lovejoy, 1987), used to simplify the formula.
Figs. 3.15 and 5.11 show respectively the universal
K(q)/C1 and c(g) /C1 curves. Note that since a0 changes
sign at a ¼ 1, for a< 1 there is a maximum order of
singularity gmax ¼ C1/(1 – a) so that the cascade singu-
larities are “bounded,”whereas for a> 1 there is on the
contrary a minimum order gmin ¼ –C1/(a – 1) below
which the prefactors in Eqn. (5.16) dominate (c(g) ¼ 0
for g< gmin) but the singularities are unbounded above.

If we take H ¼ 0 (for simplicity) and use
Eqn. (5.35) to express the exceedance probability distri-
bution of e, using g ¼ logel/logl, we find
for el >> lC1=ða�1Þ that Prðel0 � elÞ ∽ pðelÞ �
exp
�

� ðlog el=KÞ
a0
	

with constant K ¼ a0(C1log

l)1/a; this is a “stretched exponential” distribution
(also known as a “Weibull” distribution) for the
logarithm of e� We stress this because eclectic

semi-empirical approaches to scaling in turbulence,
climate and elsewhere have claimed the existence of
the multiscaling of the moments (hel

qi � lK(q))
while simultaneously that the distribution for el
(not for logel) is a stretched exponential. Since, over
limited ranges of el, it may be difficult to empirically
distinguish the two behaviours (i.e. stretched expo-
nential for el or for logel), theoretical consistency
(and clarity!) is particularly important.

Figs. 5.12a, 5.12b and 5.12c show one-dimensional
realizations using the continuous cascades described
in Section 5.4. In Fig 5.12a, we fix C1 ¼ 0.1 (a typical
value for atmospheric fields: Table 4.8) and we
demonstrate the effect of increasing a with the same
random seed so that the change in the structures with
a is apparent. For low a, the series are dominated by
“holes” of very low values, while for high a (near the
maximum, a ¼ 2), it is rather the large singularities
that dominate. Fig. 5.13 shows two-dimensional real-
izations with the same “Lévy hole” phenomenology. In
Figs. 5.12b and 5.12c we show the huge realization-to-
realization variability by showing 10 realizations with
different seeds for a ¼ 0.2, 1.9 respectively. Note that
due to severe numerical underflow problems, it is
difficult to make simulations with a less than 0.2.

Before leaving the topic of universal multifractals,
we should mention another, weak form of universality
that was proposed by Dubrulle (1994) and She and
Leveque (1994): “log-Poisson” cascades. Recall that
starting with 2-state binomial processes, one can take
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Fig. 5.12 (c) Ten independent
realizations of α ¼ 1.9, C1 ¼ 0.1. Again,
notice the large realization-to-realization
variability.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.13 Isotropic realizations in two dimensions with α¼ 0.4, 1.2, 2 (top to bottom) and C1 ¼ 0.05, 0.15 (left to right). The random seed is the
same so as to make clear the change in structures as the parameters are changed. The low α simulations are dominated by frequent very
low values, the “Lévy holes”. The vertical scales are not the same. Reproduced from Lovejoy and Schertzer (2010a). See colour plate section.
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limits that lead either to Gaussian or to Poisson
processes. The corresponding binomial cascade is the
a model, and in Schertzer et al. (1991) it was shown
how to obtain as a limiting case, the a ¼ 2 (“log-
Gaussian”) universal cascade. By taking a different
limit of the a model, one obtains “log-Poisson” cas-
cades which have the following form:

gþ ¼ cð1� l
�g�
0 Þ

KðqÞ ¼ qgþ � c þ 1�
gþ
c

� 	q

c

cðgÞ ¼ c 1�
gþ � g

cg�
1� log

gþ � g

cg�

0

@

1

A

0

@

1

A; g � gþ

cðgÞ ¼ 1; g > gþ

ð5:36Þ

where l0 > 1 is the cascade ratio for a single step,
c > 0, gþ > 0, and the relation between gþ and g–
(top line) is from the conservation requirement of the
a model (Eqn. (5.7); see Schertzer et al., 1995).
Clearly, gþ is the highest-order singularity and c is
the corresponding codimension, so the log-Poisson
cascade has intrinsically a maximum singularity that
it can produce. The log-Poisson cascade shares with
the Lévy generator universal multifractals the possi-
bility of “densifying” the cascade – i.e. it can be made
continuous in scale (“infinitely divisible”; Section 5.4,
take the limit l0 ! 1), so that it could be said to have
“weak” universality properties. However, the Lévy
generator cascades could be termed “strongly” uni-
versal, since the generator is stable and attractive as
well.

The limitations of the log-Poisson cascade can be
seen as soon as one considers applications. For
example, in hydrodynamic turbulence, She and Leve-
que (1994) assumed non fractal, d ¼ 1 filament-like
structures for the highest-order singularity along with
homogeneous eddy turnover times, which leads to the
parameter choice c¼ 2,gþ¼ 2/3 (implying l1

g� ¼ 3/2).
In magneto-hydrodynamic turbulence one can argue
that extreme events occur on current sheets and select
c ¼ 1, gþ ¼ 1/2 (Grauer et al., 1994). In both cases, the
use of a model with maximum order of singularity
seems difficult to justify, as do the particular parameter
values. In the atmosphere, Deidda (2000) and Onof and
Arnbjerg-Nielsen (2009) have used the log-Poisson
model for modelling rainfall, where they found –

perhaps unsurprisingly – that the parameters c, gþ vary
from realization to realization, exactly as predicted by

models with unbounded singularities (such as the
strongly Lévy generator universal cascades with a > 1,
where on any realization the maximum singularity is
itself simply a random variable rather than a fixed
parameter).

5.3 Divergence of statistical
moments and extremes

5.3.1 Dressed and bare moments
We now consider the effect of spatially integrating
a cascade and then taking the limit l!1. This leads
to the fundamental difference between the “bare”
and “dressed” cascade properties; the former have all
moments finite (since by definition, for bare quan-
tities, l is finite) whereas the latter will generally have
divergence for all moments greater than a critical
value qD which depends on the dimension of space
over which the process is integrated (see Fig. 5.14 for
a schematic).

In order to define the dressed flux, start by defi-
ning the L resolution flux PL(A) over the set A:

PLðAÞ ¼

ð

A

eLd
D
�r ð5:37Þ

We can now define the “partially dressed” flux density
el,L(d) as:

e
l,LðdÞ ¼

PLðBlÞ

vol ðBlÞ
ð5:38Þ

where vol(Bl) ¼ l�D is the D-dimensional volume of
a ball (interval, square, cube etc.) of size L/l, and the
“(fully) dressed flux density” as:

el, dð Þ ¼ lim
L!1

e
l,LðdÞ ð5:39Þ

The terms “bare” and “dressed” are borrowed from
renormalization jargon and are justified because the
“bare” quantities neglect the small-scale interactions
(<L/l) whereas the “dressed” quantities take them
into account.

Now we can use the factorization property of the
cascade (Fig. 5.15): the independence of the large- and
small-scale multiplicative factors:

eL ¼ elTlðeL=lÞ ð5:40Þ

where the operator Tl increases scales by a factor l.
This equation should be understood in the following
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Fig. 5.14 An example of an α-model cascade. The left-hand side shows the step-by-step construction of a (“bare”) multifractal cascade starting
with an initially uniformunit flux density. The right-hand side shows the “dressed” cascade discussed in the text: the result of spatial averaging (to the
same scale as the left image) of the cascade developed over the full range (a factor λ ¼ 27 here, bottom centre) The vertical axis represents the
density of energy ε flux to smaller scales which is conserved by the nonlinear terms in the dynamical equations governing fluid turbulence. At each
step the horizontal scale is divided by 2, and independent random factors are chosen either < 1 or> 1. Reproduced from Wilson et al. (1991).
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way: to obtain a fine-scale cascade (resolution L) we
may take a lower-resolution (l) cascade and multiply
each of the l resolution boxes (balls) by independent
cascade processes each developed over a range of scales
L/l and reduced in size by factors of l. This leads to:

e
L,lðdÞ ¼ eleL=lðhÞ ð5:41Þ

where el is the usual bare density (accounting for
variability at scales larger than the observation scale)
and the density eL/l(h) (accounting for variability at
scales smaller than the observation scale) can be said
to be “hidden” since it corresponds to the scales which
we average over (see Appendix 5A for more details).
We shall see shortly that the small-scale activity is not
necessarily smoothed out!

Bare cascade

hidden cascade

dressed cascade

1

X

Tλ

11

λ λ

λ

Λ

Λ/λ

Λ

Fig. 5.15 A schematic diagram showing a cascade
constructed down to scale ratio Λ, dressed (averaged) up to ratio
λ. This is equivalent to a bare cascade constructed over ratio λ,
multiplied by a hidden factor obtained by reducing by factor λ,
a cascade constructed from 1 to Λ/λ – the action of the scale-
changing operator TΛ/λ. Reproduced from Schertzer et al., (1993).

Box 5.1 Flux dynamics and statistical mechanics

Up until now, we have followed a “constructivist” approach. We have constructed specific cascade models and studied
their properties. It is also possible to follow a more abstract “flux dynamics” approach (Schertzer and Lovejoy, 1992)
because it parallels classical (or quantum) statistical mechanics, but the quantity of interest is the flux of energy
whereas in thermodynamics/statistical mechanics the corresponding quantity is just the energy E. It turns out that the
analogy is not only formal, since it corresponds to mappings from cascade models to Hamiltonian systems.

Analogy with thermodynamics. The correspondences between flux dynamics and thermodynamics with
Boltzmann’s constant ¼ 1, Σ(β) the Massieu potential, F(β) the Helmholtz free energy. The implications are that
just as one can discuss thermodynamic processes without reference to any specific microscopic model of matter,
one can similarly discuss multifractal processes without reference to specific models such as cascades.

In order to establish the analogy, recall that in thermodynamics (taking Boltzmann’s constant ¼1) we have:

ZðTÞ ¼ exp
�FðTÞ

T

� �

¼

*

exp
�E

T

� �

+

¼

X

i

exp
�Ei
T

� �

¼

ð

dE exp SðEÞ �
E

T

� �

ð5:42Þ

Flux dynamics Thermodynamics

probability space phase space

q
β ¼

1

T

γ –E

c(γ) –S(E)

KðqÞ ¼ max
γ

�

qγ� cðγÞ
	

ΣðβÞ ¼ max
E

�

SðEÞ � βE
	

CðqÞ ¼
KðqÞ

q� 1
F(β) ¼ �Σ(β)/β
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5.3.2 The divergence of the dressed
moments and first-order multifractal
phase transitions*
From the above, we see that the bare and dressed
densities differ only by the “hidden” factor:

eðhÞ ¼ lim
L!1

e
ðhÞ
lL=l

¼ P1ðB1Þ ð5:47Þ

i.e. e(h) is a fully developed, fully integrated cascade. In
Appendix 5A we derive the following explicit relation
for it. From Eqns. (5.39) and (5.41):

e
ðdÞ
l ¼ elP1ðB1Þ ð5:48Þ

and taking qth moments:
�

e
ðdÞq
l



¼
�

e
q
l

�

P1ðB1Þ
q ð5:49Þ

Since for any q, finite l,
�

e
q
l



¼ lK(q) is always finite,
the finiteness of

�

e
ðdÞq
l



depends on
�

P1ðB1Þ
q.

Using “trace moments” as explained in Appendix 5A,
we obtain the result:

hP1ðB1Þ
qi �

Oð1Þ; q < qD
1; q � qD

ð5:50Þ

where qD is the solution to the implicit equation:

CðqDÞ ¼ D ð5:51Þ

andC(q) is the dual codimension function (Eqn. (3.29)).
This leads to:

�

e
ðdÞq
l



¼ 	 lKðqÞ; q < qD
! 1; q � qD

�

ð5:52Þ

where for q< qD we have absorbed the proportion-
ality constant h

Qq
1ðB1Þi into the ~ sign. The overall

result is that the dressed and bare densities have
identical scaling exponents for q < qD and only differ
for q > qD. The case q ¼ qD requires some care
(Lavallée et al. 1991); we obtain divergence. We

Box 5.1 (cont.)

where Z(T) is the partition function, S(E) ¼ log(p(E)) is the entropy and p(E) is the probability density of states with
energy E. In the sum over i we sum over all states, whereas in the sum over j it is only over states with different
energy (pj is the degeneracy associated with the state of energy Ej): the integral form is obtained when the density
of states goes to a continuous limit.

In flux dynamics the analogous equations are:

ZλðqÞ ¼ eKλðqÞ ¼
�

ε
q
λ



¼
D

eqGλ

E

¼

X

fig

λqγipðγiÞ ¼

ð

dγλqγ�cðγÞ ð5:43Þ

A summary of the analogies is shown in the table. Such analogies have been discussed in the literature on
multifractals, with notably different points of view. For example, our treatment differs somewhat from that of Tél
(1988); we rather follow Schuster (1988).

Using the trace moments introduced earlier, we can make parallels with the grand canonical ensemble. The
grand canonical ensemble ZG(T) is obtained by summing not only over all energy states with a fixed number of
particles, but also over the number of particles, each weighted by e–N:

ZGðTÞ ¼

X

N

X

fjg

pje
�Ej=ðT�NÞ ¼ Tr e�Ej=ðT�NÞ

n o

ð5:44Þ

where the trace indicates the sum over all states with energy Ej and N particles. In flux dynamics, the sum over
energy states is replaced by sums over probability spaces (ensemble averaging, therefore “superaveraging”) and the
sum over various numbers of particles is replaced by integrals over various observing sets:

ZG, λðqÞ ¼ TrAλε
q
λ ð5:45Þ

Hence, formally, we have:

e�N ¼ 1Aλd
DðAÞ

�r ð5:46Þ

where 1Aλ is the indicator function for the set Aλ.

Cascades, dimensions and codimensions

128



can thus introduce the dressed exponent scaling
function:

KdðqÞ ¼
KðqÞ; q < qD
1; q � qD

�

ð5:53Þ

The dressed and bare K(q) are therefore the same
except for the extreme fluctuations, which will be much
more pronounced for the dressed quantities. To calcu-
late the corresponding dressed codimension cd(g), we
can use the Legendre transform of Kd(q) to obtain:

cdðgÞ ¼ cðgÞ, g � gD

cdðgÞ ¼ qDðg� gDÞ þ cðgDÞ, g > gD
ð5:54Þ

where gD ¼ K0(qD) is the critical singularity corres-
ponding to the critical qD. This transition from convex
“bare” behaviour to linear “dressed” behaviour repre-
sents a discontinuity in the second derivative of c(g);
hence a “second-order multifractal phase transition”
for c (for K, see below).

We now note that the microcanonical constraint
g < D precludes the possibility of dressed microca-
nonical cascades having a divergence of moments
when averaged over sets of dimension D. To see this,
recall that K(q) ¼ C(q)(q – 1) where C(q) is the
monotonically increasing dual codimension function
(Eqn. (3.29)); i.e. C0(q) > 0 and C(qD) ¼ D, Eqn.
(5.51). By differentiating K(q) we thus obtain gD ¼
K0(qD) ¼ C0(qD) (qD – 1) þ D, and hence (since qD >

1), we have gD > D. This shows that microcanonical
models (which must have gmax � D) cannot display
divergence of moments – at least not on the spaces
over which the microcanonical constraint is imposed.

A linear cd(g) implies a power-law tail on the
probability distributions; this is just another way of
obtaining the fundamental equivalence between
divergence of moments q � qD and “hyperbolic” or
“fat-tailed” behaviour of the probability distribution
(for large enough thresholds s):

he
ðdÞq
l i ¼ 1, q � qD , PrðeðdÞl > sÞ 	 s�qD , s >> 1

ð5:55Þ

In order to observe the algebraic probability tail how-
ever, the sample size must be sufficiently large. Let us
consider the effect of varying Ds ¼ logNs/logl.
Following the argument for Eqn. (5.28), Section
5.2.3, the maximum observable dressed singularity
gd,s is given by the solution of cd(gd,s) ¼ d þ Ds, and

by taking the Legendre transform of cd(g) with the
restriction gd < gd,s (see Figs. 5.16 and 5.17) we obtain
the finite sample dressed Kd,s(q):

Kd,sðqÞ ¼ gd, sðq� qDÞ þ KðqDÞ; q > qD

Kd,sðqÞ ¼ KðqÞ; q < qD ð5:56Þ

c(g)

C1

qD

qs
1

d+Ds2

d+Ds1 d

q = 1

C1
γs2

γd,s2

d

γs1

γD

γ

Fig. 5.16 Schematic diagram of c(γ), cd(γ) indicating two sampling
dimensions DS1, DS2 and their corresponding sampling singularities
γS1 < γD < γS2 < γd,S2; the critical tangent (slope qD) contains the
point (D, D). Reproduced from Schertzer et al. (1993).
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D
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Fig. 5.17 Schematic diagram of K(q), with straight lines of slopes
γS1 < γD < γd,S2 <γd,S1(¼1) indicating the behaviour for increasing
sample size NS (NS1 ¼ 1). The line of slope D defining qD is also
shown. Reproduced from Schertzer et al. (1993).
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In the limit NS !1, gd,s !1, and for q> qD, Kd,s(q)
! Kd(q)¼1 as expected. This transition corresponds
to a jump in the first derivative of the K(q):

DK 0ðqDÞ � K 0
d,sðqDÞ � K 0ðqDÞ ¼ gd,s � gD

¼
d þ Ds � cðgDÞ

qD
ð5:57Þ

Hence, this is a “first-order multifractal phase
transition (Box 5.1).”

5.3.3 Empirical tests of divergence
of moments
When a � 1 we have “unconditionally hard multi-
fractal processes”; they are unconditionally hard since
C(q) increases without limit, so for any observing
space of dimension D there will be a finite qD satisfy-
ing C(qD) ¼ D; this is a consequence of the fact that
there is no upper bound on the orders of singularity.
Conversely, when a < 1, we find that the maximum

Box 5.2 The physical significance of the divergence of moments: the multifractal butterfly effect,
self-organized criticality

In Section 5.3.2 we noted the equivalence between the divergence of moments hεqλ i ! 1 (q > qD) and
“hyperbolic” or “fat-tailed” behaviour of the probability distribution Pr(ελ(d) > s) ~ s�qD (Eqn. (5.55)), i.e. for
large enough thresholds s, an algebraic fall-off of the probability distribution. In real cascades, viscosity cuts
off the cascade process at the viscous scale so that real observables are only partially dressed (Section 5.3.1).
This implies that the graphs of logPr versus logs will only be linear over a finite interval; for sufficiently large s,
they will be truncated. However, it must not be concluded that the divergence of moments is academic – on
the contrary, it has a profound physical significance. To see this, denote the inner scale l, the observing scale L,
and the ratio L ¼ L/l >> 1. In this case, our previous analysis for dressed moments will be valid, and if we
estimate dressed moments with q > qD (i.e. C(q) > D), then the result will be 	 L(q � 1)(C(q)-D) (Appendix 5A),
which can be very large and whose value will depend crucially on the small-scale details, i.e. the exact value of l,
etc. On the contrary, when q< qD (i.e. C(q)< D), the dressed moments will be insensitive to L and the small
scale. Overall we can say that for q< qD the moments are macroscopically determined whereas for q > qD the
moments will be microscopically determined. Because of this dependence on the small-scale details, the
divergence of moments is a kind of “multifractal butterfly effect” similar to the “butterfly effect” in
deterministic chaos.

It is worth noting that the power-law probability
distributions (of dressed quantities) are a basic fea-
ture of self-organized criticality (SOC) (Bak et al.,
1987). This divergent “hard” statistical behaviour
indeed corresponds to the fact that rare and cata-
strophic events will make dominant contributions.
For example, the “mean” shape of a sand pile (the
prototypical example of a self-organized critical
system: see Fig. 5.18 for a schematic) is maintained
due to avalanches of all sizes. In cascades, the flux
energy is maintained by instabilities of all intensities.
We have also observed that the transition from soft
to hard processes (from “thin-tailed” to “fat-tailed”
probabilities) corresponds to the fact that micro-
scopic activity cannot be removed to yield a purely
macroscopic description of the system. Similarly, we
will not be able to understand the “mean” field
without understanding its extremes.

The sand pile exemplifies “classical SOC”: it produces
avalanches of all sizes, and the structure of each
avalanche is fractal. However, it is only produced in
the “zero flux” limit; in other words, one must add grains of sand so slowly that any avalanches thus
induced have the time to stop: if grains are added at a constant rate, then the scaling will be broken. If SOC

Sandpile “mean shape”

= result of extreme

avalanches

The mean field

results from

catastrophes!

Fig. 5.18 The original paradigm of self-organized criticality.
Reproduced from Schertzer and Lovejoy (1996).
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order of singularity ¼ max(C(q)) ¼ C1/(1 – a) so that
if the “dressing” (averaging/integrating) space has
D > C1/(1 – a) there will be no solution C(qD) ¼ D
to the equation and all the moments will converge.
Since for small enough D the moments will still
diverge, the a < 1 multifractals are called “condition-
ally hard.” In Chapter 4, we saw that the value of a is
commonly in the range 1.5–2; indeed, empirically,
it is almost always found to be > 1, so there are
theoretical and empirical reasons to commonly expect
power-law probability tails.

In order to empirically test for the divergence of
moments, we could either look directly at the prob-
ability distributions at a specific resolution, or look
for a linear asymptote on a c(g) plot; we have already
seen (Figs. 5.10a, 5.10b) some evidence for qD � 3, 5
for various aircraft fluxes; Fig. 5.10c for rain rates
(qD � 3); the c(g) from these figures essentially uses
information from a range of scales (the “bunching” of
the curves). From the figure, we can already sense a
recurring practical problem, that without knowledge
of the “effective dimension of dressing” the theory
gives no guidance as to at what point in c(g) to expect
the linear asymptote to begin, or the value of the
asymptotic log-log slope –qD. It may well be at such
low probability levels (such high g) that enormous
sample sizes are necessary to observe it. Furthermore,
most sensors have difficulty measuring the ampli-
tudes of very rare but extreme events; they are
frequently truncated, so that the critical extreme
power-law region may be corrupted. This is especially
a problem for rain gauges, which tend to saturate at
high rain rates. Finally, the sampling properties of

such algebraic “fat-tailed” probabilities are quite
nontrivial and can even be sensitive to the way the
probability densities are estimated from the empirical
frequencies of occurrence.

Alternatively, at a single resolution, we can look
for asymptotically linear graphs of logPr versus logs.
Although this is the approach used in most of the
literature, including the examples given below, recent
work by Clauset et al. (2009) shows that the max-
imum likelihood estimator is superior, although the
problem of determining the region where the power-
law tail begins is still nontrivial and requires general-
ized Hill estimators (Schertzer et al., 2006, Bernadara
et al., 2007, 2008).

Figs. 5.19a, 5.19b and 5.19c show the predicted
power-law behaviour for velocity differences (qD �
5–7.5 vertical, horizontal, time: see Table 5.1a for an
overall comparison). Similarly, Fig. 5.20a shows evi-
dence for qD ¼ 5 in nondimensional raindrop
distributions, and Fig. 5.20b, Table 5.1b, qD ¼ 3 for
rain rates. We could also add that multifractal rain
rates with qD � 3 can explain conventional intensity-
duration frequency (IDF) relations (Bendjoudi, 1997;
Garcia-Marin et al., 2012). Sardeshmukh and Sura
(2009) find similar qD values from reanalysis anomal-
ies of geopotential and vorticity, and give correspond-
ing simulations using correlated additive and
multiplicative (CAM) noise (see Table 5.1a, b for
values, and Appendix 10B for some theory). The
ability of reanalyses (and presumably high reso-
lution meteorological models) to produce these
strong probability tails is a consequence of their com-
paratively large range of scales over which the

Box 5.2 (cont.)

is defined as a dynamical system with both fractal structures and power-law probabilities, then we could
consider cascade processes to be nonclassical SOC models. While potentially having many of the same statistics,
cascades have the advantage that they are generated through a more realistic quasi-constant flux boundary
condition.

Another way to generate power-law probability tails is to use correlated additive and multiplicative (CAM)
processes (Sardeshmukh and Sura, 2009). These processes are modelled by systems of coupled (linear)
stochastic differential equations and have been used as models of atmospheric variability at various scales,
the “stochastic linear forcing” (SLF) approach (see Appendix 10C for a detailed comparison of the SLF and
scaling approaches). The mechanism is apparently quite close to additive (“dressing”) on multiplicative cascade
processes.

Finally, we could mention yet another related mechanism yielding power-law probability tails: compound
multifractal Poisson processes (Lovejoy and Schertzer, 2006b). This was developed as a model of individual
raindrop size distributions in space; it leads to a direct link between the H parameter of the controlling large-
scale turbulent fluxes and the individual drop probability exponent qD.
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cascades can develop. In comparison, climate models
have narrower ranges, perhaps not enough: this could
explain the difference in their respective “regime
structures” (spacial intermittencies) noted by Dawson
et al., 2012.

Finally, we have included Fig. 5.21, the probabi-
lity distributions of paleotemperature fluctuations
(differences) in the climate regime. When the flucu-
tations are estimated using equal depths (e.g. DT
(Dh), where h is the depth, hereDh¼ 55 cm, 1 m), then
a qD � 5 regime is clearly visible in both Greenland

d18O and Antarctic dD proxies (Figs. 11.11, 11.12).
Interestingly, exactly the same exponent was
obtained on much lower-resolution GRIP data in
Lovejoy and Schertzer (1986) (who also found qD
� 5 for hemispheric temperature fluctuations at
annual scales; we have confirmed this result on the
monthly global temperature series discussed in
Appendix 10C). As we argue in Chapter 11, these
power-law tails are the statistical manifestiations
of abrupt climate change including (for the GRIP
series) “Dansgaard–Oeschger” (DO) events. Indeed,
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Fig. 5.19 (a) Figure of vertical fluctuations in the quantity Δv2(Δz)
where v is the horizontal velocity for different layers Δz¼ 50, 100, 200, . . .

3200 m. The straight lines indicate that the extreme fluctuations follow
a power law leading to the divergence of the 5th-order moment;
whereas the uniform separation of the curves (corresponding to Δv’s
for 50, 100, 200, . . . 3200 m thick layers) indicates uniform scaling of the
extremes; here with Hh¼ 3/5, the Bolgiano–Obukhov value. Reproduced
from Schertzer and Lovejoy (1985). (b) The probability distribution (Pr;
cumulated from the largest to smallest, i.e. 1 – the cumulative probability
distribution) for horizontal wind differences from the stratospheric
ER2 aircraft. The horizontal gradients in m/s are given for distances of 40
m, 80 m (left, right), and the reference slopes correspond to qD ¼ 5.7.
The data are from 18 aircraft flights, each over paths 1000–2000 km in
length. Reproduced from Lovejoy and Schertzer (2007). (c) Probability
distribution for the wind fluctuations Δv exceeding a fixed threshold s
from a sonic probe at 10 Hz. The line indicates qD ¼ 7.5. Adapted
from Schmitt et al. (1994).
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the Greenland series follows the power law over
roughly the extreme 2% of the distribution, corres-
ponding to ~110 “extreme events” over the last
248 kyr, which is a very reasonable estimate of the
frequency of DO events (see e.g. Schulz, 2002, although
our mechanism is not periodic). Interestingly, when
the series is interpolated to series with uniform tem-
poral resolution and we estimate instead the distribu-
tion DT(Dt), then we find that the extreme power-law
behaviour is lost due to the smoothing of extreme
events by the interpolation. This illustrates a general
problemwith empirical data: they often suffer fromoverly
smooth extremes that can mask the power-law tails (see
Appendix 11A for further discussion).

These graphs have been shown either for their
particular high quality or for their scientific interest.
In Table 5.1 we give a more complete summary of
the values from the literature. We see that although
the values of qD (notably for the wind) apparently
depend on the direction (horizontal, vertical, time;
presumably a consequence of anisotropy), the
usual variables of state typically have values in the
range 5–7.5, with rain rate, potential temperature,
geopotential height and vorticity a bit smaller (� 3).
Since we also have C1 and a estimates for these fields
we could determine the effective dimension of dress-
ing from C(qD) ¼ D using the empirical C1, a, qD to
determine C(qD). When this is done, we find, due
to the typically small values of C1 (� 0.05 – 0.1), that
C(qD)< 1, implying that the effective dressing
dimension D< 1. It is not clear whether this low
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Fig. 5.20 (a) Probability distributions of raindrop volumes
nondimensionalized by dividing by the mean mass (each
curve is for a different storm). The reference line has absolute
slope qD ¼ 5. Note that for the same data, the slightly
different statistic, the total liquid water in a given volume in
the scaling regime (typically about 30 cm: see Fig. 1.8b), has
qD � 3, and this value is theoretically predicted from a
compound Poisson cascade process obeying Corrsin–Obukhov
statistics (Lovejoy and Schertzer, 2006b). The figure is
reproduced from Lovejoy and Schertzer (2008), where there
are more details. (b) This figure shows the log10 of the
probability distribution Pr(DR > s) of the absolute rain rate
difference DR at times one hour apart for the 13 � 21 ¼ 273
CPC series, each 257 000 hours long (a total of 7.0 � 107 points)
as a function of the log10 threshold s. The reference line is the
theoretically predicted qD ¼ 3 behaviour. This is the most
convincing evidence to date for power-law probability tails in
rain. This is probably due to the following: (a) the hourly
resolution is long enough that many of the high-frequency
gauge saturation problems are not so important; (b) the
gridded data involve averages from several gauges per grid
point, again making the results robust; (c) the dataset is
extremely large, so the power law holds over a wide range
of scales and the result is clear. The units of s are
hundredths of inches per hour. Adapted from Lovejoy
et al. (2012).
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Fig. 5.21 The probability distributions of changes in
paleotemperatures for Greenland (GRIP, dashed line, 5425 points last
248 kyr, 55 cm resolution) and Vostok (black line, 3300 points, last
420 kyr, 1 m resolution). The GRIP series is based on δ18O anomalies
with the same calibration as in Fig. 11.11 and a further reduction by
a factor 0.13 to account for the difference in sampling thickness and
the different mean snow rates. The reference line has slope –5. The
implied abrupt changes presumably are the statistical counterparts
of “Dansgaard–Oeschger events” at all scales: see in Section 11.2.1.
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Table 5.1a A summary of various estimates of the critical order of divergence of moments (qD) for various atmospheric fields.

Field Data source Type qD Reference

Horizontal wind Sonic 10Hz, time 7.5 Schmitt et al., 1994

Sonic 10 Hz 7.3 Finn et al., 2001

Hot wire probe Inertial range 7.7 Fig. 5.22, Radulescu et al.,

2002

Hot wire probe Dissipation range 5.4 Fig. 5.22, Radulescu et al.,

2002

Anemometer 15 minutes 7 Tchiguirinskaia et al., 2006

Anemometer Daily 7 Tchiguirinskaia et al., 2006

Aircraft, stratosphere Horizontal, 40 m 5.7 Lovejoy and Schertzer, 2007

Aircraft, troposphere Horizontal, 280 m – 36 km � 5 Fig. 5.10

Aircraft, troposphere Horizontal, 40 m – 20 km � 7 � 1 Chigirinskaya et al., 1994

Aircraft, troposphere Horizontal, 100 m � 5 Schertzer and Lovejoy, 1985

Radiosonde Vertical, 50 m 5 Schertzer and Lovejoy, 1985,

Lazarev et al., 1994

Scaling gyroscopes

cascade (SGC) model

(Box 3.4)

Time 6.9 � 0.2 Chigirinskaya and Schertzer,

1996

Potential

temperature

Radiosonde Vertical, 50 m 3.3 Schertzer and Lovejoy, 1985

Humidity Aircraft, troposphere Horizontal, 280 m – 36 km � 5 Fig. 5.10

Temperature Aircraft, troposphere Horizontal, 280 m – 36 km � 5 Fig. 5.10

Hemispheric, global Annual, monthly � 5, 5 Lovejoy and Schertzer, 1986,

and unpublished analysis

respectively

Daily, stations Average over 53 stations in

France, daily single station

(Macon)

4.5, 4.5 Ladoy et al., 1991

Paleotemperatures Ice cores 350 years (time), 0.55 m, 1

m (depth)

5, 5 Lovejoy and Schertzer, 1986,

Fig. 5.21 respectively

Geopotential

anomalies

Reanalyses 500 mb, daily 2.7 Sardeshmukh and Sura,

2009

Vorticity

anomalies

Reanalyses 300 mb, daily 1.7 Sardeshmukh and Sura,

2009

Visible radiances

(ocean surface)

Remote sensing 7 m resolution MIES data 3.6 Lovejoy et al., 2001

Passive scalar (SF6) Fast response

SF6 analyzer

1 Hz 4.7 Finn et al., 2001

Vertical CO2 flux

(above a field)

Aircraft new ground Horizontal � 1 km

resolution

5.3 Austin et al., 1991

Seveso pollution Ground

concentrations

In-situ measurements 2.2 Salvadori et al., 1993

Chernobyl fallout Ground

concentrations

In-situ measurements 1.7 Chigirinskaya et al.,

1998; Salvadori et al., 1993

Density of

meteorological

stations

WMO surface

network

Geographic location of

stations

3.7 � 0.1 Tessier et al., 1994
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Table 5.1b A summary of various estimates of the critical order of divergence of moments (qD) for various hydrological fields.

Field Data source Type qD Reference

Radar reflectivity of

rain

Radar reflectivity

factor

1 km3 resolution 1.1 Schertzer and Lovejoy,

1987

Rain rate Gauges Daily, Nimes 2.6 Ladoy et al., 1991

Gauges Daily, time, France � 3 Ladoy et al., 1993

Gauges Daily, USA 1.7–3 Georgakakos et al., 1994

High-resolution

gauges

8 minutes � 2 Olsson, 1995

High-resolution

gauges

15 s 2.8–8.5 Harris et al., 1996

Gauges Daily, time 3.6 � 0.07 Tessier et al., 1996

Gauges 1–8 days 3.5 De Lima, 1998

Gauges Hourly, time 4.0 Kiely and Ivanova, 1999

Gauges Daily, four series from

18th century

3.78 � 0.46 Hubert et al., 2001

Gauges Hourly, time � 3 Fig. 5.10c; Schertzer et al.,

2010

Gauges Hourly, time � 3 Fig. 5.20b; Lovejoy et al.,

2012

High-resolution

gauges

15 s, averaged to 30

minutes

2.23 Verrier, 2011

Raindrop volumes Stereophotography 10 m3 sampling volume 5 Lovejoy and Schertzer,

2008

Liquid water at

turbulent scales

Stereophotography Total water in 40 cm

cubes

3 Lovejoy and Schertzer,

2006b

Stream flow River gauges

(France)

Daily 3.2 � 0.07 Tessier et al., 1996

River gauges (USA) Daily 3.2 � 0.07 Pandey et al., 1998; Tessier

et al., 1996

River gauges

(France)

Daily 2.5–10 Schertzer et al., 2006

Box 5.3 Divergence of moments in laboratory turbulence

Obviously, the cascade theories developed here have implications for laboratory turbulence – at least if the
Reynolds number (Re) is high enough to allow the cascade to develop over a wide enough range. Aside from its
intrinsic interest, the ability to use well-controlled laboratory-scale measurements allows us to resolve the dissipa-
tion scale and test our ideas further. To this effect, we analyzed active grid wind tunnel turbulent velocity data at
a Taylor microscale Reynolds number of Rλ ¼ 582, approaching those of the atmosphere (the usual Reynolds
number used earlier is roughly the square of Rλ, i.e. Re � 105–106; some of the largest Re laboratory turbulence to
date). The experiments are described by Mydlarski and Warhaft (1998), along with the main characteristics of the
turbulent flow. The Kolmogorov characteristic dissipation scale, as estimated from the mean energy dissipation rate,
is Ldiss ¼ 0.26 mm. Time series of the velocity fluctuations in the longitudinal direction were obtained via hot-wire
anemometry and analyzed in the spatial domain by using Taylor’s hypothesis. The inertial scaling range extended
more than an order of magnitude in scales, and the increased sampling rate allowed a resolution of the same order
of the dissipation scale Ldiss.
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Box 5.3 (cont.)

To study the statistics of both the inertial range energy flux and the rate of energy dissipation, we
studied the velocity differences of the longitudinal signal. The probability distributions (integral of the
probability density functions) of |ΔUr| ¼ |U(x) – U(x þ r)| normalized by the RMS value are shown in Fig. 5.22
for two typical examples taken at the highest resolution of the data, corresponding to dissipation range (DR)
separations r/ Ldiss � 2, and at a spacing within the inertial (scaling) range (IR) of scales r/ Ldiss � 314. The tails
of both probability distributions display a distinctive power-law distribution, with qD � 5.4 and 7.7, respect-
ively. This is confirmed from the compensated probability distributions by the tail exponent qD,V, as shown in
the inset of Fig. 5.22. A deviation from the power-law dependence is observed for the extreme events
measured at inertial range separations, but this is due to the limitation in the observation of events over
larger separations for the same length of dataset, making the observation of these extreme events less
probable.

According to the cascade model, it is the dressed turbulent fluxes which have the power-law tails (finite qD’s);
therefore, following the discussion in Section 4.1.2, the qD of the observables ought to be different depending
on whether we consider dissipation or scaling range values. Recall (Section 4.1.2) that for the velocity field, we had
ΔU / εη with η ¼ 1/3 in the scaling range, but η ¼ 1/2 in the dissipation range. ΔU / εη implies qD,η ¼ qD,ε/η, so we
expect qD,IR/qD,DR ¼ 3/2.

According to the probability distribution of velocity differences at IR and DR separations in Fig. 5.22 we have
qD,IR � 7.7 and qD,DR � 5.4 so that qD,IR/qD,DR ¼ 1.43, which is close to the theoretical ratio 1.5 and is consistent with
atmospheric observations (Table 5.1) and the value qD,ε ¼ qD,IR/3 � 2.6. A summary of this study may be found in
Radulescu et al. (2002).

Fig. 5.22 Probability
distribution of velocity
increments |DUr| ¼ |U(x þ r) –
U(x)| estimated at separations r
in the inertial scaling range
(IR) and in the dissipation range
(DR) at Rl ¼ 582; compensated
distributions in inset (see
Radulescu et al., 2002).
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“effective dimension of dressing” is an indication
that it is rather the (fractional) dressing exponent
H which is intervening or whether there is some
other mechanism at work. Because in practice the
origin of the power law is not obvious, for a given
field, the usual practice has been simply to regard qD
as an empirical characterization. Finally, we should
also mention Tuck et al. (2004) and Tuck (2008,
2010), who propose that molecular velocity may also
have power-law tails.

5.3.4 The classification of multifractals
according to the maximum singularity
they can generate
Wehave seen that themicrocanonical constraint places
an upper bound d on the orders of singularity (Section
3.2.4). We saw that consequently, for microcanonical
cascades, there is no divergence of dressed moments of
fluxes averaged over sets with dimension d. However,
more restrictive (calm) types of multifractals exist.
Here we briefly discuss the geometric multifractals
introduced by Parisi and Frisch (1985) which involve
neither a probability space nor a cascade process. Parisi
and Frisch (1985) coined the term “multifractal” and
gave the following quite abstract definition (the
following is translated into our notation).

Consider a component multifractal field v(�r)
on a space S dimension d; Parisi and Frisch (1985)
considered a turbulent velocity field. Define the set of
points Sghol � S as the set of all points rhol for which:

lim
jDrj!0

vð�rghol þ D�rÞ � vð�rghol
Þ

jDrj�ghol
ð5:58Þ

is nonzero and finite. For such points, Dv � jDx
�
j�ghol ,

where ghol is called the “Hölder” exponent. The
set Sghol has a fractal dimension D(ghol). If many
different singularities g are present, each distributed
over a set dimension D(ghol), then v(�r) is a multi-
fractal. Notice that by restricting the multifractal to
geometric sets, D(ghol) is necessarily nonnegative and
c(ghol) ¼ d – D(ghol) is bounded above by the embed-
ding dimension d. Since c(g) is an increasing function
(see Section 5.2.2) this implies that the orders
of singularity are bounded. Just as microcanonical
multifractals have maximum orders of singularity
gmax ¼ d, the geometric multifractals have gmax ¼
c�1(d), which is less than d due to the convexity of
c(g) and the nondegeneracy requirement C1 < d

(Figs. 5.23, 5.24). It is not obvious how to construct
such geometric multifractals, they are simply defined
as an abstract (highly nontrivial!) superposition of
fractal sets. The basic difficulty is that cascade pro-
cesses are generally not functions defined at math-
ematical points; rather they are more like “Dirac d

functions” – where the word “function” is a mis-
nomer because they are not true functions
but rather limits of a series of functions. This means
that for cascades, at a given point�r, as we increase the
resolution of the “incipient singularity” gl(�r):

glð�rÞ ¼
logelðrÞ

logl
ð5:59Þ

there will generally not be a well-defined small-scale
limit: lim

l!1
glð�rÞ 6¼ gholð�rÞ.

We have noted that geometric multifractals have
gmax < c–1(d). In comparison, the extreme microca-
nonical model (with all but one multiplicative factors
equal to zero) has gmax ¼ d so that generally they have
gmax< d (Figs. 5.23, 5.24a). Since c(g) is convex, this
already means that microcanonical multifractals may
have c(gmax)> d . Since single realizations – even with
arbitrarily high resolutions – almost surely do not
have these singularities, microcanonical processes
with c(gmax) > d are not “ergodic.” Because this
behaviour is already nonclassical, these are termed
“wild singularities.” However, stronger singularities
exist. Indeed, in Section 5.3.2 we showed that

D

C1

C1

C1 < γmax = c
–1(D) < D

D

Wild singularities

Calm singularities

c(γ)

c(γ)

γ

Fig. 5.23 c(γ) versus γ. The nondegeneracy of the process requires D
> C1 so that γmax is the maximum observable singularity on a single
realization of a stochastic process; in geometric multifractals it is the
absolute upper limit. Reproduced from Schertzer and Lovejoy, 1996.
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Fig. 5.24 (a) Phase diagram
showing the attainable singularities
for a (normalized) multifractal,
showing the fixed point C1 ¼ c(C1),
the maximum orders of singularities of
geometrical (Parisi–Frisch) multifractal

γ
ðgÞ
max

�

¼ c�1ðDÞ
�

, and microcanonical

multifractal γ
ðmÞ
maxð¼ DÞ. Wild

singularities are those with γ > γ
ðmÞ
max

and necessarily involve realizations
which do not respect flux
conservation. Wild singularities with

γ � γD
�

> γ
ðmÞ
max

�

lead to the
appearance of hard multifractals with
divergent high-order statistical
moments. Note that the dimension D
refers to the dimension of space in
which the various multifractals are
defined and that the represented
singularities are delimited by the two
extreme universal cases, the β model
and the lognormal model.
Reproduced from Schertzer et al.
(1991). (b) The dual-phase diagram
corresponding to Fig. 5.24a but in
moments representation instead
of a singularity representation. The
(normalized) moment scaling function
K(q) corresponds to the codimension
function c(γ). Reproduced from
Schertzer et al. (1991).
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Box 5.4 Box, information and correlation dimensions

In Box 3.1 we introduced both the box (Dbox) and correlation (Dcor) dimensions of a set of points: the first is the
exponent of the average number of disjoint boxes size L/λ needed to cover the set, while the second is
the exponent of the number of point pairs separated by a distance � L/λ. Since both dimensions are in common
use (Dcor particularly for characterizing “chaotic”/”strange” attractors such as the Mandelbrot set: Fig. 2.2) let us now
consider the relation between the two. First suppose that the set of interest (denoted A) can be embedded in a d-
dimensional “cube” of size L, and cover the cube with a grid of λd disjoint boxes each of size l ¼ L/λ. Denote the
number of points in the ith l-sized grid box by ni,λ so that the total number of points is:

N ¼
X

λd

i¼1

ni, λ ð5:60Þ

If the points are from a strange attractor (such as the Lorenz attractor), then the space is the system’s phase space
and (with an ergodic hypothesis) Pi,λ ¼ ni,λ/N is an empirical frequency that approximates the probability of finding
the system in the ith box at phase space resolution λ ¼ L/l, this would be its asymptotic limit for an infinite
resolution. In order to characterize the scale-by-scale statistics of the attractor, similarly to estimating the “trace
moments” (Appendix 5A) we can use a “partition function” approach to introduce the following family of measures
indexed by q (Hentschel and Procaccia, 1983; Grassberger, 1983; Halsey et al., 1986):

μqðλÞ ¼
X

λd

i¼1

Pqi, λ ð5:61Þ

and with the corresponding scaling exponents:

μqðλÞ / ltðqÞ / λ�tðqÞ ð5:62Þ

To see the meaning of μq and its exponent t(q), first consider q¼ 0 and adopt the convention that for any x, x0 ¼ 1 if
x > 0, and x0 ¼ 0 if x ¼ 0. In this case, μ0 is simply the number of boxes needed to cover the set and t(0) ¼ �Dbox.
Next, consider q ¼ 2; in each box, the number of points which are within a distance l of each other is equal to the
number of pairs in the box: ni, λðni, λ � 1Þ=2 � n2i, λ (for large n and ignoring constant factors). However, we
have P2i, λ / n2i, λ so that we see that μ2 is proportional to the number of point pairs within a distance l, and hence
t(2) ¼ Dcor (the correlation dimension). The above suggests the definition:

DðqÞ ¼
tðqÞ

q� 1
¼

1

q� 1
lim
l!0

log μq
log l

2

4

3

5; l ¼ L=λ ð5:63Þ

This was first proposed by Hentschel and Procaccia (1983) and Grassberger (1983) for strange attractors, and it
was acknowledged that such expressions were in fact pointed out by Rényi (1970); they are “Rényi dimensions.” In
Box 5.5, we relate D(q) to the dual codimension function (C(q); Section 3.2.7) of the multifractal probability pλ.

What about the value q ¼ 1? In this case, since the sum of the probabilities is unity, we have μ1 ¼
X

Pi, λ ¼ 1 so
that Eqn. (5.63) reduces to 0/0 and we must use l’Hopital’s rule to evaluate the limit q ! 1. We find:

Dð1Þ ¼ lim
l!0

X

λd

i¼1

Pi, λlog Pi, λ

log l

2

6

6

6

6

4

3

7

7

7

7

5

; l ¼ L=λ ð5:64Þ

D(1) is thus the exponent of the information Iλ:

Iλ ¼
X

λd

i¼1

Pi, λlog Pi, λ ð5:65Þ

so that Iλ� l
DI where the information dimensionD I¼ D(1) of the set of points. In Box 5.5 we show that t(q)¼D(q – 1) –

K(q) so that the convexity of K(q) (Appendix 3A) implies the concavity of t(q) so thatD(q) is amonotonically decreasing
function of q; we therefore have the hierarchy: Dbox � D I � Dcor.
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Box 5.5 The singular measure (f(α), t(q)) multifractal formalism

In Box 5.4, we saw that in order to statistically characterize these complex phase space densities, the density can
itself be thought of as being a realization of a multifractal probability measure; we saw that this probability density
pλ at resolution λ can be defined by covering the space with λ�d-sized grids (boxes) and using pλ ¼ nλ/N for each
box. The resulting measure is a geometric (calm) multifractal, since although it represents the probability of finding
the system at a point in the phase space, it is not itself random at all!

Halsey et al. (1986) wrote an influential paper proposing a notation for dealing with these “geometric attractor”
multifractals. Rather than considering the density of themultifractal measure pλ¼ Pλ / vol(Bλ) (the nonrandom analogue
of the turbulent ελ), the measure itself Pλ (i.e. the integral of the density pλ over a ball (box) size L/λ) was considered.

Pλ defined in this way is really a dressed quantity,
but for these multifractals the bare/dressed distinction
is irrelevant. They then determined the order of
singularity αd of Pλ:

Pλ ¼

ð

Bλ

pdd�x ¼ pλλ
�d � λ�αd ð5:66Þ

(the subscript d was not used in the original; we have
added it to underscore the dependence on the dimen-
sion of the system and to distinguish it from the totally
different Lévy α). In codimension notation, we may
write pλ ¼ λγ so that Pλ ¼ λγ�d; we thus obtain:

αd ¼ d � γ ð5:67Þ

Eachboxcan thusbe indexedaccording toαd. Thenumber
of boxes at each resolution corresponding to αd can then
be used to define the (box-counting) dimension fd(αd):

Number½Pλ ¼ λ�αd 
 ¼ λfdðαdÞ ð5:68Þ

since number ¼ λd � probability, and probability �
λ�c(γ), we obtain:

fdðαdÞ¼ d � cðγÞ; αd ¼ d � γ ð5:69Þ

Finally, we can define the scaling exponents td(q) for the moments by the partition function:

X

λd

i¼1

Pqλ, i ¼ λ�tdðqÞ ð5:70Þ

where the sum is over all the i balls size λ�1 needed to cover the d-dimensional phase space region A. Comparison with
the moments of the density pλ shows that they differ only in the ensemble averaging (which gives “trace moments”);
since p is nonrandom, we therefore have:

X

λd

i¼1

Pqλ, i ¼

*

X

λd

i¼1

�

pλλ
�d
	q
+

� λ�tdðqÞ ¼ λ�dðq�1Þ
�

pqλ


¼ λKðqÞ�dðq�1Þ ð5:71Þ

This implies:

tdðqÞ ¼ ðq� 1Þd � KðqÞ ¼ ðq� 1ÞDðqÞ

DðqÞ ¼ d � CðqÞ
ð5:72Þ

As long as we deal with strange attractors and study the full d-dimensional phase space, the αd, fd(αd), td(q) and
D(q) notation is adequate. However, if we are interested in random multifractals (involving probability spaces) then
d ! 1, or if we are interested in looking at subspaces with dimension smaller than d, the d dependence is
respectively a fundamental limitation or an unnecessary complication. The turbulent γ, c(γ), K(q), C(q) notation (the
“codimension” notation for short) has the advantage of being intrinsic to the process. i.e. of being d-independent.

c(γ)

d1 d2

d1

d2

fd1

fd2

αd2

αd1

γ(αd1
)

(αd2
)

Fig. 5.25 A comparison of codimension (γ, c(γ)) and dimension
(α, f(α)) notations. The graph shows the relationship for two
different observing dimensions d1 and d2; for a given multifractal
process with fixed c(γ), the corresponding f(α) is obtained by turning
the figure upside down and using the axes whose origin slides along
the bisectrix (dashed); this is the graphical transformation α ¼ d – γ
and f ¼ d – c. Adapted from Schertzer and Lovejoy (1992).
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multifractals with canonical conservation have no
upper limit on g, and that it is precisely the singula-
rities g > gD > d that contribute to the “hard” beha-
viour associated with the divergence of high-order
statistical moments q> qD¼ c0(gD). These various beha-
viours are shown in Fig. 5.24a (g, c(g)); see Fig. 5.24b
for the corresponding (q, K(q)) representation.

5.4 Continuous-in-scale multifractal
modelling

5.4.1 Review
Up until now, we have discussed discrete-in-scale
models constructed by iteratively dividing large struc-
tures (“eddies”) into disjoint daughter “sub-eddies”
each reduced in scale by an integer ratio l0. The smaller
eddies have intensities which are equal to those of their
parents multiplied by weights which are independently
and identically distributed. They yield visually weird,
highly artificial simulations. Fig. 5.26 shows an example
which can be compared to Fig. 5.28, for a continuous-
in-scale simulation with the same a, C1 and scale ranges
and to Fig. 5.29 with an additional fractional integration
(the FIF model: Section 5.4.3). One way of seeing the
problem is that for these processes, the basic cascade
equation<el

q
> ¼ lK(q) only holds exactly for the

special scale ratios l ¼ l0
n where both l0 and n are

integers, i.e. only a “countable” infinity of scale ratios; in
comparison, continuous-in-scale processes satisfy this
equation for all l > 1. Other key limitations of these
“toy model” cascades include (a) isotropy (self-similar-
ity; although limited self-affine extensions are possible:

Fig. 5.26 A discrete-in-scale simulation of a universal multifractal
with basic scale ratio λ0 ¼ 2, λ ¼ 29, α ¼ 1.8, C1 ¼ 0.1. The grey scale
is proportional to the log of the field, with low values darker.
Reproduced from Lovejoy and Schertzer (2010a).
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Fig. 5.27 An example of a multfractal produced by a
(deterministic) iterated function system. It is based on a basic
generator (upper left); each segment is then rescaled and
repositioned and the process is iterated. The second, third and ninth
iterates are shown (upper right to lower left, to lower right; this
example uses the same parameters as in Basu et al., 2004). Only a
small and finite range of singularities can be produced in this way
(Lovejoy and Schertzer, 2006a).

Fig. 5.28 The continuous-in-scale simulation corresponding to
Fig. 5.26, using the continuous-in-scale method described in the text
(including Δx�d/α corrections: see Appendix 5B). Reproduced from
Lovejoy and Schertzer (2010a).
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Schertzer and Lovejoy, 1985) and (b) left/right (mirror)
symmetry (which precludes causal processes). In add-
ition, most multifractal models are of scale-by-scale
conserved cascade quantities, whereas the observables
typically have exponents with an extra linear term (e.g.
Dv¼ e1/3DxH withH¼ 1/3). A somewhat different but
still discrete-in-scale multifractal simulation method is
based on iterated function systems (Lévy-Véhel et al.,
1994; Basu et al., 2004; see Fig. 5.27 for an example
in one dimension). Perhaps the most sophisticated
discrete-in-scale approach is the Markov-switching
multifractal (MSM) simulation method; it is available
only for pure (1D) time series (Calvet and Fisher, 2001,
2008). This model involves causal random transitions
but is still based on iterating a finite fundamental scale
ratio, so it is not yet truly continuous in scale.

To explain continuous-in-scale cascade processes in
a rather elementary manner, let us first review some
properties of Lévy variables. First introduce the “unit”
(and extremal) Lévy random variable ga whose prob-
abilities are implicitly defined by the following charac-
teristic function:

heqga


¼ e

qa

ða� 1Þ
; q � 0

heqga


¼ 1; q < 0; a < 2

ð5:73Þ

Note that (a) for a ¼ 2 we have the familiar Gaussian
case and the q� 0 formula in Eqn. (5.73) is valid for all q;
(b) for a¼ 1 we have heqgai ¼ eqlogq (q> 0, otherwise¼
1). An extremal Lévy random variable A with ampli-
tude a > 0 and Lévy index a therefore satisfies:

A ¼ aga

heqA


¼ e

aaqa

a� 1
; q � 0

heqA


¼ 1; q < 0; a < 2

ð5:74Þ

(with corresponding exception for a¼ 1). Due to the
additivity of second characteristic functions for any
independent, identically distributed random vari-
ables (Section 3.3.3), this implies that for the sum
C of two statistically independent Lévy variables A, B
we have:

C ¼ Aþ B; ca ¼ aa þ ba ð5:75Þ

where C is also an extremal Lévy with the same a but
with amplitude c. Eqn. (5.75) expresses the “stability
under addition” property of the Lévy variables, and a,
b, c are the corresponding amplitudes. Eqn. (5.75)
shows that for Lévy variables logheqFi(the second
characteristic function) of the random variables
F ¼ fga (amplitude f ) are “a additive”, a property
that generalizes to Lévy noises; we use this below.

To understand why only extremals must to be
used to generate cascades (Schertzer and Lovejoy,
1987, 1991), and not the more general Lévy variables
la with a < 2, let us recall the general properties of
Lévy variables. These have algebraic tails for both
positive and negative values:

hjlaj
qi ! 1; q � a

pðlaÞ � Aþla
�a�1; la >> 1

pðlaÞ � A�ð�laÞ
�a�1; la << �1

ð5:76Þ

where p is the probability density and Aþ and A– are
constants that depend on an “asymmetry parameter”
(the a ¼ 2 case is the qualitatively different Gaussian
case, where there is neither power law nor asym-
metry). For symmetric Lévys, Aþ ¼ A–, whereas
for maximally asymmetric Lévys either Aþ or A–

vanishes. Those without algebraic behaviour for l
>> 0 have Aþ ¼ 0. The latter are required to avoid
the divergence of the Laplace transform for q > 0,
simply because an algebraic fall-off cannot tame an
exponential divergence. It turns out that for a< 1 the

Fig. 5.29 Same as Fig. 5.28 but with an additional fractional
integration of order H ¼ 1/3 (a scale-invariant smoothing) to
simulate a turbulent passive scalar density. Notice that the
structures are smoothed. Reproduced from Lovejoy and
Schertzer (2010a).
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values of extremal Lévy variables all have the same sign
as that of the algebraic tail. This is not the case for
a > 1, although most of the values have the same sign
as the tail. The qualitative difference between the a> 1
and a< 1 processes is more apparent if we consider the
corresponding asymptotic forms of the probability
densities, which can be seen in fact as a straightforward
consequence of the universal multifractal codimension
function (Eqn. (5.35)) with C1 ¼ 1:

pðgaÞ � exp �
ga
a0

0

@

1

A

a0
2

6

4

3

7

5
;

ga
a0

0

@

1

A

a0

>> 0;

1

a0
þ

1

a
¼ 1

pðgaÞ � ð�gaÞ
�a�1

; ga << 0; 0 < a < 2

ð5:77Þ

where the key point is that the auxiliary variable
a0 changes sign at a ¼ 1. Note that exact closed-form
expressions in elementary functions for the probabi-
lities of extremals only exist in the “inverse Gaussian”
a ¼ 1/2 case; analytic symmetric Lévys exist for the
a ¼ 1 (Cauchy) and a ¼ 2 (Gaussian) cases.

5.4.2 Continuous-in-scale cascade
processes
An (extremal) white Lévy noise ga(�r) can be under-
stood as the limit of independent identically dis-
tributed extremal Lévy variables on a grid for a
mesh size shrinking to zero (with appropriate nor-
malization); this is possible because Lévy distributions
are “infinitely divisible” (Feller, 1972). With the help
of a suitably normalized convolution kernel gl(�r), it is
then possible to colour this white noise to obtain
(Schertzer and Lovejoy, 1987) a generator Gl ¼ logel
such that heqli ¼ heqGli ¼ eKðqÞlogl. We now show how
to obtain a generator with the appropriate properties
(including a mean codimension C1) by convolving a
Lévy noise ga(�r) with a kernel gl(�r):

Gl ¼ C
1=a
1 gl  ga ¼ C

1=a
1

ð

glð�r� r0Þgað�rÞd�r ð5:78Þ

“*” denotes “convolution.” We now review, step by
step, the different properties that the kernel gl(�r) and
its domain of integration must satisfy in order to
obtain the announced result, in particular that the
multifractal el:

el ¼ eGl ð5:79Þ

will indeed be multiscaling:
�

e
q
l



¼ lKðqÞ. This is the
first property to be respected:

KGðq, lÞ ¼ Logð< eqGl
>Þ ¼ LogðlÞKðqÞ ð5:80Þ

i.e. gl(�r) must be chosen so as to yield a logarithmic
divergence of the second characteristic function of the
generator Gl (Schertzer and Lovejoy, 1987). Before
detailing the corresponding necessary and sufficient
conditions, we need to recall that for a < 2, gl must
be nonnegative, otherwise G would a (nonextremal)
mixture of extremal Lévy variables with opposite
signs (see Fig. 5.30 for a graphical illustration). Note
that in this chapter we will only consider isotropic
d-dimensional multifractals, the only exception
being the asymmetric causal processes needed for
space-time simulations; in Chapter 7 we consider
anisotropic extensions. Since ga(�r) is statistically
homogeneous, from Eqn. (5.78), the statistics of G

are independent of �r so that one can take �r ¼ 0 and
apply the additivity of the second characteristic func-
tion, Eqn. (5.75):

Fig. 5.30 A comparison of the Gaussian (α ¼ 2, top) and Lévy
(α ¼ 1.6, bottom) subgenerators γα showing that whereas the
former is both positive-negative symmetric with low-amplitude
excursions, the latter is asymmetric with huge (algebraic)
excursions for negative values. Reproduced from Schertzer and
Lovejoy (1987).
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KGðqÞ ¼ C1
qa
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ð5:81Þ

where the a – 1 in the denominator comes from the
definition of the unit Lévy variables, Eqn. (5.73).

In order to obtain the desired log(l) divergence
for KG (Eqn. (5.80)), it suffices to choose gl to be an
isotropic power law with the appropriate power law
from the larger-scale L to the resolution L/l:

glð�rÞ ¼ N�1=a
d,a 1L=l�j�rj�Lj�rj

�1=a ð5:82Þ

where 1B is the indicator function of the subset B,
i.e. 1B(�r) ¼ 1 if �r ∈ B, ¼ 0 otherwise. This implies:

he
q
l



¼
�

eqGl


¼ e

C1

a� 1
qaN�1

d Odlogl

; Od ¼

ð

jr0j¼1

dd r0

ð5:83Þ

where Od is the integral over all the angles in the
d-dimensional space (e.g. O1 ¼ 2, O2 ¼ 2p, O3 ¼ 4p
etc.). Note that for theoretical work it is more conveni-
ent to take L¼ 1 so that the smallest scale is 1/l, whereas
for numerical simulations on discrete grids it is more
convenient to take L ¼ l so that the smallest scale is 1.

From Eqn. (5.83), we see that if we choose

Nd ¼ Od ð5:84Þ

then we obtain the desired nonlinear part of the
multiscaling behaviour:

�

e
q
l, u


¼ lKuðqÞ
; KuðqÞ ¼

C1

a� 1
qa ð5:85Þ

where Ku is the unnormalized exponent scaling
function corresponding to the fact that e given by
Eqns. (5.78), (5.79) is unnormalized (hence we tem-
porarily add the subscript u). A normalized el,n can
now be easily obtained using:

el, n ¼
el,u
�

el,u
 ð5:86Þ

so that:

he
q
l, n


¼ lKðqÞ; KðqÞ ¼ KuðqÞ � qKuð1Þ ¼
C1

a� 1
ðqa � qÞ

ð5:87Þ

as required (we temporarily add the subscript n to
distinguish it from the unnormalized process). The

above leads to cascades with the correct statistics at
the finest resolution l. Unfortunately, it turns out that
while the above is correct, due to “finite size effects” at
both large and mostly at small scales, the internal
structure of the realizations is not perfectly scaling. If
needed, corrections are not difficult to make (see
Appendix 5B and, for software, Appendix 5C). Numer-
ical simulations based on spatially discretizing these
continuous-in-scale cascade processes are shown in
Figs. 5.12, 5.13, 5.28.

5.4.3 Fractional Brownian and
fractional Lévy noises
Up until now, we have concentrated our attention on
the underlying turbulent fluxes which are conserved
from one scale to another. We have seen that the
typical observables such as the wind have fluctuations
(Dv) whose statistics are related to the fluxes by a lag
Dx raised to a power, the prototypical example being
the Kolmogorov law:Dv¼ φDxHwithφ¼ e1/3,H¼ 1/3.
If we take the qth moments of this equation, we obtain:

SqðDxÞ / DxxðqÞ; SqðDxÞ ¼ hjDvjqi; xðqÞ ¼ qH � KðqÞ

ð5:88Þ

(we have used <φl
q
> � lK(q) and Dx / l�1). Sq(Dx)

is the qth-order structure function and x(q) is its
scaling exponent; the usual (second)-order structure
function (related to the spectrum) was defined in
Eqn. (2.72) (see also Box 3.3). Since we now know
how to construct fields with the (convex) scaling
exponent K(q), our problem is to produce a field with
the extra linear exponent qH. Note that if the fluctu-
ations Dv are defined simply as differences (i.e. Dv ¼
v(x þ Dx) – v(x)) then the above is only valid for
0 � H � 1; when H is outside this range other
definitions of fluctuationsmust be used (see Section 5.5).

Before the development of cascade processes, the
intermittency of the flux φ was considered unimport-
ant, and turbulence was modelled (for the purposes
of statistical closure theories, for example) with
quasi-Gaussian statistics; this implies that K(q) ¼ 0
so that these processes therefore had perfectly linear
exponents x(q) ¼ qH. Before discussing the fraction-
ally integrated flux (FIF) model which gives x(q) with
convex K(q), let us therefore briefly discuss the sim-
pler processes that give rise to linear x(q).

If x(q) is linear, we anticipate that the corresponding
v(�r) can be modelled using an additive stochastic
process. In order to assure that the process can be made
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continuous, we consider fractional Brownian motion
(fBm) and its generalization, fractional Lévy motion
(fLm), which are produced by linear combinations of
independent Gaussian and Lévy noises with pure
singularities (the noises φa(�r) are of the same type as
the ga(�r) introduced in the previous subsection).
More precisely, these are written as convolutions of
noises with power laws which are extensions of
integration/differentiation to fractional orders; “frac-
tional integrals”:

vð�r Þ ¼ ga  j�rj
�ðd�H 0Þ ¼

ð

gaðr
0Þ

j�r� r0jd�H 0 d
dr0;

H 0 ¼ H þ d=a ð5:89Þ

where ga is again a Lévy noise made of uncorrelated
Lévy random variables (here they need not be
extremal) and H0 is the order of fractional integration
(as usual, the Gaussian case is recovered with a ¼ 2).
At each point, the resulting v field is a Lévy variable
and has fluctuation statistics (of Dv(Dr) ¼ v(r þ Dr) –
v(r)) obeying Eqn. (5.88). When a< 2, x(q) diverges
for q > a� These models are monofractal because the
fractal codimension of any level set v(�r) ¼ T has a
codimension c(T) ¼ H (i.e. independent of T). Note
that for the integral to converge, we require 0< H< 1.
In order to obtain processes with H outside this range,
we may use Eqn. (5.89) for the fractional part and then
perform ordinary (integer-valued) differentiation or
integration as required.

The power-law convolution (Eqn. (5.89)) is easier
to understand if we consider it in Fourier space, by
taking Fourier transforms of both sides of Eqn. (5.89).
Since the Fourier transform of a singularity is another
singularity (Box 2.2; the Tauberian theorem):

j�rj
�ðd�HÞ !

F:T:
j�kj

�H ð5:90Þ

We can use the basic property that a convolution is
Fourier transformed into a multiplication, to obtain
simply:

evð�kÞ / egað�kÞj�kj
�H ð5:91Þ

where:

vð�r Þ !
F:T:
evð�kÞ; gað�rÞ !

F:T:
egað�kÞ ð5:92Þ

We thus see that the convolution with power law
j�rj

�ðd�HÞ is the equivalent to a power-law filter j�kj
�H .

However, such filters are themselves generalizations
of differentiation (H< 0) or integration (H > 0). To
see this, recall the Fourier transform of the Laplacian,

ðr2gaÞ!
F:T: �j�kj

�2
ega , so that (ignoring constant

factors) j�kj
�H corresponds to real space (r2)�H/2,

i.e. for H > 0 it corresponds to a negative-order
differentiation (i.e. integration) of order H. Let us
mention that this definition of fractional derivative
with the help of the Laplacian is very convenient but
somewhat restrictive. In fact, it is related to an under-
lying microscopic (isotropic) Brownian motion. As
soon as the latter are replaced by Lévy flights (i.e.
additive Lévy processes), strongly asymmetric frac-
tional operators are obtained (Schertzer et al., 2001).

5.4.4 The fractionally integrated flux
model for nonconservative multifractals
In analogy with the fractional Gaussian/Lévy noises
and motions, nonconservative multifractal fields are
obtained by a fractional integration of a pure cascade
process el (a “flux,” hence the name “fractionally
integrated flux,” FIF model: Schertzer et al., 1997):

nlð�rÞ ¼ el  j�rj
d�H ¼

ð

elðr
0Þdd r0

j�r� r0jd�H
ð5:93Þ

We already saw that the flux itself can be modelled in the
same (power convolution/fractional integration) frame-
work: Eqn. (5.78). Figs. 5.31a and 5.31b show respectively
the effect of both fractional integration (H ¼ þ0.333)
and fractional differentiation (H ¼ �0.333) on the cas-
cade shown in Fig. 5.12a with C1 ¼ 0.1, varying a. For
links between the FIF model and the renormalization of
the Navier–Stokes equation, see Schertzer et al. (1998a).

The basic structures of the FIF and fBm and fLm
processes are compared and contrasted in Table 5.2.
We see that the difference is simply the type of noise
(Gaussian, Lévy, multifractal) which is (fractionally)
integrated. Fig. 5.32a shows a comparison of fBm, fLm
and a universal multifractal process with the same H
value; we can see that the fBm gives a relatively
uninteresting texture. fBm is fairly limited in its possi-
bilities since due to the central limit theorem (the
Gaussian special case), a process with the same statis-
tical properties can be produced by using singularities
of quite different shapes; the details of the shape
get “washed out.” In comparison, as one can see in
Fig. 5.32a, the fLm has extremes which are on the
contrary too strong: several strong mountain peaks
stand out. Although far from Gaussian, most atmos-
pheric fields as well as the topography seem to empiric-
ally have finite variance (i.e. qD > 2; Table 5.1) so a
fractional Lévymotion (fLm) is generally not a relevant
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model for those fields. On the contrary, themultifractal
simulation has much more interesting structures, but
we are still missing the interesting ridges, valleys and
other anisotropic features of real geomorphologies,
which we deal with in Chapters 6 and 7.

Note that in the case of fBm and fLm, the statistics
satisfy the “simple scaling” relation:

DvðlDrÞ¼
d
lHDvðDrÞ ð5:94Þ

where l is an enlargement factor and¼
d
means equality

in the sense of probability distributions (see Table 5.2
for definitions and statistics). These are monofractal

processes, since level sets (i.e. the sets where the sample
functions have a given value) are fractal sets with
unique dimensions and codimensions (equal to H).

5.4.5 Morphologies of isotropic
(self-similar) universal multifractals
Considering the “universal multifractals” vl, defined
by Eqns. (5.78), (5.79), (5.93), we see that they are
isotropic (the singularities have no preferred direc-
tions, they depend only on the vector norm). They are
therefore “self-similar”; “zoomed” structures will (on
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Fig. 5.31 (a) FIF simulations with
α ¼ 0.3, 0.5, . . ., 1.9, (bottom to top),
C1 ¼ 0.1, H ¼ 0.333, each offset for
clarity, each with the same random
seed. This should be compared
to Fig. 5.12a, which shows the
corresponding fluxes (i.e. before the
fractional integration). (b) The same as
Fig. 5.31a but for H ¼ –0.333 (i.e. a
differentiation, roughening, the same
random seeds).
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Table 5.2 A comparison of various scaling models for v showing the essential similarities and differences in their mathematical structure,
statistical properties. Here d ¼ 2 for horizontal planes and the dimension D is the fractal dimension of lines of constant v in the horizontal.
The monofractal fractional Brownian motion (fBm) model involves a fractional integration of order H0 with a flux γ2(r) which is simply a

(“δ-correlated”) Gaussian white noise with variance σ2. Note that the symbol a ¼
d
b indicates equality in probability distributions, i.e. a ¼

d
b

, Pr(a > s) ¼ Pr(b > s) for all s (“Pr” indicates probability). It results in fluctuations with Gaussian statistics, linear structure function

exponent x(q) and altitude-independent surface codimension c (or dimension D). The fLm is the generalization obtained by replacing
Gaussian variables with stable Lévy variables with index α (fBm is obtained in the case α ¼ 2). These have diverging moments q for q � α.
Finally, the multifractal fractionally integrated flux (FIF) model has the same structure, except that the white noises are replaced by
multifractal cascades φλ where λ is the resolution. The multifractal noise φ is the result of a continuous-in-scale multiplicative cascade. We
again find the exponent H, although now there are an infinite number of codimensions c(γ) (or dimensions D(γ)) that depend on the
threshold given by λγ (do not confuse the singularity γ with the subgenerator γα). To generalize fBm, fLm and FIF to anisotropic
processes, we must replace the distances in the fractional integration denominators by anisotropic scale functions as discussed in
Chapter 6.

Model Field Increments Codimensions

of level sets

Monofractal fBm vð�r Þ ¼ γ2  j�rj
�ðd�H0Þ

H0 ¼ H þ H2 ;

H2 ¼ d=2

Δv¼d γ2jΔrj
H

hjΔvjqi / jΔrjxðqÞ

xðqÞ ¼ qH

C ¼ H

D ¼ d – C

Monofractal fLm vð�r Þ ¼ γα  j�rj
�ðd�H0Þ

H0 ¼ H þ Hα ;
Hα ¼ d=α

Δv¼d γαjΔrj
H

�

jΔvjq


/ jΔrjxðqÞ

xðqÞ ¼
qH; q < α

1; q > α

C ¼ H

D ¼ d – C

Multifractal FIF Γλ / C1
1=αγα  j�r j

�ðd�H
α
0 Þ ;

φλ ¼ eΓλ

vλð�rÞ ¼ φλ  j�rj
�ðd�HÞ

Hα
0 ¼ d=α

0
;

1

α
þ

1

α
0 ¼ 1

Δv ¼ φλjΔrj
H

�

jΔvjq


/ jΔrjxðqÞ

xðqÞ ¼ qH � KðqÞ

cðγÞ ¼ max
q

�

qγ� KðqÞ
	

DðγÞ ¼ d � cðγÞ
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(a)

(b)

(c)

Fig. 5.32 (a) The upper left simulation shows
fBm, with H ¼ 0.7, lower left fLm with H ¼ 0.7,
α ¼ 1.8, and the right the multifractal FIF with
H¼ 0.7, α¼ 1.8, C1 ¼ 0.12 (close to observations
for topography, adapted from Gagnon et al.,
2006). Note the occasional “spikes” in the fLm
which are absent in the fBm; these are due to
the extreme power-law tails. (In this fLm positive
extremal Lévy variables were used, so there are
no corresponding “holes.”). (b) Isotropic (i.e. self-
similar) multifractal simulations showing the
effect of varying the parameters α and H (C1 ¼
0.1 in all cases). From left to right, H ¼ 0.2, 0.5
and 0.8. From top to bottom, α ¼ 1.1, 1.5 and
1.8. As H increases the fields become smoother,
and as α decreases one notices more and more
prominent “holes” (i.e. low smooth regions). The
realistic values for topography (α ¼ 1.79, C1 ¼

0.12, H¼ 0.7) correspond to the two lower right-
hand simulations. All the simulations have the
same random seed. Reproduced from Gagnon
et al. (2006). (c) A simulation of an (isotropic)
multifractal topography on a sphere using the
spherical harmonic method discussed in the
appendix (both sides of a single simulation are
shown, using false colours). The simulation
parameters are close to the measured values:
α ¼ 1.8, C1¼ 0.1, H ¼ 0.7 (see Chapter 4). The
absence of mountain “chains” and other typical
geomorphological features are presumably due
to the absence of anisotropy. We thank J. Tan for
help with this simulation, adapted from
Quattrochi and Goodchild (1997). See colour
plate section.
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Box 5.6 The stochastic modelling of vector multifractal processes and atmospheric dynamics: Lie cascades

Up until now, we have exclusively considered individual (scalar) fields such as a wind components or passive scalar
concentrations which are derived from scalar turbulent fluxes by fractional integration (the FIF model, Section 5.4).
These fluxes are (on average) symmetric with respect to certain scale-changing symmetries (which can readily
include anisotropy such as stratification, rotation etc.: see Chapters 7 and 8). However, in order to fully model the
atmosphere with many nonlinearly interacting fields (and presumably several nonlinearly coupled cascade pro-
cesses) we can consider the “state vector” representing the state of the atmosphere (e.g. with components being
the usual variables of state such as v, T, p, h, . . .). In order to fully model the atmosphere, scalar multifractal cascades
must therefore be extended to vector multifractal cascades. Once this is done various additional symmetries
(including those representing mass and energy conservation) can be imposed.

The situation is thus paradoxical: classical methods such as those used in GCM modelling deal easily with
vectorial interactions but only over a very limited range of scales; in contrast, the scaling models deal easily
with (even) infinite ranges of scales but (so far) have mostly avoided treating vectorial interactions. The only partial
exception is Schertzer and Lovejoy (1995); we give a short summary below.

Up until now, we have been restricted not only to scalar cascades, but to positive scalar cascades. This is already
problematic, since turbulence closures have long shown that one expects occasional “backscatter” corresponding to
fluctuations with ε < 0 (i.e. transfer from small to large scales even in classical – on average – downscale cascades:
see e.g. Lesieur and Schertzer, 1978). The basic problem is that the exponentiation of a real generator G yields a
positive real result: ε ¼ exp(G); to obtain ε < 0 we need to at least use complex generators leading to complex ε.

To see how complex cascadeswork, consider a large-scale (λ¼ 1) complex cascade flux v1, and complex generatorGλ:

vλ ¼ vλe
Gλ

The significance of GR,λ ¼ Re(Gλ) and GI,λ ¼ Im(Gλ) is obvious: GR,λ generates a nonnegative cascade process which
modulates the amplitude of the modulus of vλ, whereas GI,λ gives the rotation of vλ, hence the sign of its real part.
We may focus on the special case where GR,λ and iGI,λ are independent stochastic processes with corresponding
characteristic functions KR(q), KI(q):

hvq
λ
i ¼ heqGR, λiheqiGI, λihvq1i ¼ λ

KRðqÞλ
KIðqÞ ¼ λ

KðqÞ ð5:95Þ

The moment scaling function K(q) is therefore simply:

KðqÞ ¼ KRðqÞ þ KIðqÞ ð5:96Þ

It is important to note that whereas KR(q) is real for any real q, KI(q) is complex, being in general neither real nor pure
imaginary. The condition of small-scale cascade convergence (<vλ> ¼ 1) still corresponds to K(1) ¼ 0, but not to
KI(1) ¼ 0, i.e. GR generates a nonconservative process for the vector modulus.

Let us consider the discrete-in-scale complex lognormal case as an example (Gaussian generator, λ1 being the
fixed-step scale ratio). The real and imaginary exponential increments GR,λ1

and GI,λ1
will be a Gaussian variable of

variance and mean σR
2, mR and σI

2, mI, respectively. These lead to a generalization of the scalar universal scaling
function (Eqn. (5.33) with α ¼ 2):

KRðqÞ ¼ C1, Rðq
2 � qÞ � HRq; C1, R ¼ σ2

R=2; HR ¼ C1, R �mR

KIðqÞ ¼ �C1, Iðq
2 � qÞ � HIq; C1, I ¼ σ2

I =2; HI ¼ C1, I � imI

KðqÞ ¼ C1ðq
2 � qÞ � Hq; C1 ¼ C1, R � C1, I ; H ¼ HR þ HI

ð5:97Þ

A conservative field is obtained with mR ¼ –C1 (i.e. 6¼ –C1,R as required to obtain a conservative cascade of the
modulus), mI ¼ 0.

One may note that K(q) remains of the standard universal form even for complex q. Similar properties hold for
Lévy processes when GR,λ1

and GI,λ1
are independent and identically distributed. However, GR,λ1

and GI,λ1
do not

necessarily need to have the same α, and there is no longer the requirement that GR,λ1 and GI,λ1 should correspond
to extremal Lévy processes. For applications to correlated scaling processes where the processes are identified with
the real and imaginary parts, see Lovejoy et al. (2001).

To generalize this further we may consider nonpositive cascades as being components of more or less straight-
forward vectorial extensions of positive real processes: vλ¼ v1e

Gλ, where now the v are d-component vector fields and
Gλ is a d � d matrix (tensor). Corresponding to the group property of the transformation for the field, there is a Lie
algebra structure for the generators. For more details on these “Lie cascades” see Schertzer and Lovejoy (1995).
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average) resemble the unzoomed ones. In addition,
they depend on three parameters: the a, C1 which
define the statistics of the generator Gl (Eqns. (5.78)–
(5.81)) and the H in Eqn. (5.93). While the parameter
H is the order of fractional integration and quantifies
the degree of scale-invariant smoothing, the qualitative
effects of the codimension of the mean (C1) and the
Lévy index (a) are less easy to see. For H > 0, the k�H

filter is a kind of scale-invariant smoothing, whereas
for H < 0 it is scale-invariant roughening. This was
already confirmed in the 1D simulations (Figs. 5.31a,
5.31b) To further explore the effect of varying H on the
various morphologies, we performed multifractal
simulations in 2D (rather than in 1D). Fig. 5.32b
systematically shows the morphologies of the struc-
tures obtained by varying these three parameters; each
has the same initial random “seed” so that the basic
generating white noises are the same. For large-scale
geo-applications, we require simulations on the sphere
(Fig. 5.32c; these are discussed in Appendix 5.D).

To systematically survey the simulation param-
eter space (a, C1, H), we use false colours (using
a “cloud” palette, Fig. 5.33) and simulations with
a ¼ 0.4 to a ¼ 2.0 in increments of 0.4, as well as
C1, H from 0.05 to 0.80 in increments of 0.15, amply
covering the parameter range commonly encoun-
tered in the geosciences (this may be compared with
Fig. 6.9, showing the same simulations but with
scaling stratification). In Fig. 5.34, rather than fixing
a and varying C1, H we show the effect of fixing C1

and H and varying a. For fixed a, C1, we see that
increasing H systematically smoothes the structures,
whereas for fixed a, H, varying C1 changes the
“spottiness,” the sparseness of structures. For refer-
ence, note that the empirically most common values
of a are in the range 1.5–1.9 (the latter being appro-
priate for topography and cloud radiances, the
former, for rain and atmospheric turbulence). The
parameter C1 is often fairly low (e.g. in the range
0.05–0.15 for the wind, cloud radiances, topography;
see Table 4.8), although it can be large (0.25–0.7)
for rain and turbulent fluxes. While the basic
Kolmogorov value of H is 1/3, many fields (such as
cloud radiances) are near this; while for rain this
parameter is nearly zero, for topography it is in the
range 0.45–0.7. From Fig. 5.34 we can see that high
values of C1 lead to fields totally dominated by one
or two strong structures, while low a values lead to
fields dominated by “Lévy holes”: large regions with
extremely low values.

5.5 Wavelets and fluctuations:
structure functions and other
data analysis techniques

5.5.1 Defining fluctuations usingwavelets
We have seen that data analyses constantly rely on
defining fluctuations at a given scale and location;
the simplest definition of fluctuation at position x,
scale Dx, being Dv(x,Dx) ¼ v(x þ Dx) – v(x). Note
that since we typically assume that the statistics of
the fluctuations are independent of position, we pre-
viously suppressed the x argument. We have already
mentioned (Chapter 4) that other definitions of fluc-
tuation are possible and are occasionally necessary.
Let us now examine this a bit more closely.

Consider the statistically translationally invariant
process v(x) in 1D: the statistics are thus independent
of x and this implies that the Fourier components are
“d correlated” (Appendix 2A):

�

evðkÞevðk
0
Þ


¼ dkþk
0PðkÞ; evðkÞ ¼

ð

e�ikxvðxÞdx

ð5:98Þ

If it is also scaling then the spectrum E(k) is a power law:
EðkÞ � hjevðkÞj2i � k�b (where, here and below, we
ignore constant terms such as factors of 2p etc.). In
terms of its Fourier components, the fluctuation is thus:

Dvðx,DxÞ ¼ vðx þ DxÞ � vðxÞ

¼

ð

eikxevðkÞðeikDx � 1Þdk ð5:99Þ

so that the Fourier transform of Dv(x,Dx) is
evðkÞðeikDx � 1Þ. We first consider the statistics of
quasi-Gaussian processes for which C1 ¼ 0, x(q) ¼ Hq.
Exploiting the statistical translational invariance, we
drop the x dependence and obtain the relation to the
second-order structure function to the spectrum:

�

jDvðDxÞj2


¼ 4

ð

eikx
�

jevðkÞ2j


sin2
kDx

2

� �

dk

�

ð

eikxk�bsin2
kDx

2

� �

dk ð5:100Þ

As long as the integral on the right converges, then
the usual Tauberian argument (Box 2.2) shows that:

hjDvðDxÞj2i/Dxxð2Þ �

ð

eikxk�bsin2
kDx

2

� �

dk/Dxb�1

ð5:101Þ
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(a)

(b)

Fig. 5.33 (a) α ¼ 0.4, C1 ¼ 0.05 to 0.80, top
to bottom row; H ¼ 0.05 to 0.80, left to right
column. (b) α ¼ 0.8, C1 ¼ 0.05 to 0.80, top
to bottom row; H ¼ 0.05 to 0.80, left to right
column.
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(c)

(d)

Fig. 5.33 (c) α ¼ 1.2, C1 ¼ 0.05 to 0.80, top
to bottom row; H ¼ 0.05 to 0.80, left to right
column. (d) α ¼ 1.6, C1 ¼ 0.05 to 0.80, top to
bottom row; H ¼ 0.05 to 0.80, left to right
column.
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so that β ¼ x(2) þ 1 ¼ 2H þ 1 (C1 ¼ 0 here); see
Eqns. (4.18), (4.19). However, for large k, the inte-
grand � k�β, which implies a large wavenumber
divergence whenever β � 1. However, since for small
k sin2(kDx/2) / k2, there will be a low wavenumber
divergence only when β � 3. Although real-world
(finite) data will not diverge, in the theoretically diver-
gent cases the structure functions will no longer char-
acterize the local fluctuations, but rather those on
either the highest or lowest wavenumbers present in
the data. In the quasi-Gaussian case, or when C1 is
small, we have x(2) � 2H and we conclude that using
first-order differences to define the fluctuations leads
to second-order structure functions being meaningful
in the sense that they adequately characterize the fluc-
tuations whenever 1 < β < 3, i.e. 0 < H < 1.

Since 0 < H < 1 is the usual range of geophysical
H values, and the difference fluctuations are very
simple, they are commonly used. However, we can
see that there are limitations; in order to extend
the range of H values, one can define fluctuations
using finite differences of different orders. To see
how this works, consider using second (centred)
differences:

Dvðx,DxÞ ¼ vðxÞ �
1

2

�

vðx þ Dx=2Þ � vðx � Dx=2Þ
	

¼

ð

eikxevðkÞ 1�
1

2
ðeikDx=2 þ e�ikDx=2Þ

2

4

3

5dk

¼ 2

ð

eikxevðkÞsin
kDx

4

0

@

1

A

2

dk ð5:102Þ

Repeating the above arguments, we can see that
the relation β ¼ x(2) þ 1 holds now for 1 < β < 5,
or (with the same approximation) 0 < H< 2. Simi-
larly, by replacing the original series by its running
sum (a finite difference of order –1) – as done in the
Haar wavelet and MFDFA techniques described
below – we can extend the range of H values down
to –1. Since the “macroweather plateau” (at scales
longer than about two weeks, up to decades and
centuries) is precisely characterized by –1 < H < 0,
a corresponding “tendency structure function” tech-
nique is indeed useful, and is discussed shortly.

More generally, going beyond Gaussian processes
we can consider intermitent FIF processes, which

(e) Fig. 5.33 (e) α ¼ 2, C1 ¼ 0.05 to 0.80, top to
bottom row; H ¼ 0.05 to 0.80, left to right
column.
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have evðkÞ � eeðkÞjkj�H , and we see that the Fourier
transform of Dv(x,Dx) is ðeikDx � 1Þjkj�H

eeðkÞ. This
implies that for low wavenumbers evðkÞ � jkj1�H

eeðkÞ
(k<<1/Dx), whereas at high wavenumbers
evðkÞ � jkj�H

eeðkÞ (k>>1/Dx), hence since the mean
of e is independent of scale for both large and small
scales, we see that for 0 < H < 1 the fluctuations Dv
(Dx) are dominated by wavenumbers k � 1/Dx, so
that for this range of H, fluctuations defined as differ-
ences capture the variability of Dx-sized structures,
not structures either much smaller or much larger
than Dx. More generally, since the Fourier transform
of the nth derivative dnv/dxn is ðikÞnevðkÞ and the finite
derivative is the same for small k but “cut off” at large
k, we find that nth-order fluctuations are dominated
by structures with k� 1/Dx as long as 0< H < n. This
means that Dv(Dx) does indeed reflect the Dx scale
fluctuations.

While finite differences are usually adequate
in scaling applications, in the past 20 years there
has been a development of systematic ways of
defining fluctuations: wavelet analysis. For a
meteorological introduction, see Torrence and
Compo (1998) and Foufoula-Georgiou and
Kumar (1994); for a mathematical introduction,
see Holschneider (1995).

In wavelet analysis, one defines fluctuations with
the help of a basic “mother wavelet” C(x) and per-
forms the convolution:

Dvðx,DxÞ ¼

ð

vðx0ÞC
x0 � x

Dx

� �

dx0 ð5:103Þ

where we have kept the notation Dv to indicate “fluc-
tuation” (technically, Dv is a “wavelet coefficient”)
The basic “admissibility” condition on C(x) (so that
it is a valid wavelet) is that it has zero mean. If we take
the fluctuation Dv as the symmetric difference Dv ¼
v(x þ Dx / 2)� v(x � Dx / 2) then:

CðxÞ ¼ dðx � 1=2Þ � dðx þ 1=2Þ ð5:104Þ

where d is the Dirac delta function, then we recover
the usual first difference fluctuation; see Fig. 5.35b;
due to the statistical translational invariance, this is
equivalent to the difference: Eqn. (5.99)). This
“poor man’s” wavelet is usually adequate for
our purposes. As the generality of the definition
(Eqn. (5.103)) suggests, all kinds of special
wavelets can be introduced; for example, special
orthogonal wavelets can be used which are conveni-
ent if one wishes to “reconstruct” the original

function from the fluctuations, or to define power
spectra locally in x rather than globally, (averaged
over all x). Alternatively, we could consider the
second derivative of the Gaussian, which is the
popular “Mexican hat” shown in Fig. 5.35a, along
with the centred second finite difference wavelet:

CðxÞ ¼
1

2
d x þ

1

2

� �

þ d x �
1

2

� �� �

� dðxÞ

ð5:105Þ

The Mexican hat is thus essentially just a smoothed-
out version of the second finite difference. Just as
one can use higher- and higher-order finite differ-
ences to extend the range of H values, so one can
simply use higher- and higher-order derivatives of the
Mexican hat. The second finite difference wavelet is
easy to implement, it is simplyDv¼ (v(xþ Dx)þ v(x –
Dx/2))/2 – v(x) and has the advantage that the structure
function based on this is valid for 0 < H < 2.

Because the usual difference structure function
is restricted to H in the range 0 < H < 1, it is useful
to introduce variants, in particular to extend the
range down to H ¼ –1. The idea is simple: perform
a running sum (i.e. an integral of order 1, increasing
H by 1), and then perform a second finite difference
of the running sum, so that with respect to the ori-
ginal function, the range of H is now –1 < H < 1.
In terms of v, the fluctuation Dv is:

�

DvðDxÞ
	

Haar
¼

2

Dx

ð

xþDx=2

x

vðx0Þdx0 �

ð

x

x�Dx=2

vðx0Þdx0

2

6

4

3

7

5

ð5:106Þ

where we have added the extra 1/Dx factor so that the
scaling is the same as for the poor man’s fluctuation,
i.e. xHaar(q) ¼ x(q) for processes with –1 < H < 1. In
words, to estimate the Haar fluctuation for a lag Dx
(Eqn. (5.106)), one simply takes the difference of the
mean of the first and second halves of the interval.
To within the division by Dx, and a constant factor,
the result is the equivalent of using the Haar wavelet
as indicated in Fig. 5.35b:

CðxÞ ¼
1; 0 � x < 1=2

�1; �1=2 � x < 0
0; otherwise

ð5:107Þ

It can be checked that the Fourier transform
of this wavelet is / k�1sin2(k/4) so that it
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H=0.05

H=0.20

H=0.35

H=0.50

H=0.65

H=0.80

C1= 0 .05 alpha=0.4 alpha=0.8 alpha=1.2 alpha=1.6 alpha=2.0

(a)

H=0.05

H=0.20

H=0.35

H=0.50

H=0.65

H=0.80

C1=0.35 alpha=0.4

(b)

alpha=0.8 alpha=2.0alpha=1.2 alpha=1.6

Fig. 5.34 (a) The effect of varying α, H values
on multifractal simulations for C1 ¼ 0.05. The
upper figures show the effect of increasing
α (left to right, 0.4, 0.8, . . ., 2.) and H (top to
bottom 0.05, 0.2, . . ., 0.8) with C1 fixed.
Reproduced from Lovejoy and Schertzer
(2007). (b) Same as Fig. 5.34a but C1 ¼ 0.35.
Reproduced from Lovejoy and Schertzer (2007).
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C1=0.05

C1=0.20

C1=0.35

C1=0.50

C1=0.65

C1=0.80

H=0.05 alpha=0.4 alpha=0.8 alpha=1.2 alpha=1.6 alpha=2.0

(c)

C1=0.05

C1=0.20

C1=0.35

C1=0.50

C1=0.65

C1=0.80

H=0.35 alpha=0.4

(d)

alpha=0.8 alpha=1.2 alpha=1.6 alpha=2.0

Fig. 5.34 (c) The effect of varying α (left to
right, 0.4, 0.8, . . ., 2.) and C1 (top to bottom 0.05,
0.2, . . ., 0.8) with H fixed ¼ 0.05. Reproduced
from Lovejoy and Schertzer (2007). (d) Same as
Fig. 5.34c but H ¼ 0.35. Reproduced from
Lovejoy and Schertzer (2007).
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is better localized in Fourier space with both low
and high wavenumber fall-offs (� k and � k�1

respectively). It turns out that for analyzing multi-
fractals, even over their common range of validity
(0 < H < 1), the Haar structure function does
somewhat better than the poor man’s wavelet struc-
ture function (i.e. the usual structure function). This
is demonstrated on numerical examples in Appendix
5E. While the latter has the advantage of being
relatively simple to interpret (e.g. the mean of the
absolute difference is considered to be the “typical
difference”), the corresponding interpretation of
the Haar wavelet is less intuitive. To understand it
better, including its interpretation for H < 0, which
is important for macroweather signals which typic-
ally have –1 < H < 0 (Chapter 10), we introduce a
slightly different wavelet-based fluctuation that we
call the “tendency fluctuation”:

�

DvðDxÞ
	

tend
¼ DvðDxÞ ¼

1

Dx

ð

xþDx

x

v0ðx0Þdx0;

v0ðxÞ ¼ vðxÞ � vðxÞ

ð5:108Þ

We can see that the fluctuation DvðDxÞ defined in
this way is effectively a spatial average, hence the

overbar notation; v0(x) is the transect v(x) with the
mean removed: v0ðxÞ ¼ 0.

In terms of wavelets, this can be seen to be equiva-
lent to using the wavelet:

CðxÞ ¼ I½�1=2, 1=2
ðxÞ �
I½�L=2, L=2
ðxÞ

L
; L >> 1

ð5:109Þwhere I is the indicator function:

I½a, b
ðxÞ ¼
1 a � x � b
0 otherwise

ð5:110Þ

See Fig. 5.35b for a schematic. Note the closely related
Aggregated Standard Deviation (ASD) technique
(Koutsoyiannis and Montanari, 2007), which is based
on the scaling of the standard deviation of the inte-
grated series (exponent HASD: their symbol “H”).
From Eqn. 5.108, we obtain HASD ¼ 1 þ x(2)/2 ¼
H þ 1 � K(2)/2 with a range of validity �1 < H < 0.

The first term in Eqn. (5.109) represents the integral
in Eqn. (5.108) whereas the second removes the mean
(L>> 1 is the overall length of the dataset). The removal
of the mean in this way is necessary in order that the
wavelet satisfy the admissibility condition that its mean
is zero. The only essential difference between wavelet
coefficients defined by Eqn. (5.109) and the “tendency
fluctuation” defined in Eqn. (5.108) (where the mean is
removed beforehand), is the extra normalization by Dx
in Eqn. (5.108), which changes the exponent by 1. The

(a)

x

ψ (b) ψ

Fig. 5.35 (a) The popular Mexican hat wavelet (the second derivative of the Gaussian (smooth curve) valid for –1 < H < 2) compared
with the (negative) second finite difference wavelet (solid bars representing the relative weights of δ functions, valid for 0 < H < 2)), and
the second-order “quadratic” Haar wavelet (rectangles) obtained from the third difference of the running sum (i.e.ΔvðΔxÞ ¼
�

ðsðx þ ΔxÞ � sðx � ΔxÞÞ=3� ðsðx þ Δx=3Þ � sðx � Δx=3ÞÞ
�

=Δx where s(x) is the running sum valid for –1 < H < 2). (b) The “poor man’s”
wavelet, with solid bars representing the amplitudes of Dirac δ functions (the basis of the usual difference structure function, valid for
0< H< 1), uniform dark shading showing the Haar wavelet (the basis of the Haar structure function, the second difference of the running sum,
valid for –1< H< 1), and stippled (light) shading representing the wavelet used for the “tendency” structure function valid for –1< H< 0.
Reproduced from Lovejoy and Schertzer (2012a)
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term “tendency structure function” is used since for
H < 0 it gives a direct estimate of the typical tendency
of the fluctuations to increase or decrease.

Recall that the Haar fluctuation over an interval is
the difference between the means over the first and
second halves of the interval; it is in fact the difference
between the corresponding tendencies. In
Appendix 5E we develop this mathematically and
show that it is also equal to the tendency of the
differences (the order is immaterial). This observation
allows us to straightforwardly interpret the Haar
fluctuation. When 0< H< 1, the tendencies “saturate”
so that the Haar fluctuation is close to the difference
between the first and second halves of the interval,
whereas when –1 < H < 0, the differencing “saturates”
and the result is close to the tendencies. The result is that
not only does one recover the correct scaling exponents
for any –1 < H < 1, but the values of the fluctuations
themselves are close to the simple differences and
tendencies. We could mention the paper by Veneziano
and Furcolo (2003), who show how Haar wavelets can
be used advantageously for theoretically analyzing
multifractal cascades.

From the above we see that if needed, the
Haar wavelet can be easily generalized. To see how
to do this, introduce the integral sðxÞ ¼

ð

x

vðx0Þdx0 (for

discrete data, the integral can be replaced by a run-
ning sum). Notice that the Haar fluctuation can
be written in terms of the second differences of s(x):
(Dv(Dx))Haar ¼ 2(s(x þ Dx) � 2s(x þ Dx/2) þ s(x))/D
x. As we saw, generalizations valid for larger and
larger H are obtained by taking higher and
higher order differences (see also Appendix 5E). For
example, the “quadratic Haar” fluctuation can be
defined by using the (normalized) third difference of
the running sum: (Dv(Dx))QuadHaar ¼ 3(s(x þ Dx)�
3s(x þ 2Dx/3) þ 3s(x �Dx/3)� s(x))/ Dx, which is
very close to the Mexican hat wavelet (Fig. 5.35a) but
which is numerically much easier to implement. As
with the Mexican hat, it is valid for –1 < H < 2.

Wavelet mathematics are seductive – and there cer-
tainly exist areas such as speech recognition where both
frequency and temporal localization of statistics are
necessary. However, the use of wavelets in geophysics
is often justified by the existence of strong localized
structures, which are cited as evidence that the under-
lying process is statistically nonstationary or statistically
inhomogeneous (i.e. in time or in space, respectively).
However, we have seen that cascades produce exactly
such structures – the singularities – but that their

statistics are nevertheless strictly translationally invari-
ant. In this case the structures are simply the result of
strong singularities, but nevertheless the local statistics
are uninteresting, and they are averaged out in order to
improve statistical estimates.

Before continuing to discuss other related
methods for defining fluctuations, we should mention
that there have been strong claims that wavelets are
indispensable for analyzing multifractals (e.g.
Arneodo et al., 1999). Inasmuch as the traditional
definition of fluctuations as first differences is already
a wavelet, this may be true (see however the discus-
sion below of the DFA, MFDFA method). However,
for most applications, one does not need wavelet
properties or specific wavelet techniques. Indeed, it
is ironic that the advantages of the Haar wavelets are
due to their combination of summing and differen-
cing: they are not related to their wavelet nature,
which is not especially helpful, or even needed! In
addition, at a more fundamental level, Arneodo
et al.’s claim is at least debatable since, mathematic-
ally, wavelet analysis is a species of functional analysis,
i.e. its objects are mathematical functions defined at
mathematical points. On the contrary, we have
seen that the generic multifractal processes – cascades
– are rather singular measures, they are “delocalized”
(See Fig. 5.24; Schertzer and Lovejoy, 1992; Schertzer
et al., 2010), so that strictly speaking they are outside
the scope of wavelet analysis and therefore may not
always be appropriate. A particular example where
wavelets may be misleading is the popular “modulus
maximum” technique where one attempts to localize
the singularities (Bacry et al., 1989; Mallat and
Hwang, 1992). If the method is applied to a cascade
process, then as one increases the resolution the
singularity localization never converges, so the signifi-
cance of the method is not as obvious as is claimed
and its utility is questionable. Similar comments
apply to the “wavelet leader” technique (Serrano and
Figliola, 2009).

5.5.2 Generalized structure functions
and detrended multifractal fluctuation
analysis
We have seen (Eqn. (5.88)) that the statistical moments
of the fluctuations lead to the exponent x(q) ¼ qH –

K(q); in the special case where the fluctuations are
defined by the first differences, this is the usual qth-
order structure function (when q 6¼ 2, this is sometimes
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called the “generalized structure function”).While these
have the advantage that they can be used to directly
estimate H (¼ x(1)); they are often not optimal for
estimating C1, a. This is becauseH is often much larger
than C1 so that for low-order moments the qH term in
x(q) is much larger in magnitude than the K(q) term,
and at “large” q (e.g. q > ~3–4) the moments may
become spurious because of themultifractal phase tran-
sitions discussed above. In both cases, trying to estimate
K(q) using x(q) and the equation K(q)¼ qH – x(q) may
lead to large errors, since the magnitude of K(q) may be
of the same order as the uncertainty in x(q). The
moment method applied to the turbulent flux (trace
moments), as in Chapter 4, gives better accuracy for
C1, a by removing the qH term by taking the absolute
fluctuations at the smallest scale. Nonetheless, the
universality parameters can be estimated from x(q)
in a variety of ways; for example using x(1) ¼ H,
x0(1) ¼ H – C1 and x00(1) ¼ aC1.

An interesting example of the use of structure
functions that complement the flux analyses of Chap-
ter 4 (Figs. 4.6a, 4.6b) is shown in Figs. 5.36a and
5.36b. In Fig. 5.36a we show the corresponding results
for the longitudinal and transverse wind and pressure
(i.e. the wind components parallel and orthogonal to
the aircraft direction, respectively). Recall that these
are the fields most strongly affected by the aircraft
motion, especially the pressure (the aircraft attempted
to fly on an isobar). For the reasons discussed in
Chapter 2 – the slopes of the isoabars – the behaviour
for the wind has essentially two scaling regimes with a
transition at about 40 km, while, unsurprisingly,
the pressure has poor scaling. Contrast this with

Fig. 5.36b, where we show the corresponding plot
for those fields less affected by the trajectory
fluctuations, the temperature, humidity and log
potential temperature: here we see that the scaling is
indeed very good. These analyses were used to esti-
mate the corresponding H and C1 values given in
Table 4.4, and Fig. 5.36c shows the corresponding
x(q) functions. Notice that the curvature is small since
H � 0.5 while C1 � 0.05. We return to discuss these

results in more detail in Chapter 6 (Section 6.4.1),
where we compare them to the corresponding vertical
analyses.

We now discuss a variant method that defines the
fluctuations in a different way but still quantifies the
statistics in the manner of the generalized structure
function by assuming that the fluctuations are station-
ary: the “multifractal detrended fluctuation analysis”
(MFDFA: Kantelhardt et al., 2001, 2002). Indeed, this
is a straightforward generalization of the original
“detrended fluctuation analysis” (DFA: Peng et al.,
1994) obtained by considering moments other than q
¼ 2; below we will use the acronymMFDFA to refer to
both techniques. The method only works for 1D
sections, so consider the transect v(x) of series on a
regular grid with resolution ¼ 1 unit, N units long.
The MFDFA starts by replacing the original series by
the running sum:

sðxÞ ¼
X

x0� x

vðx0Þ ð5:111Þ

As discussed above, a sum is a finite difference of
order –1 so that analyzing s rather than v allows the
treatment of transects with H down to –1 (we will
discuss the upper bound shortly). We now divide the
range into LDx ¼ int(L/Dx) disjoint intervals, each
indexed by i ¼ 1, 2, . . ., LDx (int means “integer
part”). For each interval starting at x ¼ iDx, one
defines the “nth-order” fluctuation by the standard
deviation ss of the difference of s with respect to a
polynomial Fn(x,Dx) ¼ ss in the running sum of v as
follows:

where pn,i(x) is the nth-order polynomial regression of
s(x) over the ith interval of length x ¼ iDx. It is the
polynomial that “detrends” the running sum s; the fluc-
tuation ss is the root mean square deviation from the
regression. The F is the standard DFA notation for the
“fluctuation function”; as indicated, it is in fact a fluctu-
ation in the integrated series quantified by the standard
deviation ss. Using F we have Fn ¼ ss ¼ DvDx, so in
terms of the usually cited MFDFA fluctuation exponent

Fnðx,DxÞ ¼ ss ¼
1

Dx

X

Dx

j¼1

�

s
�

ði� 1ÞDx þ j
	

� pn,iðjÞ
	2

2

4

3

5

1=2

;
�

DvðDxÞ
	

MFDFA
¼

Fn

Dx
¼

ss

Dx
ð5:112Þ
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Fig. 5.36 (a) The structure function analyses corresponding to the trace moments of the aircraft data analysed in Fig 4.6 a. Upper left
is the longitudinal wind companent; upper right, the transverse component; lower left, the pressure (units of Δx are km). The structure
functions of order q ¼ 0.2, 0.4, . . ., 1.9, 2.0 are shown (from bottom to top). All have been nondimensionalized by dividing by the absolute
mean first difference at the finest scale (280 m). The dashed lines show the scale range judged to be the least affected by the isobaric trajectory
and turbulent aircraft motions (which affect mostly the largest and smallest scales respectively. Reproduced from Lovejoy et al. (2010b).
Compare these to the vertical structure function analyses in Fig. 6.16a, b.
(b) The same as Fig. 5.36a (corresponding to Fig. 4.6b), but for temperature (upper left), humidity (upper right), log potential temperature
(lower left) (fields weakly affected by the trajectory). Reproduced from Lovejoy et al. (2010b).
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a (not the Lévy a!) we have Fn � Dxa and a ¼ 1 þ H,
so that the (second-order) spectral exponent β¼ 2a – 1 –
K(2) and the oft-cited relation β ¼ 2a – 1 ignores the
intermittency correctionK(2). The fluctuationDv is very
close to the nth-order finite difference of v; it is also close
to a wavelet-based fluctuation where the wavelet is of nth
order, although this – like manyMFDFA results – is not
completely rigorous (see however Kantelhardt et al.,
2001; Taqqu et al., 1995). As a practical matter, in the
above sum, we start with intervals of length Dx¼ nþ 1
and normalize by the number of degrees of freedom of
the regression, i.e. byDx – n not byDx; Eqn (5.106) is the
approximation for large Dx.

In the usual presentation of the MFDFA, one
considers only a single realization of the process and
averages powers of the fluctuations over all the dis-
joint intervals i. However, more generally, we can
average over all the intervals and realizations. If, in
addition, we consider moments other than q¼ 2, then
we obtain the multifractal DFA (¼MFDFA) with the
following statistics:

hjssðDxÞj
qi1=q ¼ hjDx

�

DvðDxÞ
	

MFDFA
jqi1=q

¼ DxhðqÞ ð5:113Þ

where we have used the exponent h(q) as defined in
Davis et al. (1996) and Kantelhardt et al. (2002). In
what follows, we will refer to the method as the
MFDFA technique, even though the only difference
with respect to the DFA is the consideration of the
q 6¼ 2 statistics.

From our analysis and the relation hðDvÞ
q
MFDFAi �

DxxðqÞ, we see that the nth-order MFDFA exponent
h(q) is related to the usual exponents by:

hðqÞ¼ 1þxðqÞ=q¼ð1þHÞ � KðqÞ=q; � 1<H<n

ð5:114Þ

(the 1 appears because of the initial integration of
order 1 in the MFDFA recipe; the method works up
to H ¼ n because the fluctuations are defined as the
residues with respect to nth-order polynomials of the
sum s corresponding to n þ 1th-order differences in s
and hence n–1th-order differences in v). The basic
justification for defining the MFDFA exponent h(q)
in this way is that in the absence of intermittency
(i.e. if K(q) ¼ constant ¼ K(0) ¼ 0), one obtains
h(q) ¼ H ¼ constant. Unfortunately, contrary to what
is often claimed, neither the nonconstancy of h(q)
implies that the process is multifractal, nor conversely
does its constancy imply a monofractal process.
Indeed, it suffices to consider the (possibly fraction-
ally integrated, order H) monofractal β model where
h(q) ¼ 1 þ H – C1 þ C1/q, which is not only non-
constant but even diverges as q approaches zero. The
same divergence occurs for any universal multifractal
with a < 1!

During the last 10 years, the MFDFA technique
has been applied frequently to atmospheric data, and
of special note is the work on climate by A. Bunde and
coworkers (e.g. Koscielny-Bunde et al., 1998; Kantel-
hardt et al., 2001; Bunde et al., 2002, 2005; Lennartz
and Bunde, 2009; and see Chapter 10). In addition,
several numerical studies have compared its perform-
ance to various wavelet techniques: for example, for
estimating exponents, Oswiecimka et al. (2006) find it
slightly superior to the modulus maximum method,
and Huang et al. (2011) superior to the wavelet leader
method. However, the exact status of the MFDFA
method is not clear, since a completely rigorous
mathematical analysis has not been done (especially
in the multifractal case), and the literature suffers
from unnecessary and misleading claims to the effect
that the MFDFA is necessary because by its construc-
tion it removes nonstationarities due to trends (linear,
quadratic etc. up to polynomials order n – 1) in the
data. However, the removal of these trends only
accounts for these rather trivial types of nonstationar-
ity: the method continues to make the standard (and
strong) stationarity assumptions about the statistics of
the deviations which are left over after linear or
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Fig. 5.36 (c) The structure function exponents for T, logy, h from the
aircraft data analysed in Fig. 5.36b. The exponents were estimated by
fitting the structure functions over the “optimal” range 4–40 km.
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polynomial detrending. In particular, it does nothing
to remove the most common genuine type of statis-
tical nonstationarity in atmospheric science: the
diurnal and annual cycles which still strongly break
the scaling of the MFDFA statistics. Finally, the cor-
responding wavelet or finite difference definition of
fluctuations can also easily take into account these
polynomial trends (see Appendix 5E for the Haar
wavelet, structure function and generalizations, and
Chapter 10 for many applications); and third, the
method removes trends at all scales and locations so
that this emphasis on detrending is misleading (recall
that that the FIF model is strictly statistically station-
ary, i.e. it is statistically translationally invariant over
the entire range over which it is defined yet it has
random trends at all scales and all orders). In other
words, the MFDFA is a variant with respect to some
of the wavelet methods, in particular with respect to
the Haar wavelet and generalizations discussed in
Appendix 5E, and has the disadvantage that while it
yields accurate exponent estimates, the interpretation
of the fluctuations is not straightforward. In compari-
son, the usual difference and the (new) tendency
fluctuations and structure functions have simple phys-
ical interpretations in terms of magnitudes of changes
(when 1 > H > 0) and magnitudes of average
tendencies (when –1 < H < 0).

5.5.3 The Double trace moment
technique
Above, we reviewed the results of multifractal analysis
techniques which in principle could be applied to arbi-
trary multifractals. They enjoyed the apparent advan-
tage of making no assumptions about the type of
multifractal being analyzed. In practice, however, the
techniques are overly ambitious: for a finite (and usually
small) number of samples of a process, they attempt to
deduce an entire exponent function (an infinite number
of parameters), with the result that there is considerable
uncertainty in the resulting estimates of c(g) or K(q).
With the realization that physically observable multi-
fractals are likely to belong to universality classes, it is
natural to develop specific methods to directly estimate
the universality parameters (H,C1,a). These parameters
can then be used to determine c(g), K(q) from the
expressions for universal multifractals.

The double trace moment (DTM) technique dir-
ectly exploits universality by generalizing the usual
moment method (the trace moments) based on a

unique exponent q, which is the order of the moment;
it introduces a second exponent Z by taking the high-
resolution field to the power Z. The basic idea is to
use the fact that whereas K(q) is not a pure power law
in q (due to the extra linear term), the corresponding
formula for the normalized Z power is a pure power in
the exponent Z: K(Z,q) ¼ K(qZ) – qK(Z) ¼ ZaK(1,q)
(Eqns. (4.12), (4.13)). The method thus works by
taking the fluxes at the finest resolution and then
raising them to a series of powers Z; these can con-
veniently be taken as uniformly spaced in their logs.
Then Z powers of the fields are then degraded in the
usual way and at each of a series of scales a fixed qth
power is taken (q ¼ 0.5, 2 are typical values which are
used). We can then estimate K(Z,q) and repeat for a
series of Z values, and finally we can estimate a from
a plot of logZ versus logK. The intercept (¼ log K(1,q)
with K(1,q) ¼ C1(q

a
– q)/(a – 1)) can then be used to

determine C1. The whole process can then be repeated
with another value of q and the results compared and
averaged if needed. Figs. 5.37a, 5.37b and 5.37c show
an example of hot-wire anemometer wind data at
2 kHz in the atmosphere yielding the parameters a �
1.50� 0.05, C1¼ 0.25� 0.05 (for the energy flux e; see
Fig. 2.4 for a sample of the wind component data). At
the far right of the figure (corresponding to large qZ),
the curve flattens; this is because of the multifractal
phase transition; for large q,K(q) becomes linear so that
K(Z,q) ¼ K(qZ) – qK(Z) becomes constant.

5.6 Summary of emergent laws
in Chapter 5
We introduced the codimension function, c(g):

hφ
q
li ¼ lKðqÞ $ Prðφl > lgÞ � l�cðgÞ ð5:115Þ

that characterizes how the probability distributions
change with scale ratio l. It is related to the moment
scaling function K(q) introduced in Chapter 3 by a
Legendre transformation:

KðqÞ¼max
g

�

qg� cðgÞ
	

cðgÞ ¼ max
q

�

qg� KðqÞ
	 ð5:116Þ

This implies one-to-one relations between orders of
singularities and moments:
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c0ðgqÞ ¼ q
K 0ðqgÞ ¼ g

ð5:117Þ

For the Lévy generator “universal multifractal” cascade,
(0� a < 1, 1< a � 2, for a ¼ 1, take the limit a! 1)
this leads to:

KðqÞ ¼
C1

a� 1
ðqa � qÞ

cðgÞ ¼ C1
g

C1a0
þ

1

a

0

@

1

A

a0

; 1=a0 þ 1=a ¼ 1

ð5:118Þ

The dressed cascade properties (those of a cascade
developed over a wide range of scales and then
spatially averaged) generally have power-law prob-
ability distributions, a kind of self-organized critical
(SOC) behaviour:

he
ðdÞq
l i ¼ 1; q � qD , PrðelðdÞ > sÞ 	 s�qD

; s>>1

ð5:119Þ

Universal multifractal cascade processes which are
continuous in scale (“infinitely” divisible”) can be
constructed, using the (isotopic) “fractionally inte-
grated flux” (FIF) model:
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Fig. 5.37 (a) The time series of the (normalized) energy flux
estimated from the first 0.5 s of the 2 kHz wind data shown in Fig. 2.4,
estimated using the cube of the absolute third power of a fractional
integration of order 1/3 of the velocity field (power law filter by ω1/3).
This visibly demonstrates the very strong intermittency. Adapted from
Schmitt et al. (1993). (b) The double trace moments (DTM) for the
2 kHz wind data shown in Figs. 2.4, 5.37a for q ¼ 2, η¼ 0.43, 0.49, 0.56,
0.65, 0.74 (note that logs are to base e). Reproduced from Schmitt
et al. (1993). (c) An example of the DTM applied to turbulent
wind data at 2 kHz for q ¼ 2, 2.5, 3 (bottom to top), yielding slopes
α ¼ 1.50 � 0.05, C1 ¼ 0.25 � 0.05. A section of the data is shown in
Fig. 2.4. Reproduced from Schmitt et al. (1993).
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G ¼ C
1=a
1 I1=a0ðgaÞ ¼ C

1=a
1 ga  j�r j

�ðD=aÞ
;

φ ¼ eG ð5:120Þ

f ¼ IHðφÞ ¼ φ  j�rj
�ðD�HÞ ð5:121Þ

where ga is a unit independent, identically distributed
(i.i.d.) Lévy noise with index a and IH indicates a
fractional integration of order H.

The FIF yields f with statistics:

SqðDrÞ ¼ hDf qi ¼ jDrjxðqÞ; xðqÞ ¼ qH � KðqÞ;

KðqÞ ¼
C1

a� 1
ðqa � qÞ ð5:122Þ

where Sq is the qth order structure function.
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Appendix 5A: Divergence of high-order

statistical moments

In Section 5.3.2 we gave an outline of the basic argu-
ment showing that while the bare moments converge
for all moments q, any finite l, the dressed moments
generally diverge for q � qD. However, in the interests
of simplicity and brevity, we skipped a few nontrivial
steps.

First, recall the definition of the l resolution flux:

PlðAÞ ¼

ð

A

eld
D
�r ð5:123Þ

Since we are interested in the statistics of the
dressed and partially dressed density, el,L(d) ¼
PL(Bl) /vol(Bl), we will consider the mean of the
qth power of the flux on the set A (dimension D) of
the cascade constructed down to the scale L/l:

�

P
q
lðAÞ



¼
Dh

ð

A

dD�rel

iqE

ð5:124Þ

when q is an integer � 1:
Dh

ð

A

dD�rel

iqE

¼
D

ð

A

���

ð

A

dD�r1���d
D
�rqelð�r1Þ���elð�rqÞ

E

ð5:125Þ

The complexity of this multiple integral suggests the
introduction of “trace moments” which are obtained
by integrating over the subset of the integral obtained
by taking �r1 ¼ �r2 ¼ �r3 ¼ . . . ;:

Tr
A
ðelÞ

q ¼

ð

A

dqD�r
�

el
q


	

X

Al

�

el
q


l�qD ¼

X

Al

lKðqÞl�qD ð5:126Þ

where Al is the set A at resolution l (i.e. obtained by a
disjoint covering of A with balls Bl), el is the usual

(bare) flux density at resolution l. Since el � 0 and
we integrate over a subspace (using the fact that,

for any xi, SX
q
i

� 	1=q
is a decreasing function of q),

we have that the trace moments are bounds on the
usual moments corresponding to a Jensen inequality:
�

Pl
qðAÞ



� TrAel
q ðq > 1Þ

� TrAel
q ðq < 1Þ ð5:127Þ

The use of trace moments rather than the usual
moments has a number of advantages. First, it is defined
for all q (whereas the usual moments can only be
expanded as multiple integrals for positive integer q).
Second, tracemoments areHausdorffmeasures sincewe
can use the scaling of helqi to obtain a Hausdorff
measure over a higher dimensional space (for conveni-
ence we have left out the inf, etc.). We anticipate that in
the limit l ! 1 they will either diverge to 1 or
converge to 0; in fact, they will have two transitions!

To see this, use box counting in the sum SAl;
there will be lD terms, each of value helqil

�qD:

TrA
l
el

q ¼ lD�lKðqÞ�l�qD ¼ lKðqÞ�ðq�1ÞD

¼ lðq�1ÞðCðqÞ�DÞ ð5:128Þ

where we have used the dual codimension function
C(q) (Section 3.2.7). We recall that C(q) is monotonic in
q (Fig. 3.11). Consider first the case where C(q) > D for
q < 1. Due to the monotonicity of C(q) this is equiva-
lent to C1 > D. In this case:

lim
l!1

TrA
l
el

q ! 0 )
�

P1
qðAÞ



¼ 0 ð5:129Þ

for all q < 1; hence the process is degenerate on the
space. This implies that when C1 > D, then the mean
of the bare process is too sparse to be observed in the
space D; in fact, the above shows that if C1 > D it is
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impossible to normalize the process so that the
dressed mean hP1(A)i is finite.

Now consider the nondegenerate case C1 < D.
In this case, the trace moments diverge for q < 1,
but this does not affect the convergence of the dressed
moments (the trace moments are upper bounds here).
On the other hand, for q > 1, we find:

lim
l!1

TrAl
el

q ! 1 )
�

P1ðAÞ


! 1 ð5:130Þ

for all C(q) > D. Using the implicit definition of qD:
C(qD) ¼ D, we thus obtain:

�

P1ðAÞ


! 1; q > qD ð5:131Þ

i.e. in this case, divergence of the trace moments
implies divergence of the corresponding dressed
moments. This is the key result needed to complete
the demonstration in Section 5.3.2.
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Appendix 5B: Continuous-in-scale cascades:

the autocorrelation and finite size effects

5B.1 The internal cascade structure
Various numerical details and examples of simulations
of continuous in-scale isotropic (self-similar)
multifractals were given in Schertzer and Lovejoy
(1987) and Wilson et al. (1991), and earlier in this
chapter. Marsan et al. (1996) showed how to extend
the framework to causal (space-time) processes,
and Pecknold et al. (1997a, 1997b) discuss extensions
to anisotropic multifractal processes needed, for
example, to take into account atmospheric stratifica-
tion. As we detailed in Section 5.4, the basic method for
simulating G is to fractionally integrate a Lévy noise,
i.e. to convolve it with a singularity. While this method
works for large enough scale ranges (i.e. it yields simu-
lations with statistics satisfying hel

q
i = lk(q)withK(q) of

the universal form (Eqn. (5.33)) for large enough l),
there are significant deviations at small scales (“finite
size effects”), especially for a > 1, which is the most
empirically relevant range (there are also “large-scale
effects,”which are typically less important). In order to
get an idea of the importance of these deviations,
consider the theoretical form of the normalized auto-
correlation function RlðDrÞ for isotropic cascades as
derived on discrete-in-scale cascades in Eqn. (3.37):

RlðDr Þ ¼
helð�rÞelð�r� DrÞi

he2li
¼ jDrj�Kð2Þ

; jDrj � 1

ð5:132Þ

r; Dr are D dimensional position vectors and lags
respectively. The above uses the convention that the
process is developed over the range of scales from l

down to 1 unit so that Rl(1) ¼ 1 (Eqn. (3.37)); in this
appendix, since we are concerned with the numerical
simulation of cascades over a fixed range of scales L,
we take 1 unit ¼ 1 pixel so that in 1D the L resolution
cascade is L pixels long and the intermediate ratio

correction satisfies 1 � l � L (K(2) appears because
the autocorrelation is a q¼ 2 order statistic). Since the
spectrum is the Fourier transform of the autocorrela-
tion function we find that for wavenumber k = jkj, the
power spectrum E(k) of el has the scaling form given
by Eqn. (3.38). The discussion here is a summary of
key sections of Lovejoy and Schertzer (2010a, 2010b).

Fig. 5B.1 shows the power spectrum of the process
for a ¼ 2 compensated by dividing by the theoretical
k�β so that the theoretically expected spectral scaling
leads to horizontal straight lines on the log-log plots.
From the figure, we can see that the pure (power-law)
fractional integration takes nearly a factor of 103 in
scale to completely converge (the largest wavenumber
for a 214-point-long series is k ¼ 213 � 104); see
Lovejoy and Schertzer (2010b) for similar results for

1 2 3 4

Log10K

1.5

2.5

3

3.5

Log10k bE(k)

Fig. 5B.1 The compensated power spectrum for 200 realizations of
the α ¼ 2, C1 ¼ 0.2 process (with L ¼ 214). The compensation is
using the theoretical power law form k�β with β¼ K(2)¼ (C1/(α – 1))
(2α – 2). The bottom is the result for the pure singularity, the middle
is corrected for the Δx�1/α terms and the top shows the Δx�1

method (Lovejoy and Schertzer, 2010a).
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smaller a values. Although the rate of convergence
improves as a decreases from 2, deviations are notice-
able for all a. Also shown in the figure are the corres-
ponding spectra of the processes obtained using the
improved simulation techniques described in Lovejoy
and Schertzer (2010a, 2010b) and outlined below. It
can be seen that although the spectral results are still
not perfect, they are significantly better. Although the
biases in the individual realizations are not very visible
to the eye, the statistics as revealed by various scale-by-
scale analyses are still quite biased at small scales.

A simple way to examine the scaling properties of
realizations of cascades developed over a finite scale
ratio L is to consider two point statistics such as
autocorrelation functions, or their Fourier trans-
forms, spectra. To calculate these, we first consider
the qth power of the product of the random variables:
�

elðr
0Þelðr

0 � DrÞ
	

q ¼ eqðGðr
0ÞþGðr0�DrÞÞ

¼ exp qC
1=a
1

ð

1�j�r j�l

�

gðr0�r00Þþgðr0�Dr�r00Þ

	

gaðr
00ÞdDr00

2

6

4

3

7

5

ð5:133Þ

(cf. Eqns. (5.78), (5.79)); we see thatGðr0Þ þ Gðr0 � DrÞ
is the generator of the autocorrelation and ga is the
subgenerator. For the statistics we can define the
second characteristic function (SCF) of the generator
by taking ensemble averages of the above:

log




�

elðr
0Þelðr

0 � DrÞ
	q
�

¼ log




eqðGðr
0ÞþGðr0�DrÞÞ

�

¼
C1

a� 1
qaSðDrÞ

ð5:134Þ

the entire expression is the full SCF of the log of the
autocorrelation; the key function S(Dr) defined by
Eqn. (5.134) is its spatial part. Note that below we
do not need the more complex full two-point SCF
log heq1l ð�r1Þe

q2
l ð�r2Þi. Using the statistical translational

invariance of the process (by construction the noise
subgenerator ga(�r) is statistically independent of �r),
we can take r0 ¼ 0 to obtain:

SðDrÞ ¼

ð

1�jr00j�l

�

glð�r00Þ þ glð�r00 � DrÞ
	a

dr00

¼

ð

1�j�r j�l

�

glð�rÞ þ glð�r� DrÞ
	a

d�r ð5:135Þ

where in the far right we have taken�r ¼ –�r
00 and used

the fact that the domain of integration (but not neces-
sarily g) is invariant under inversion. We have con-
sidered isotropic multifractals in a d-dimensional
space. For anisotropic multifractals we must replace
the vector norm in the above by the corresponding
scale function (see Pecknold et al., 1993, 1997a, for
anisotropic simulations; the extension of the present
technical discussion to anisotropic cascades will be
made elsewhere). We note that from its definition
(and assumed statistical translational invariance, i.e.
independence from r0 in Eqn. (5.135)), the autocorre-
lation function (and hence S) is symmetric under
inversion: SðDrÞ ¼ Sð�DrÞ. Isotropic processes are
symmetric under rotation, in which case S is simply a
function of the vector norm jDrj. In this case, com-
paring Eqns. (5.132) and (5.134), we see that the
theoretical S(Dr) is:

StheoryðDrÞ ¼ Nd
a� 1

C1
log heð�rÞeð�r� DrÞ



¼ �Ndð2
a � 2ÞlogjDrj þ Nd2

alogl

ð5:136Þ

where we have used loghe2li ¼
C1

ða�1Þ 2
alogl; the cor-

responding logl term is absent in the normalized
autocorrelation function. We now consider how
closely StheoryðDrÞ (Eqn. (5.136)) is approximated by
SðDrÞ (Eqn. (5.135)).

5B.2 The general D ¼ 1 case
For simplicity, we start with the problem in one
dimension. Due to the inversion symmetry of S(Dr)
noted above, in 1D it is sufficient to consider Dx > 0
(x is a coordinate in 1D). The general d ¼ 1 case is:

SðDxÞ ¼

ð

1<jxj<l

�

gðxÞ þ gðx � DxÞ
	a

dx

¼

ð

l

1

�

gðxÞ þ gðx � DxÞ
	ah

þ
�

gð�xÞ þ gð�x � DxÞ
	a
�

dx ð5:137Þ

The two basic cases of interest are the symmetric
acausal case with g(x) ¼ g(–x), and the causal case
with g(x) ¼ 0 for x < 0 (see Chapter 9 and Marsan
et al., 1996). The corresponding condition for a
space-time process in d þ 1 dimensions to be causal
is g(�r,t) ¼ 0, t < 0 where�r is a d-dimensional (spatial)
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vector (this is equivalent to multiplying an acausal
g(�r,t) by a Heaviside function Y(t) such that Y(t) ¼ 0
for t< 0,Y(t)¼ 1 for t� 0 (see Lovejoy and Schertzer,
2010b, for numerical implementations).

For the symmetric acausal case we have:

SðDxÞ ¼

ð

l

1

�

gðxÞ þ gðx � DxÞ
	ah

þ
�

gðxÞ þ gðx þ DxÞ
	a
�

dx ð5:138Þ

We have already seen that for this case, with g a
truncated power law given in Eqn. (5.82), the normal-
ization factor Nd ¼ 2.

For the causal case, since g(x) ¼ 0 for x < 0, we
have:

SðDxÞ ¼

ð

l

1

�

gðxÞ þ gðx � DxÞ
	a

dx ð5:139Þ

Here it is easy to see that the corresponding normal-
ization factor is simply Nd ¼ 1.

Using these definitions and expansions, Lovejoy
and Schertzer (2010a) show:

SðDxÞ ¼ Cða, dÞ � Nd

�

ð2a � 2ÞlogDx � 2aloglþ 2
a2

d
Dx�d=a

�

�OðDx�2Þ þ OðDx�2m�nd=aÞ þ O
Dx

l

0

@

1

A

2

ð5:140Þ

where C is constant with respect to Dx, l and is
unimportant; n and m are positive integers and d ¼
1, N1 ¼ 2. The leading order expression for S is thus
¼ –Nd(2

a
– 2) (logDx) þ Nd2

alogl; i.e. the same as
Stheory (Eqn. (5.136)) with the leading Dx-dependent
correction �2Nd

a2

d
Dx�d=a.

Using the above expansion for S(Dx) we can
obtain the following expression for the autocorrela-
tion function:

heðxÞeðx � DxÞi / Dx�Kð2Þexp �
2C1

d

a2

a� 1
Dx�d=a

� �

ð5:141Þ

where we have only kept the (Dx�d/a) correction to
the leading power-law term. To gauge the importance
of this correction, note that for Dx as large as 100 it
can still be a 10% effect.

Having shown the origin of the problem, Lovejoy
and Schertzer (2010b) show how to remove the
leading order correction; this leads to the improved
statistics shown in Fig. 5B.1. Also in the next subsec-
tion, we discuss some technical details about the
simulations of causal cascades and cascades in higher
dimensional spaces. See also Chapter 9 for some
space-time examples and discussion of causal versus
acausal processes. In Appendix 5C we give a Mathe-
matica code to generate the corrected causal and
acausal simulations in 1D and 2D.

5B.3 Some practical (numerical) considerations
Before making numerical simulations, there are a
few practical points we should mention. Numeric-
ally, it very advantageous to use transform-based
convolution routines, and these are periodic. In all
our simulations, we therefore used periodic convo-
lutions. Since the noise g(x) is statistically invariant
under translations along the x-axis, this will not
break the translational invariance, but it does mean
that the left half of the simulation is statistically
dependent on the right half in a way which is artifi-
cially strong (due to the constraint that the resulting
e(x) is periodic). If absolutely needed, zero padding
could be used to avoid the periodicity, or – almost
equivalently – only one half of the simulation
could be used. One consequence is that the periodic
el,l(h) is somewhat modified with respect to its non-
periodic value. Note that although the Fourier filter
corresponding to the convolution with j�xj

�d=a is
of the type j�kj

�d=a0 (where a0 is the auxiliary variable,
1/a0 þ 1/a ¼ 1), there is trigonometric prefactor,
whose sign is quite important for preserving the
extremality of the subgenerator in the physical space.
Therefore, this prefractor function cannot be forgot-
ten if one wants to proceed directly from Fourier
space. It is therefore simpler to proceed from phys-
ical space, i.e. to directly compute convolutions in
physical space. While this issue is indeed important
for the convolution kernel g of the cascade generator
G ¼ g*g, it is not necessarily important for the kernel
of the observable I ¼ j�xj

�ðd�HÞ  eG unless the latter
is also a positive definite quantity such as a passive
scalar concentration (the FIF: Section 5.4.4). On the
contrary, it may be desirable that the observable be
symmetric about zero; in this case one may take an
antisymmetric convolution kernel for the fractional
integration as jxj�ð1�HÞsgnðxÞ (in d ¼ 1; generaliza-
tions to higher d are obvious).
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5B.4 Extensions to causal and higher
dimensional cascades
In this subsection we proceed to evaluate and com-
pare the statistical accuracy of the causal and acausal
simulations, as well as the effect of passing from 1D
to 2D. We use the Dx�d/a correction method for the
small Dx corrections because it is simple to imple-
ment, works reasonably well and is mathematically
well grounded. Also, to evaluate the simulations, we
only consider the (compensated) spectra, i.e. the q¼ 2
statistics rather than statistics of all orders. This is
sufficient since we find that: (a) the statistics are more
accurate for the causal case than for the acausal case,
(b) as expected when going from d ¼ 1 to d ¼ 2 the
convergence is improved, (c) we only consider the
case a ¼ 2 since the corresponding corrections are
the largest.

Consider first the causal 1D simulations. Fig. 5B.2a
shows that even without any corrections the causal
simulations have significantly smaller deviations
from pure power-law behaviour than the uncor-
rected acausal simulations; indeed they are even
comparable to the corrected acausal spectra. With
the Dx�d/a corrections we see that the causal spec-
trum is nearly perfect. In comparison, the corrected
acausal curve (reproduced from Fig. 5B.1) has sig-
nificantly larger deviations.

Turning our attention to simulations in 2D, we
recall the examples of isotropic acausal realizations of
the process in Section 5.4. As discussed there, we
expect the corrections to be smaller for d ¼ 2 when
compared to d ¼ 1; Fig. 5B.2b confirms this, and
indeed we see that the uncorrected 2D (isotropic, i.e.
angle-integrated) spectrum is slightly better than the
corrected 1D spectrum, but in all cases the correction
method makes the spectra significantly closer to the
theoretical pure power-law form.

Since space and time are not symmetric, we made
(x,t) causal simulations and evaluated compensated
1D spectra in the spatial and temporal directions
separately (see Fig. 5B.3 and Fig. 9.3 for a corresond-
ing realization). We see that the temporal spectra are
very close to those of the 1D causal processes (Fig.
5B.2a) – for both the corrected and uncorrected cases.
Similarly, the spectra of the corrected and uncor-
rected cases in the spatial direction have much larger
deviations; very close to the acausal 1D results
(Fig. 5B.2a), and compare with the 2D acausal spectra
(Fig. 5B.2b). We conclude that the correction method
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Fig. 5B.2 (a) Compensated spectra for the d ¼ 1 causal and
acausal cases for α ¼ 2, C1 ¼ 0.2 averaged over 200 realizations
each 214 long (cf. the comparable Fig. 5B.1) both with and without
Δx�1/α corrections discussed in the text; using the code in
Appendix 5C. From top to bottom: corrected causal spectrum,
uncorrected causal, corrected acausal and uncorrected acausal
simulations. Reproduced from Lovejoy and Schertzer (2010a).
(b) 1D/2D (acausal) comparison for α ¼ 2, C1 ¼ 0.2 showing
compensated spectra. Numbering the curves 1–4 bottom to top on
the far right, nos. 2 and 1 are 1D acausal, compensated spectra
(respectively corrected and uncorrected, 200 realizations 214 points).
Nos. 4 and 3 are respectively corrected and uncorrected 2D cases
(each 10 realizations, 29 � 29 points). They have been shifted
horizontally so that for one and two dimensions the highest
wavenumbers are the same, and they have been shifted in the
vertical so that the corresponding low-wavenumber parts of the
spectra roughly overlap (i.e. the corrected with the corrected, and
the uncorrected with the uncorrected). The vertical scale is arbitrary
and the thick horizontal line is the theoretical pure power law
spectrum. Reproduced from Lovejoy and Schertzer (2010a).
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works well independently of the dimension of the
space, and that for the causal extensions the temporal
statistics have significantly smaller deviations. This is
presumably because of the sharp discontinuity intro-
duced by the Heaviside function, which roughens the
simulations along the time axis, thereby somewhat
compensating for the otherwise overly smooth
behaviour.
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Fig. 5B.3 Compensated spectra for the d ¼ 2 causal simulations for
α ¼ 2, C1 ¼ 0.2 averaged over 10 realizations each 29 � 29 both
with and without the Δx�d/α corrections; using the code in
Appendix 5C. In top to bottom order the curves are: the 1D
spectrum of Δx�d/α corrected simulations in the t direction; the
corresponding spectra of uncorrected simulations; the 1D spectrum
of Δx�d/α corrected simulations in the x direction; the corresponding
1D spectrum of uncorrected simulations. Reproduced from Lovejoy
and Schertzer (2010a).
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Appendix 5C: A Mathematica code for causal

and acausal multifractal simulations

The Mathematica code reproduced in Fig. 5C.1 pro-
duces conservative (H ¼ 0) multifractals for both
acausal and causal (Chapter 9) fields in one and two
dimensions. It implements the Dx�d/a finite size effect
correction scheme described in both 1D and 2D for
causal and acausal processes (Lovejoy and Schertzer,
2010b). Lévy generates random extremal Lévy variables.

Attention is paid to avoiding underflows when expo-
nentiating. The basic functions epsa, epsc generate the
corrected multifractal acausal, causal simulations; l is
the length of the resulting vector; a, C1 are the basic
parameters. Note that the built-in function Convolve
performs a periodic convolution and no zero padding
was used (see the text for a discussion).

Fig. 5C.1 Mathematica code for generating causal and acausal multifractals in one and two dimensions, as described in the text. Reproduced
from Lovejoy and Schertzer (2010a).
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Fig. 5C.1 (cont.)
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Appendix 5D: Multifractal simulations on a sphere

In this appendix, we outline how to perform isotropic
fractional integrals ona sphereusing sphericalharmonic
expansions (Fig. 5.32c; extensions to anisotropic multi-
fractals on a sphere are not as straightforward as in flat
space, and we do not consider them here). We require
the following addition formula for spherical harmonics:

X

m

Y
lmðm,ϕÞYlmðm

0,ϕ0Þ ¼
2l þ 1

4p
PlðDmÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2l þ 1

4p

r

Yl0ðDm,ϕÞ

ð5:142Þ

Where Ylm is the spherical harmonic with principal
order l (conjugate to the azimuthal angle y in spher-
ical polar coordinates) and m is conjugate to the
spherical polar angle ϕ, Pl is the l order Legendre
polynomial. Note that the right-hand expression is
the m ¼ 0 harmonic; there is no ϕ dependence, it
is indicated purely for notational completeness. The
Dm ¼ cosy is not m – m0, but is the cosine of the angle
(y) between the directions defined by m, m0 and ϕ, ϕ0:

Dm ¼ mm0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m02
p

cosðϕ� ϕ
0Þ ð5:143Þ

We are interested in the following convolution:

IHUðm,ϕÞ ¼

ð

2p

0

ð

1

�1

y�ð2�HÞUðm0,ϕ0Þdm0dϕ0 ð5:144Þ

which is a fractional integration of order H in a space
dimension 2 (we have left out normalization factors).
In the above, U is the function which we wish to
fractionally integrate (i.e. our noise).

We now make the following expansion:

y�ð2�HÞ ¼
X

l

slYl, 0ðDm,ϕÞ ð5:145Þ

sl is the m ¼ 0 component of the full spherical
harmonic expansion:

sldm0 ¼

ð

2p

0

ð

1

�1

y�ð2�HÞYlmðDm,ϕÞdDmdϕ ð5:146Þ

Combining the expansion of y–(2–H) with the addition
formula, we obtain the full expansion:

y�ð2�HÞ ¼
X

l,m
sl

ffiffiffiffiffiffiffiffiffiffiffiffi

4p

2l þ 1

r

Y
l,mðm,ϕÞYl,mðm

0,ϕ0Þ

ð5:147Þ

Combining this with the expansion for the noise U:

Uðm,ϕÞ ¼
X

l,m
ul,mYl,mðm,ϕÞ ð5:148Þ

We can now obtain an expression for the fractional
integral:

IHUðm,ϕÞ ¼
X

l,m, l0,m0

ulmsl0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4p

2l0 þ 1

r

ð

2p

0

ð

1

�1

Ylmðm
0,ϕ0Þ

Yl0m0ðm,ϕÞY
l0m0ðm0,ϕ0Þdm0dϕ0

ð5:149Þ

or:

IHUðm,ϕÞ ¼
X

l,m, l0,m0

ulmsl0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

4p

2l0 þ 1

r

dll0dmm0Yl0m0ðm,ϕÞ

ð5:150Þ

hence:

IHUðm,ϕÞ ¼
X

l,m
sl

ffiffiffiffiffiffiffiffiffiffiffiffi

4p

2l þ 1

r

ulmYlmðm,ϕÞ ð5:151Þ

We thus see that the required filter is:

sl

ffiffiffiffiffiffiffiffiffiffiffiffi

4p

2l þ 1

r

ð5:152Þ

This is the filter required for the various fractional inte-
grations needed for the FIF model on the sphere. See
Fig. 5.32c for an example of a topography simulation.
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Appendix 5E: Tendency, poor man’s and Haar

structure functions and the MFDFA technique

5E.1 A comparison using multifractal simulations
In Section 5.5 we saw that we could characterize the
statistics of fluctuations by their moments using
structure functions. If the fluctuations at separation
Dx are defined by differences (the “poor man’s”
wavelet), then it is only when 0 < H < 1 that they
are dominated by structures of size Dx (by wavenum-
bers � Dx�1). When H is outside this range the
fluctuations reflect the statistics of much larger (H > 1)
or much smaller (H < 0) structures present in the
sample, they are independent of Dx, they “saturate.”
We have seen that in the weather regime most
geophysical H parameters are indeed in the range
0 < H < 1, justifying the common use of the
classical difference structure function. Even more
commonly, we find H > 0 implying that fluctuations
Df tend to increase with scale Df � DxH. The main
exception is in the low-frequency macroweather
regime (at time scales > ~10 days), where we gen-
erally have H < 0 so that fluctuations tend to
decrease with scale. We noted that the range of H
over which fluctuations are usefully defined could be
changed by integration and/or differentiation, corres-
ponding to changing the shape of the defining
wavelet, changing its real and Fourier space
localizations. In the usual wavelet framework, this is
done by modifying the wavelet directly, e.g. by
choosing the Mexican hat or higher-order derivatives
of the Gaussian, or by choosing them to satisfying
some special criterion. Following this, the actual con-
volutions are calculated using with fast Fourier (or
equivalent) numerical convolution techniques.

A problem with this usual implementation of
wavelets is that not only do these convolutions
make the determination of the fluctuations numer-
ically cumbersome, but at the end the physical
interpretation of the fluctuations is no longer clear,

and in any case we do not need any specific wavelet
properties. In contrast, when 0 < H < 1, the differ-
ence structure function gives direct information on
the typical difference (q ¼ 1) and typical variations
around this difference (q ¼ 2), and even typical
skewness (q ¼ 3) or typical kurtosis (q ¼ 4) or, if
the probability tail is algebraic, of the divergence of
high-order moments. Similarly, when –1 < H < 0
the tendency structure function directly quantifies
the fluctuations’s deviation from zero and the expo-
nent, the rate at which the deviation decreases by
averaging to larger and larger scales. These poor
man’s and tendency fluctuations are also very easy
to directly estimate from series with uniformly
spaced data and – with straightforward modifica-
tions – irregularly spaced data (see e.g. Section
6.4.2).

The real drawback of the difference (poor man’s)
and tendency structure functions is the limited range
of H over which they are useful. In this appendix, we
show how to extend this range without losing the
double advantages of simplicity of implementation
and simplicity of interpretation.

Before considering the Haar wavelet (Section 5.5),
let us recall the definitions of the difference and
tendency fluctuations for series with fixed resolutions.
The difference/ poor man’s fluctuation is:
�

DvðDxÞ
	

dif f
¼ dDxv; dDxv ¼ vðx þ DxÞ � vðxÞ

ð5:153Þ

where d is the difference operator. Similarly, in Chap-
ter 10 we use the “tendency fluctuation.” The first step
is to remove the overall mean (vðxÞ) of the series:
v0ðxÞ ¼ vðxÞ � vðxÞ and then take averages over lag
Dx. For this purpose, we introduce the operator TDx,
defining the tendency fluctuation (Dv(Dx))tend as:

175



�

DvðDxÞ
	

tend
¼ T Dxv ¼

1

Dx

X

x<x0<xþDx

v0ðx0Þ

ð5:154Þ

Alternatively, with the help of the summation
operator S:

�

DvðDxÞ
	

tend
¼

1

Dx
dDxSv

0

�

�

�

�

�

�

�

�

�

�

�

�

; Sv0 ¼
X

x0�x

v0ðx0Þ

ð5:155Þ

(Dv(Dx))tend has a straightforward interpretation in
terms of the mean tendency of the data but valid for
–1 < H < 0 (the climate range: Chapter 10). It is
also easy to implement: simply remove the overall
mean and then take the mean over intervals Dx
(equivalent to the mean of the differences of the
running sum).

We can now define the Haar fluctuation which is a
special case of the Daubechies family of wavelets (see
e.g. Holschneider, 1995, and, for a recent application,
Ashok et al., 2010). This can be done by instead
taking the second differences of the mean:

where HDx is the Haar operator. Note the use of the

shorthand notation s(x) ¼ Sv. Although this is still a
valid wavelet (Fig. 5.35b), it is almost trivial to calcu-
late, and below we shall see that the technique can be
used for –1 < H < 1. When applied without the initial
running sum to v(x) directly, it can be used for series
with 0 < H < 2 (see Section 6.4.2). The numerical
factor (2) is needed so that the Haar fluctuation is close
to the usual differences when 0 < H < 1 (see below).

From the definitions, it is easy to obtain the
relation:

H Dx ¼ 2T Dx=2dDx=2 ¼ 2dDx=2T Dx=2 ð5:157Þ

which will be useful for interpreting the Haar fluc-
tuations. Since the difference operator removes any
constants, the tendency operator could be replaced
by an averaging operator so that Eqn. (5.157)

means that the Haar fluctuation is simply the differ-
ence of the series that has been degraded in reso-
lution; it is the difference of the mean over the first
and second halves of the interval Dx. Note that for a
series length L, only a range of scales L/2 is access-
ible; the definition (Eqn. 5.156) identifies the largest
lag with L, the smallest with length 2; we could
equally well modify the definition so that this would
be L/2 and 1.

If needed, the Haar fluctuations can easily be
generalized to higher order n by using (nþ1)th-order
differences on the sum s:

H
ðnÞ
Dx ¼

ðnþ 1Þ

Dx
dnþ1
Dx=ðnþ1ÞS ð5:158Þ

We can note that the nth-order Haar fluctuation is
valid over the range –1 < H < n; it is insensitive to
polynomials of order n – 1, although as we see below,
for analyzing scaling series, this insensitivity has no
particular advantage. Generalizations valid to order
H <�1 are also possible by iterating the sum oper-
ator. Note that H

ð1Þ
Dx ¼ H Dx and H

ð0Þ
Dxv

0 ¼ T Dxv
0,

and hence when applied to a series with zero mean,
H

ð0Þ
Dx ¼ T Dx.

Consider for a moment the case n ¼ 2 which
defines the “quadratic Haar fluctuation”:

ðDvðDxÞÞQuadHaar ¼ 3ðsðx þ DxÞ � 3sðx þ 2 Dx=3Þ

þ3sðx þ Dx=3Þ � sðxÞÞ=Dx

ð5:159Þ

This fluctuation is sensitive to structures of size Dx�1,
and hence useful over the range –1 < H < 2, and it
“filters” out polynomials of order 1 (lines). This is
thus essentially equivalent to the quadratic MFDFA
technique (Section 5.5) that we numerically investi-
gate below, and computationally it is much faster
since there are no time-consuming regression calcu-
lations. Below, we only give some limited discussion
of this n ¼ 2 “quadratic Haar” wavelet since for the

�

DvðDxÞ
	

Haar
¼ H Dxv ¼

2

Dx
d2Dx=2Sv ¼

2

Dx

��

sðxÞ þ sðx þ DxÞ
	

� 2sðx þ Dx=2Þ
	

¼
2

Dx

X

xþDx=2<x0<xþDx

vðx0Þ �
X

x<x0<xþDx=2

vðx0Þ

2

4

3

5

; sðxÞ ¼ Sv

ð5:156Þ
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most common series studied here, with H < 1, it was
generally found to be very close to the usual Haar
wavelet although with the slight disadvantage of con-
verging a little more slowly for small Dx, and having a
less straightforward interpretation. On the plus side, it
was a bit more accurate at the very largest factor of
two of Dx (see the example in Section 5E.3). We also
note that if H < –1, fluctuations could be usefully
defined using higher-order summation operators, but
we do not need them here.

Before proceeding, we could make a general prac-
tical remark about these real-space statistics: most lags
Dx do not divide the length of the series (L) exactly, so
there is a “remainder” part. This is not important for
the small Dx << L, when for each realization there
are many disjoint intervals of length Dx, but when
L/3 �< Dx < L the statistics can be sensitive to this
since from each realization there will be only one or
two segments and hence poor statistics. A simple
expedient is to repeat the analysis on the reversed
series and average the two results. This can indeed
improve the statistics at large Dx when only one or a
small number of realizations is available; it has been
done in the analyses below.

To have a clearer idea of the limitations of the
various fluctuations for determining the statistics of
scaling functions, we now numerically compare the
performance of these various fluctuations and their
corresponding structure functions when applied to
the characterization of multifractals. In order to easily
compare their performances with those of standard
spectral analysis, we will only consider the second-
order (q ¼ 2) structure functions and will use a ¼ 1.8,
C1 ¼ 0.1 simulations with H in the range –7/10 <

H < 7/10 (the most common range for geodata).
These parameters yield an intermittency correction
K(2) ¼ 0.18 for the q ¼ 2 moment; 50 simulations
were averaged to estimate the ensemble spectrum.
The simulations were made using the technique
described in Appendix 5B for the flux (i.e. H ¼ 0).
For the corresponding first fractional integration (for
the generator), the Dx�d/a correction method was
used. For the second fractional integration (for H 6¼ 0
to obtain the field from the flux) we used a Fourier
space power-law filter k�H. For this fractional inte-
gration, exponential cutoffs were used at high fre-
quencies to avoid small-scale numerical instabilities
(this is standard for differentiation, i.e. when filtering
by k�H with H< 0, it is equivalent to using the “Paul”
wavelet; Torrence and Compo, 1998). The series were

216 in length and were then degraded in resolution
by factors of 4 to a length of 214 pixels to avoid
residual finite size effects in the simulation at the
smallest scales. In order to avoid spurious
correlations introduced by the periodicity of the
simulations, the series were split in half so that the
largest scale was 213.
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Fig. 5E.1 (a) Samples of the simulations analysed in this appendix.
From bottom to top, H ¼ �7/10, –3/10, 3/10, 7/10. All have C1 ¼ 0.1,
a ¼ 1.8; the sections are each 213 points long. One can clearly see
the change in character of the series when H changes sign: at the
bottom, fluctuations tend to cancel out (fluctuations are “stable”); at
the top, they tend to reinforce each other (fluctuations are
“unstable”). (b) The compensated spectra for an ensemble of 50
realizations, 214 each, a ¼ 1.8, C1 ¼ 0.1, intermittency correction ¼
K(2) ¼ 0.18, with H increasing from top to bottom from –7/10 to
7/10. The dashed horizontal line is the theoretical behaviour
indicated over the range used to estimate the exponent (i.e. the
highest and lowest factor of 100.5 in wavenumber has been
dropped). Each curve was offset in the vertical for clarity.
Reproduced from Lovejoy and Schertzer (2012a).
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In Fig. 5E.1a we show samples of the simulations
that visually show the effect of increasing H from
–7/10 to 7/10. In Fig. 5E.1b, we see that, as expected,
the compensated spectra are nearly flat, although for
the lowest and highest factors of about 100.5 � 3
there were more significant deviations; the slopes
of the central portions were thus determined by

regression, and the corresponding exponents are
shown in Fig. 5E.2. In the figure, the spectra were
averaged over logarithmically spaced bins, 10 per
order of magnitude (with the exception of the lowest
factor of 10, where all the values were used). We also
performed the regressions using log-log fits using all
the Fourier components (rather than just the aver-
aged values) in the same central range, and these
gave virtually identical exponent estimates (the mean
absolute differences in the estimated spectral expo-
nent β were � � 0.007), which are therefore not
shown. Similarly, if instead of log-log linear regres-
sions, nonlinear regressions are used, we find that
the latter yield identical exponents to within � 0.009,
so that these estimates were too similar to the former
to be worth showing. From Fig. 5E.2, one can see
that there seems to be a residual small bias of about
–0.04, whose origin is not clear.

We next consider the Haar structure function,
which we compare to the second-order, quadratic
MFDFA structure function analogue (based on the
MFDFA fluctuation DvMFDFA ¼ F/Dx where F is the
usual MFDFA scaling function (see Eqn. (5.112));
the former is valid over the range –1 < H < 1,
the latter over the range –1 < H < 2. We can see
(Fig. 5E.3) that the Haar structure function does an
excellent job with overall bias mostly around þ 0.01
to 0.02 (Fig. 5E.2), and that the MFDFA method is
nearly as good (overall bias � –0.02 to –0.04). It is
interesting to compare this in the same figure with
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Fig.5E.2 Regression estimates of the compensated exponents
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MFDFA (dashed), the usual difference (poor man’s) structure
function (q ¼ 2, for H > 0) and the tendency structure function
(q ¼ 2, same line, for H< 0). Reproduced from Lovejoy and Schertzer
(2012a).
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SHaarðΔxÞ ¼ hΔvHaarðΔxÞ

2i1=2 (solid lines) and the second-order
MFDFA technique (dashed lines), again for H ¼ –7/10 (top) to
H ¼ 7/10 (bottom), every 1/5. Each curve was offset in the vertical
for clarity by 1/4. Flat regions are the theoretically predicted
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Fig. 5E.4 Comparison of the compensated Haar structure function
(thick), the difference structure function (thin, below the axis) and
the tendency structure function (thin, above the axis). The pairs
of curves, top to bottom, have H ¼ –3/10, H ¼ –1/10, H ¼ 1/10,
H ¼ 3/10. It can be seen that the standard difference structure
function has poor scaling for nearly two orders of magnitude when
H ¼ 1/10, and one order of magnitude for H ¼ 3/10 (see Fig. 5.E.2
for quantitative estimates). Reproduced from Lovejoy and Schertzer
(2012a).
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the results of the tendency structure function
(H < 0) and the usual difference (poor man’s) struc-
ture function (H > 0) (Fig. 5E.4). The tendency
structure function turns out to be quite accurate,
except near the limiting value H ¼ 0, with the large
scales showing the largest deviations. In comparison,
for the difference structure function, the scaling is
poorest at the smaller scales, requiring a range factor
of � 100 convergence for H ¼ 1/10 and a factor � 10
for H ¼ 3/10. The overall regression estimates
(Fig. 5E.2) show that the biases for both increase near
their limiting values H ¼ 0 to accuracies � � 0.1 (note
that they remain quite accurate if one only makes
regressions around the scaling part). This can be under-
stood, since the process can be thought of as a statistical
superposition of singularities of various orders, and
those singularities whose orders are higher (lower) than
the theoretical limit H ¼ 0 will have biased difference
(tendency) structure functions. The main advantage of
the Haar structure function with respect to the usual
(tendency or difference) structure functions is precisely
that it is valid over the whole range –1 < H < 1, so that
it is not affected by the H ¼ 0 limit.

5E.2 The theoretical relation between poor
man’s, tendency and Haar fluctuations: hybrid
structure functions
We have seen that although the difference and
tendency structure functions have the advantage of
having simple interpretations in terms respectively of
the average changes in the value of the process and its
mean value over an interval, this simple interpretation
is only valid over a limited range of H values. In
comparison, the Haar and MFDFA fluctuations give
structure functions with valid scaling exponents over
wider ranges of H. But what about their interpret-
ations? We now briefly show how to relate the Haar,
tendency and poor man’s structure functions, thus
giving it a simple interpretation as well.

In order to see the connection between the fluctu-
ations, we use the “saturation” relations:

dDxv¼
d Ctendv; H < 0

T Dxv¼
d Cdif f v; H > 0

ð5:160Þ

where ¼d indicates equality in the random variables in
the sense of probability distributions and Ctend, Cdiff

are proportionality constants. These relations were
easily verified numerically and arise for the reasons
stated above; they simply mean that for series with

H < 0 the differences are typically of the same order
as the function itself, and that for H > 0 the tendencies
are of the same order: the fluctuations “saturate.” By
applying Eqn. (5.154) to Eqn. (5.153) we now obtain:

H Dxv ¼ 2T Dx=2dDx=2v¼
d 2T Dx=2v¼

d C
0

tendT Dxv; H < 0

H Dxv ¼ 2dDx=2T Dx=2v¼
d 2dDx=2v¼

d C
0

dif f dDxv; H > 0

ð5:161Þ

where C0
tend, C0

diff are “calibration” constants (only a
little different from the unprimed quantities – they
take into account the factor of 2 and the change from
Dx/2 to Dx). Taking the qth moments of both sides
of Eqn. (5.161), we obtain the results for the various
qth-order structure functions:
D

ðDvÞ
q
Haar

E

D

ðDvÞ
q
dif f

E ¼ C
0 q

dif f ; H > 0

D

ðDvÞ
q
Haar

E

D

ðDvÞ
q
tend

E ¼ C
0q

tend; H < 0

ð5:162Þ

This shows that at least for scaling processes the Haar
structure functions will be the same as the difference
(H > 0) and tendency structure functions (H < 0), as
long as these are “calibrated” by determining C0

diff

and C0
tend. In other words, by comparing the Haar

structure functions with the usual structure functions
we can develop useful correction factors which will
enable us to deduce the usual fluctuations given the
Haar fluctuations. Although the MFDFA fluctuations
are not wavelet coefficients at least for scaling pro-
cesses, the same basic argument applies. Since the
MFDFA and usual fluctuations scale with the same
exponents, they can only differ in their prefactors, the
calibration constants.

To see how this works on a scaling process, we
confined ourselves to considering the root mean
square (RMS) S(Dt) ¼ <Dv2>1/2; see Fig. 5E.5,
which shows the ratio of the usual S(Dt) to those
of the RMS Haar and MFDFA fluctuations. We see
that at small Dx’s, the ratio stabilizes after a range of
about a factor 10–20 in scale, and that it is quite
constant up to the extreme factor of 3 or so
(depending a little on the H value). The deviations
are largely due to the slower convergence of the
usual RMS fluctuations to their asymptotic scaling
form. From Fig. 5E.5 we can see that the ratios
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C0
Haar ¼ S/SHaar and corresponding C0

MFDFA ¼
S/SMFDFA are well defined in the central region,
and are near unity, more precisely in the range
1/2< C0

Haar< 2 for the most commonly encoun-
tered range of H: –4/10 < H < 4/10. In comparison
(bottom of the figure), over the same range of H, we
have 0.23 > C0

MFDFA > 0.025 so that the MFDFA
fluctuation is quite far from the usual ones. For
applications, one may use the semi-empirical formulae
C0

Haar � 1.1 e�1.65H and C0
MFDFA � 0.075e�2.75H,

which are quite accurate over the entire range –7/10
< H < 7/10. Although these factors in principle allow
one to deduce the usual RMS structure function stat-
istics from the MFDFA and Haar structure functions,
this is only true in the scaling regime. Since the
corrections for Haar fluctuations are close to unity,
for many purposes they can be used directly.

5E.3 Hybrid fluctuations and structure
functions in the case of global monthly
surface temperatures: an example with both
H < 0 and H > 0 regimes
For pure scaling functions, the difference (1 > H > 0)
or tendency (–1 < H < 0) structure functions are
adequate. The real advantage of the Haar structure
function is apparent for functions with two or more
scaling regimes, one with H > 0 and one with H < 0.

Can we “calibrate” the Haar structure function so that
the amplitude of typical fluctuations can still be easily
interpreted? For these, consider Eqn.(5.161), which
motivates the definition:

H hybrid,Dxv ¼ maxðdDxv,T DxvÞ ð5:163Þ

of a “hybrid” fluctuation as the maximum of the
difference and tendency fluctuations; the “hybrid
structure function” is thus the maximum of the
corresponding difference and tendency structure
functions and therefore has a straightforward inter-
pretation. The hybrid fluctuation is useful if a
unique calibration constant Chybrid can be found
such that:

H hybrid,Dxv�
d
ChybridH Dxv ð5:164Þ

To get an idea of how the different methods work on
real data, we consider the example of the global
monthly averaged surface temperature of the earth
(discussed in detail in Section 10.3). This is obviously
highly significant for the climate but the instrumental
temperature estimates are only known over a small
number of years (here, the period 1880–2009; 128
years, three different series; Appendix 10C). Fig.
10.12 shows the comparison of the difference, ten-
dency, hybrid and Haar RMS structure functions, the
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Fig. 5E.5 Comparison of the ratios of
RMS structure functions (SðΔxÞ ¼
hΔv2i1=2) for the simulations discussed in
the text. Upper left shows the ratio of the
RMS usual structure function (i.e. difference
when H> 0, tendency when H< 0) to the
Haar structure function for H¼ 1/10, 3/10,
. . ., 9/10 (thick, top to bottom), and –9/10,
–7/10, . . ., –1/10 (thin, top to bottom).
The Haar structure function has been
multiplied by 2x(2)/2 to account for the
difference in effective resolution. The
central flat region is where the scaling is
accurate, indicating a constant ratio C0Haar
¼ S/SHaar which is typically less than a
factor of 2. Upper right shows same but for
the ratio of the usual to MFDFA RMS
structure functions after the MFDFA was
normalized by a factor of 16 and the
resolution correction 4x(2)/2 (its smallest
scale is 4pixels). Bottom left shows the ratio
of the MFDFA structure function to the
Haar structure function with both the
normalization and resolution corrections
indicated above (note the monotonic
orderingwith respect toH, which increases
from top to bottom). Reproduced from
Lovejoy and Schertzer (2012a).
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last increased by a factor Chybrid ¼ 100.35 � 2.2. It can
be seen that the hybrid structure function does
extremely well; the deviation of the calibrated Haar
structure function from the hybrid one is � 14% over
the entire range of near a factor 103 in time scale. This
shows that to a good approximation the Haar struc-
ture function can preserve the simple interpretation
of the difference and tendency structure functions: in
regions where the logarithmic slope is between –1 and
0, it approximates the tendency structure function,
whereas in regions where the logarithmic slope is
between 0 and 1, the calibrated Haar structure func-
tion approximates the difference structure function.
Chybrid is near the value 2; it was found that for the
data studied in this book (primarily with H in the
range �0.4 to þ0.4) this was usually quite accurate.
Therefore, unless otherwise indicated, the Haar ana-
lyses presented in this book increased the raw fluctu-
ations by a factor of Chybrid ¼ 2.

Before embracing the Haar structure function, let
us consider its behaviour in the presence of nonscal-
ing perturbations; it is common to consider the sen-
sitivity of statistical scaling analyses to the presence of
nonscaling external trends superposed on the data
which therefore break the overall scaling. Even when
there is no reason to suspect such trends, the desire to
filter them out is commonly invoked to justify the use
of quadratic MFDFA or high-order wavelet tech-
niques which eliminate linear or higher-order poly-
nomial trends. However, for this purpose, these
techniques are not obviously appropriate since on
the one hand they only filter out polynomial trends
(and not for example the more geophysically relevant
periodic trends), while on the other hand, even for
this, they are “overkill” since the trends they filter are
filtered at all scales, not just the largest. The drawback
is that with these higher-order fluctuations, we lose
the simplicity of interpretation of the Haar wavelet
while obtaining few advantages. Fig. 5E.6a shows the
usual (linear) Haar RMS structure function compared
to the quadratic Haar and quadratic MFDFA struc-
ture functions. It can be seen that while the latter two
are close to each other (after applying different cali-
bration constants: see the figure caption), and while
the low- and high-frequency exponents are roughly
the same, the transition time scale has shifted by a
factor of about 3 so that overall they are quite differ-
ent from the Haar structure function. It is therefore
not possible to simultaneously calibrate the high and
low frequencies.

If there are indeed external trends that perturb
the scaling, these will only exist at the largest scales;
it is sufficient to remove a straight line (or if needed
parabola, cubic, polynomial etc.) from the entire
dataset, i.e. at the largest scales only. Fig. 5E.6b
shows the result when the Haar structure function
is applied to (scaling) data that have been detrended
in two slightly different ways: by removing a straight
line through the first and last points of the series
and by removing a regression line. Since these
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Fig. 5E.6 (a) The same temperature data as Fig. 10.12; a
comparison of the RMS Haar structure function (multiplied by

100.35 ¼ 2.2), the RMS quadratic Haar (multiplied by 100.15 ¼ 1.4) and
the RMS quadratic MFDFA (multiplied by 101.5 ¼ 31.6). Reproduced
from Lovejoy and Schertzer (2012b). (b) The same temperature
data as Fig. 5E.6a; a comparison of the RMS Haar structure function
applied to the raw data, after removing linear trends in two ways.
The first defines the linear trend by the first and last points, while
the second uses a linear regression; all were multiplied by Chybrid ¼
100.35 ¼ 2.2. Reproduced from Lovejoy and Schertzer (2012a).
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changes essentially affect the low frequencies only,
they mostly affect the extreme factor of 2 in scale. If
we discount this extreme factor 2, then in the figure
we see that there are again two scaling regimes, and
that the low-frequency one is slightly displaced with
respect to the Haar structure function, but not
nearly as much as for the quadratic Haar. In other
words, removing the linear trends at all scales, as in
the quadratic Haar or the quadratic MFDFA, is too

strong to allow a simple interpretation of the result
and it is unnecessary if one only wishes to eliminate
external trends.

In conclusion, if all that is required are the scaling
exponents, the Haar structure function and quadratic
MFDFA both seem to be excellent techniques. How-
ever, the Haar structure function has the advantage of
numerical efficiency, simplicity of implementation,
and simplicity of interpretation.
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Chapter

6
Vertical stratification and anisotropic scaling

6.1 Models of vertical stratification:
local, trivial and scaling anisotropy

6.1.1 The isotropy assumption:
historical overview
We have argued that atmospheric scaling holds over a
wide range in the horizontal, but this is clearly not
possible if the turbulence is isotropic, since it would
imply the existence of roundish structures hundreds
or even thousands of kilometres thick. Such wide-
range scaling is only possible because of the stratifica-
tion. Following a brief historical overview, in this
chapter we discuss the nature of the stratification.

Initially motivated by mathematical convenience,
starting with Taylor (1935), the paradigm of isotropic
and scaling turbulence was developed for laboratory
applications, but following Kolmogorov (1941),
three-dimensional isotropic turbulence was
progressively applied to the atmosphere. However,
there are several features (including gravity, the
Coriolis force and stratification) that bring into ques-
tion the simultaneous relevance of both isotropy and
scaling. In particular, since the atmosphere is strongly
stratified, a model with a single wide range of scaling
which is both isotropic and scaling is not possible, so
theorists had to immediately choose between the two
symmetries: isotropy or scale invariance. Following
the development of models of two-dimensional iso-
tropic turbulence (Fjortoft, 1953; Kraichnan, 1967)
but especially quasi-geostrophic turbulence (Charney,
1971), which can be seen as quasi-2D turbulence (see
Section 2.6), the mainstream choice was first to make
the convenient assumption of isotropy and to drop
wide-range scale invariance; this could be called the
“isotropy primary” paradigm. In Chapter 2 we saw
how, starting at the end of the 1970s, this has led to a
series of increasingly complex 2D/3D isotropic
models of atmospheric dynamics, and we noted that
justifications for these approaches have focused

almost exclusively on the horizontal statistics of the
horizontal wind in both numerical models and ana-
lyses and from aircraft campaigns, especially the
highly cited GASP (Nastrom and Gage, 1983, 1985;
Gage and Nastrom, 1986) and MOZAIC (Cho and
Lindborg, 2001) experiments. Since understanding
the anisotropy clearly requires comparisons between
horizontal and vertical statistics/structures, it is not
surprising that this neglect of the vertical has had
deleterious consequences.

Over the same 30-year period that 2D/3D
isotropic models were being elaborated, evidence
slowly accumulated in favour of the opposite theoret-
ical choice: to drop the isotropy assumption but to
retain wide-range scaling. This change of paradigm
from isotropy primary to scaling primary was explicitly
proposed by Schertzer and Lovejoy (1984, 1985a-b,
1987), who considered strongly anisotropic scaling
so that vertical sections of structures become
increasingly stratified at larger and larger scales, albeit
in a power-law manner. Similarly, although not tur-
bulent, anisotropic wave spectra were proposed in the
ocean by Garrett and Munk (1972) and an anisotropic
buoyancy-driven wave spectrum was proposed in the
atmosphere by Van Zandt (1982). Related anisotropic
wave approaches may be found in Dewan and Good
(1986), Fritts et al. (1988), Tsuda et al. (1989), Gard-
ner et al. (1993), Hostetler and Gardner (1994) and
Dewan (1997). These authors used anisotropic scaling
models not so much for theoretical reasons, but
rather because the data could not be explained with-
out it. In addition, many experiments found nonstan-
dard vertical scaling exponents thus implicitly
supporting this position (see the review, and many
additional references, in Lilley et al., 2008). Below we
shall see that state-of-the-art lidar vertical sections of
passive scalars or satellite vertical radar sections of
clouds (Section 6.5) give direct evidence for the cor-
responding scaling (power-law) stratification of
structures. These analyses show directly that the
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standard bearer for isotropic models – 3D isotropic
Kolmogorov turbulence – apparently does not exist in
the atmosphere at any scale – at least down to 5 m in
scale – or at any altitude level within the troposphere
(Lovejoy et al., 2007; Section 6.1.5). In Chapters 1 and
4 we used large quantities of high-quality satellite data
to directly demonstrate the wide-range horizontal
scaling of the atmospheric forcing (long- and short-
wave radiances) and showed that reanalyses and
atmospheric models display nearly perfect scaling
cascade structures over the entire available horizontal
ranges. This shows also that the source/sink free
“inertial ranges” used in the classical models are at
best academic idealizations and at worst unphysical:
atmospheric dynamics has multiple energy sources
that do not prevent it from being scaling.

At a theoretical level, quasi-geostrophic and
similar systems of equations purporting to approxi-
mate the synoptic scale structure of the atmosphere
are justified by “scale” analysis of various terms in
the dynamical equations in which “typical” large-
scale values of atmospheric variables (usually their
fluctuations) are assumed and terms eliminated if
they are deemed too small. However, in Section
2.3.2 we showed that by replacing such scale
analyses – valid at most over narrow ranges of scales –
by scaling analysis, focusing on horizontal and vertical
exponents valid over wide ranges, the equations were
symmetric with respect to anisotropic scale changes.
However, just as the classical isotropic scaling analysis
of the Navier–Stokes equations is insufficient to
determine the Kolmogorov exponent 1/3 – for this
we also need dimensional analysis on the scale-
by-scale conserved energy flux – so here, the value
of the new vertical exponents depends on a new
turbulent flux that is the subject of this section.

6.1.2 Empirical status of the isotropy
assumption
Kolmorogov’s theory of isotropic 3D turbulence is
based on the key assumption that there exists an
“inertial” range where the turbulence is isotropic
and depends only on the energy flux ε across scales
(or wavenumber in Fourier space), yielding the k�5/3

regime for the energy spectrum. In the atmos-
phere, the main reason for supposing the existence
of any isotropic ranges is to do with anisotropic
boundary conditions, i.e. it ignores gravity, which
acts at all scales throughout the flow. Specifically,

the unimportance of boundary conditions is a
consequence of the fact that structures at a given
scale are mostly coupled with structures at neigh-
bouring scales, so that the effects of large-scale
boundary conditions are progressively “forgotten”
at small scales. Classically this tendency to “return
to isotropy” (Rotta, 1951) has been modelled using
second-order statistical closure techniques;
however, even within this framework, as soon as
buoyancy forces are included, their effect is found
to be relatively large (Moeng and Wyngaard, 1986),
just as in laboratory flows it is found that even
small buoyancy forces readily destroy isotropy
(Van Atta, 1991). Even recent theoretical develop-
ments (Arad et al., 1998, 1999) assume a priori
that fluctuation statistics for points separated by
Dr follow the form:

DvðDrÞ / YðcÞjDrjH ð6:1Þ

where c is the angle of Dr with the vertical, jDrj the
length of the separation vector Dr. To select only
functions of this form is to implicitly assume that
the angular variation in the anisotropy is the same at
each scale; in the terminology developed below, this
mild anisotropy is called “trivial.” The main origin-
ality of Arad et al. (1998) was the proposal that there
exists a hierarchy of such isotropic terms each with
different H’s and Y’s. Since the theory ignores
buoyancy, when it was checked in the atmosphere,
the data were restricted to the horizontal (Kurien
et al., 2000)! Indeed, virtually all empirical surface-
layer atmospheric tests of isotropy (i.e. those with
the best-quality data) simply assume Eqn. (6.1) with
H ¼ 1/3 and test the anisotropy at unique scales. It
is even common to study the spatial anisotropy of
scalars without using any spatial data whatsoever!
For example, a common technique involves using
time series of temporal gradients and converting
time to space with “Taylor’s hypothesis” of frozen
turbulence. Finally, the “anisotropy” is estimated by
using a third-order statistical moment (the skewness)
to determine the forward/backward trivial anisotropy
(Sreenivasan, 1991)! Even in the analysis of labora-
tory (Rayleigh–Bénard) convection, where there is a
debate about whether H ¼ 1/3 or 3/5 (respectively
energy and buoyancy variance flux dominance: see
below), isotropy is still assumed and one still uses
data from time series at single points (Ashkenazi and
Steinberg, 1999; Shang and Xia, 2001).

Vertical stratification and anisotropic scaling
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6.1.3 The Obukhov and Bolgiano
buoyancy subrange 3D isotropic turbulence
Kolmogorov theory was mostly used to understand
laboratory hydrodynamic turbulence which is
mechanically driven and can be made approximately
isotropic (unstratified) by the use of either passive or
active grids. In this case, we have seen that fluctu-
ations in Dv for points separated by Dr can be deter-
mined essentially via dimensional analysis using ε
(Chapter 2); the latter choice being justified since
it is a scale-by-scale conserved turbulent flux. The
atmosphere, however, is fundamentally driven by
solar energy fluxes which create buoyancy inhomo-
geneities; in addition to energy fluxes, buoyancy is
thus also fundamental. In order to understand atmos-
pheric dynamics we must therefore determine which
additional dimensional quantities are introduced by
gravity/buoyancy. As discussed in Monin and Yaglom
(1975), this is necessary for a more complete dimen-
sional analysis.

Let us start with the thermodynamic energy
equation for an ideal gas:

D log y

Dt
¼

k

T
r2Tþ

_Q

cvT
ð6:2Þ

(e.g. Lesieur, 1987) where y is the potential
temperature, k is the molecular heat diffusivity, T
the absolute temperature and D=Dt � @=@t þ v�r is
the advective derivative, _Q is the rate of heat input
per unit mass and cv is the specific heat at constant
volume. In the spirit of Section 2.3 we will assume
a quasi-steady state where heat sources _Q create
fluctuations/structures at large scales which are trans-
ferred by the nonlinear terms to smaller scales where
they are eventually smoothed out by the dissipation
term. As in our discussion of the energy flux cascade,
we argue that at scales much larger than the dissipa-
tion scales the right-hand side of Eqn. (6.2) is � 0 so
that log y is an advected scalar: D log y=Dt � 0. Since
it determines the buoyancy force and hence modifies
the velocity field, it is not passive but it nevertheless
defines a scale-by-scale conserved quadratic invariant.

Let us now introduce the Boussinesq
approximation (for this we follow Lesieur, 1987).
Consider small fluctuations yʹ with respect to a
time-averaged state y0, and express the potential tem-
perature in terms of these:

yð�r, tÞ ¼ y0ð�rÞ þ y0ð�r, tÞ ð6:3Þ

Note that for this decomposition to be useful, there
must exist a scale separation between “fast” and
“slow” processes. The full Boussinesq approximation
for the potential temperature fluctuations yields:

Dy0

Dt
þ�v � ry0 � kr2y0 þ

_Q

cv
ð6:4Þ

We can now consider a vertically stratified fluid in
which y0(r) ¼ y0(z), and hence �v � ry0 � w dy0

dz
where

w ¼ vz. If w is small enough, then we have:

Dy0

Dt
� kr2y0 þ

_Q

cv
ð6:5Þ

Again, assuming that the small-scale dissipation just
balances the forcing, we have an equation of scalar
advection, only this time directly for the fluctuation yʹ.
Note that in this model, since the stratification is
accounted for in the y0(z) function, the fluctuation yʹ

is considered isotropic even when the overall fluid is
strongly stratified; this is an example of “locally isotropic
turbulence” (Kolmogorov, 1941). It has a new term due
to the buoyancy force, as does the velocity equation:

Dv

Dt
¼ �

1

r0
rp0 � g

y0

y0
k
_

�2O��vþ nr2
�v ð6:6Þ

where k
_

is a unit vertical vector and pʹ is the pressure
fluctuation analogous to yʹ: pð�r, tÞ ¼ p0ð�rÞ þ p

0
ð�r, tÞ,

and r0(z) is the corresponding mean density function.
The direct effects of gravity are thus confined to the
single term Df in the equation for the vertical
component:

Df ¼ g
y0

y0
; f ¼ g log y ð6:7Þ

where the fluctuations Df are thus responsible for the
buoyancy effects. We have noted that Eqns. (6.2) and
(6.5) are scalar advection equations for logy and yʹ

respectively, so we may anticipate that – following the
arguments in Section 2.4 – the corresponding vari-
ance fluxes will be conserved by the nonlinear terms.
There are therefore two somewhat different ways to
exploit this, one based on yʹ, the other on glogy.
Following Obukhov (1959) and Bolgiano (1959) (see
e.g. the summary in Monin and Yaglom, 1975, vol. 2),
we first consider the original classical approach based
on potential temperature variance flux:

wy ¼
@y0

2

@t
ð6:8Þ
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which is taken as a fundamental cascade quantity
along with ε. In order to obtain the scaling laws for
the velocity field in a fluid dominated by buoyancy
forces (i.e. in a hypothetical isotropic “buoyancy
subrange” where the energy flux ε can be neglected)
we then argue that only wy (with units K2/s) and the
coupling constant g/y0 (with units m2/K/s) between
the fluctuation yʹ and the velocity field are dimension-
ally relevant. Dimensional analysis on wy and g/y0
then yields the unique scaling “Bolgiano–Obukhov”
(BO) law:

DvðDrÞ � w
1=5
y

g

y0

� �2=5

jDrj3=5 ð6:9Þ

corresponding to a k�11/5 spectrum (neglecting
intermittency; i.e. using b ¼ 1 þ 2H; Section 2.5).
In the context of the Boussinesq approximation, this
isotropic law applies to the fluctuations in the velocity
about a totally stratified anisotropic mean state y0(z).

Staying within this classical framework for iso-
tropic fluctuations, we may now inquire as to over
what scale range this new BO law should apply, given
that it is in competition with the usual energy-flux-
dominated regime. In other words, what happens
when we apply a full dimensional analysis to ε, wy
and g/y0? The answer is that there is a unique
“Bolgiano–Obukhov” length scale LBO:

LBO ¼
ε5=4

w
3=4
y ðg=y0Þ

3=2
ð6:10Þ

According to this classical theory, we see that as the
effect of gravity is reduced (g ! 0), LBO ! 1, so the
stratification disappears and we recover the usual
isotropic 3D Kolmogorov law (i.e. dominated by ε).
Therefore, we interpret the scale LBO as the transition
scale from isotropic Kolmogorov turbulence (for
scales L < LBO) to isotropic BO turbulence for scales
L > LBO. In order to test this theory we therefore need
estimates of LBO, and this requires simultaneous
measurements of the difficult-to-measure fluxes wy,
ε – observations that Monin and Yaglom (1975) say
“will require special observations which one hopes
will be carried out in the future.” Indeed, at the time,
the BO theory did not look at all promising, the only
evidence for the BO law being in the vertical direction
(from “Jimspheres”: Endlich et al., 1969; Adelfang,
1971), and these results were largely ignored in the
literature – including by Monin and Yaglom (1975)!
Conversely, Adelfang (1971) (but not Endlich et al.,

1969) was apparently unaware that his results were
close to the BO theory! We shall see in a moment that
LBO � 10 cm so that this classical picture predicts
essentially a Kolmogorov regime only at very small
scales!

6.1.4 The anisotropic scaling theory:
the 23/9D Kolmogorov–Bolgiano–Obukhov
model
A second way to approach buoyancy-driven
turbulence is to make a more physically based argu-
ment (which essentially avoids the Boussinesq and
other approximations), noting that the v and y

fields are only coupled by the Df buoyancy force term
( f ¼ glogy) so f is the fundamental physical and
dimensional quantity rather than y (in this approach
there is no thermodynamic scale separation, so the
interpretation of f in terms of buoyancy may be prob-
lematic). From Eqn. (6.2) and following the argument
for an energy flux cascade, we see that by neglecting
dissipation and forcing, Df =Dt � 0 so that f obeys a
passive scalar advection equation and therefore the
corresponding buoyancy force variance flux:

j ¼
@f 2

@t
ð6:11Þ

is conserved by the nonlinear terms. In this case, the
only quantities available for dimensional analysis are
ε (units m2/s3) and j (units m2/s5), not ε, wy and g/y0.
In this approach, there is no separation between a
stratified “background” state and a possibly isotropic
fluctuation field, so there is no rationale for assuming
that the j cascade is associated with any isotropic
regime. Indeed, following Schertzer and Lovejoy
(1983, 1985), it is more logical to assume that the
two basic turbulent fluxes ε, j can coexist and cascade
over a single wide-range regime with the former
dominating in the horizontal, the latter in the vertical:

DvðDxÞ¼fhDx
Hh ; fh ¼ ε1=3; Hh ¼ 1=3

DvðDzÞ ¼fvDx
Hv ; fv ¼j1=5; Hv ¼ 3=5

ð6:12Þ

where Dx is a horizontal and Dz a vertical lag (for the
moment we ignore the other horizontal coordinate y).
Again, the fluxes ε, j dimensionally define a unique
length scale ls:

ls ¼
fh

fv

� �1=ðHv�HhÞ

¼
ε5=4

j3=4
ð6:13Þ
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Due to the anisotropy that is characterized by the
distinct scaling exponents (H ’s), Eqns. (6.12) are at
odds with the classical notion of scaling, such as that
given by Lamperti (1962):

Dvðl�1Dr Þ¼
d
l�HDvðDrÞ; Dr ¼ ðDx,DzÞ ð6:14Þ

(where ¼
d
means equality in the sense of random

variables). However, both equations can be recast in
a unique scaling equation (Schertzer and Lovejoy,
1985):

DvðTlDr Þ¼
d
l�HhDvðDrÞ; Tl ¼ l�G ð6:15Þ

where Tl is the “scale changing operator” and:

G¼

�

1 0
0 Hz

�

; Hz ¼ Hh=Hv ¼ ð1=3Þ=ð3=5Þ ¼ 5=9

ð6:16Þ

is the “generator” (this anisotropic “simple scaling”
ignores intermittency: Section 5.4.4). As discussed
below and in Chapter 7, this is equivalent to introdu-
cing a generalized scale function kDrk. Among others,
it can be taken under the “canonical” form:

kDrk ¼ ls
Dx

ls

� �2

þ
Dz

ls

� �2=Hz

 !1=2

ð6:17Þ

where we have used ls to nondimensionalize the
coordinates (Eqn. (6.13)). With the help of ls, and the
scale function kDrk, the horizontal and vertical
laws (Eqn. (6.12)) can be combined into a single
equation:

DvðDrÞ ¼ ε1=3kDrk1=3 ð6:18Þ

It is easy to check that if we successively take Dr ¼
(Dx,0) and (0,Dz) in Eqn. (6.17) we recover Eqn.
(6.12). Since the resulting scale functionkDrk has the
property thatkðls, 0Þk ¼ kð0, lsÞk we see that ls is the
scale at which moving a vertical distance ls leads to the
same fluctuation as moving a horizontal distance ls;
the contours at scale ls are thus typically roundish, so
ls is called the “sphero-scale.” Since this model com-
bines both Kolmogorov and Bolgiano–Obukhov
scaling, it could also be called the Kolmogorov–
Bolgiano–Obukhov model (KBO). In Section 6.1.7,
we show that structures in turbulence obeying
Eqn. (6.14) have volumes proportional to the Del ¼
2 þ Hz ¼ 23/9 power of their horizontal extents;

they are effectively “23/9 dimensional”; hence the
original name “23/9D” for the model (Schertzer and
Lovejoy, 1985); Del is the “elliptical dimension”
characterizing the volume of nonintermittent struc-
tures (see below).

From Eqn. (6.17) we see that in this theory noth-
ing special happens at scale ls; it is simply the scale at
which one power law exceeds another, the scale at
which structures are roughly “roundish.” Since,
dimensionally, both this and the classical isotropic
theory predict the existence of a single characteristic
scale, these should be equal (at least to within factors
of order unity); therefore, the fact that empirically the
sphero-scale is typically of the order of 10 cm
(although with very large fluctuations) shows that
the supposed transition scale LBO � ls is therefore also
� � 1 m. This shows that the original isotropic BO
law is untenable: it predicts that Kolmogorov 3D
isotropic turbulence should be confined to scales
below a metre and the larger scales should follow
BO scaling (Eqn. (6.9)).

6.1.5 The empirical status of the
23/9D model
If the original isotropic Bolgiano–Obukhov law is
untenable, what about the anisotropic alternative?
How well do the predictions (Eqns. (6.12), (6.15))
fare empirically? We have already shown spectra
(Fig. 1.6b) which are compatible with horizontal
exponent Hh ¼ HKol ¼ 1/3 (i.e. Kolmogorov scaling)
from ~20 m to~20 km (Section 1.2.3). Recalling our
discussion in Section 2.6, there seems to be little
disagreement that Hh � 1/3 is valid up to horizontal
scales which are at least somewhat larger than the
atmospheric scale height. The areas where consensus
is lacking are for the larger horizontal scales and for
the value of the vertical scaling exponent. While the
former is discussed in detail in Section 6.3, we now
turn to an examination of the latter.

Most of our knowledge of the vertical structure of
the atmosphere comes from radiosonde balloons
designed to provide inputs to synoptic forecasts
rather than for research; they typically have quite
coarse vertical resolutions (of the order � 150 m).
In addition to their low spatial resolutions, balloons
suffer from swaying payloads and disturbances on
ascent caused by the balloon’s wake (see however
Harrison and Hogan, 2006). In spite of these
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difficulties, experimentalists commonly interpret the
vertical spectrum in terms of quasi-linear gravity
waves with exponent Hv ¼ 1 but with Hh � 1/3 (see
e.g. Allen and Vincent, 1995; Dewan, 1997; Fritts
et al., 1988; Gardner, 1994). Hv ¼ 1 follows from
dimensional analysis if the layers are stable and
homogeneous with well-defined Brunt–Väisälä fre-
quencies (Section 6.2). In comparison, the older
Lumley–Shur (Lumley, 1964; Shur, 1962) model pre-
dicts an isotropic Hh¼Hv¼ 1 regime, as does the theory
of quasi-geostrophic turbulence (Charney, 1971).

The most recent estimate of Hv used state-of-the-
art dropsonde data from the NOAA Winter Storms
04 experiment over the Pacific Ocean (ranging over
latitudes of about 15� N to 60� N), where 261 sondes
were dropped by a NOAA Gulfstream 4 aircraft from
roughly 12–13 km altitudes. These GPS sondes had
vertical resolutions of ~5 m, temporal resolutions of
0.5 s, horizontal velocity resolutions of ~0.1 m/s
and temperature resolutions of ~0.1 K (Hock and
Franklin, 1999). While the full analysis of the 2004
experiment is described in Lovejoy et al. (2007) and
Hovde et al. (2011), we concentrate here on analysis
of the horizontal velocities. This experiment was in
many ways an update of the early work by Endlich
et al. (1969; Fig. 6.1a) and also the largest previous
vertical scaling study to date (Lazarev et al., 1994),
which used 287 radiosondes (at 50 m resolution) over
the tropical Pacific (Fig. 1.7a). The latter came to
conclusions similar to those below but without being
able to analyze the fairly thin layers considered here
(cf. also the Landes (France) experiment using 80
sondes at about 42� north (Schertzer and Lovejoy,
1985; Fig. 5.19a).

Fig. 6.1b shows the composite analysis of the 235
sondes that are the most complete. For each sonde,
the mean absolute shears DvðDzÞ ¼ j�vðz1Þ ��vðz2Þj
(v is the horizontal velocity vector) were calculated
using all pairs of points with Dz ¼ jz1 � z2j in loga-
rithmically spaced intervals, and for all z1, z2 < zt
where zt is the indicated altitude threshold. This
method is particularly effective since at 2 Hz there
are ~1400 data points per sonde but there are many
more pairs of points (roughly 106 per sonde); the
method also overcomes the problem of irregular
vertical spacing of the data without requiring poten-
tially problematic interpolations. Note that for each
layer the logarithmic spacing of layers gives predom-
inant weight to the upper part of the range; for results
on layers with constant thicknesses, see Fig. 6.2.
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Fig. 6.1 (a) The vertical spectra of seven sondes showing roughly
Bolgiano–Obukhov spectra (β ¼ 11/5; dashed reference lines added);
offset in the vertical for clarity. Adapted from Endlich et al. (1969).
(b) Mean absolute vertical gradients of horizontal wind (first-order
structure functions) for layers of thickness increasing logarithmically,
with regression lines added. The three reference lines have slopes
Hv ¼ 1/3 (Kolmogorov, K), Hv ¼ 3/5 (Bolgiano–Obukhov, BO), Hv ¼ 1
(gravity waves, GW). The regression Hv estimates are given next to the
lines. The data for each level are offset by one order of magnitude for
clarity, units m/s. Reproduced from Lovejoy et al. (2007).
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Four features of Fig. 6.1b are particularly striking:
(a) the overall scaling – even for the thickest layers
spanning the entire troposphere – is excellent; the
standard errors in the slope (H) estimates are < �
1%; (b) the slopes at the lower levels (which are not
too affected by the ever-present strong jet streams) are
very close to the BO value 3/5, but increase at higher
altitudes; (c) there is no evidence for Hv ¼ 1/3 (Kol-
mogorov) behaviour, even at the smallest scales (5 m)
and in the lowest layer (< 158 m) which for technical
reasons are not accessible to radiosondes; this is espe-
cially significant; (d) there is no evidence for Hv ¼ 1
(gravity wave, pseudo-potential vorticity) even at the
largest vertical scales. However, since this figure pools
the data from all the sondes, the result might be an
artefact of mixing data from profiles some of which
might have Hv ¼ 1/3 or Hv ¼ 1 scalings. In Lovejoy
et al. (2007), Hv was estimated for every sonde for
every 1 km-thick layer. Of the total 2727 Hv values
estimated in this way only a single one at the lowest 1
km level had Hv � 1/3, only 9 had Hv> 1, and only 1
had Hv> 1.05. In order to quantitatively characterize
the mean and spread of these values, we refer to Fig. 6.2
(top left), which gives the one-standard-deviation

spread of values around the mean (the exponents
are estimated separately for each sonde). One can
see that the Kolmorogov Hv ¼ 1/3 value is systematic-
ally 2–4 standard deviations below the mean, while
Hv � 1 is about 2 standard deviations above it.

Our results are precise enough to bring to the fore
a systematic tendency for the Hv values to increase
from the near-surface Bolgiano–Obukhov value 3/5
to values closer to 0.77 in higher layers subject to large
(jet) shears. While the exact explanation for this
increase is unclear at present, it should be recalled
that, like the usual turbulence laws, the 23/9D model
presupposes spatial statistical homogeneity, which is
violated by the strongly altitude-dependent jets. In
Sections 6.4 and 6.5 we investigate the anisotropy of
other atmospheric fields. We conclude that the anisot-
ropy of the 23/9D model is a reasonable approxima-
tion to the atmosphere but that nevertheless there are
notable deviations at higher altitudes.

6.1.6 Local, trivial and scaling anisotropy
The above treatment of atmospheric stratification
provides a convenient starting point for discussing
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Fig. 6.2 Top left: the means and standard deviations of the H values calculated from the moduli of the vector differences in horizontal winds.
The curves to the left of each graph in the top row are from the H values in Fig. 6.1b, i.e. from regressions over all pairs of points below the
altitude indicated, estimated over the entire range of scales available (i.e. up to 12.6 km at the highest altitudes). The points are fits from
individual sondes, as indicated in Fig. 6.1b. The error bars indicate the sonde-to-sonde variability. Top right: the same, but for the
corresponding spectral exponents β: (nonintermittent) Kolmorogov theory yields β ¼ 5/3, Bolgiano–Obukhov β ¼ 11/5. The lines are
somewhat to the left since they are weighted to be near the indicated altitude whereas the points are from data within a kilometre of the
indicated altitude. Bottom left: the C1 values. Bottom right: the corresponding a values. Reproduced from Lovejoy et al. (2007).

6.1 Models of vertical stratification

189



different types of anisotropy. We can distinguish
three cases, which we discuss in turn and illustrate
graphically: (a) local isotropy, (b) trivial anisotropy,
(c) scaling anisotropy.

Local isotropy

Starting with the classical “isotropic” buoyancy
subrange, we can consider the anisotropy of vertical
sections by considering the predicted spatial
fluctuations:

DvðDx,DzÞ¼Dv0ðDzÞþDv 0ðDx,DzÞ¼
s
Dv0ðDzÞ

þw
1=5
y

g

y0

0

@

1

A

2=5

jðDx,DzÞjHBO ; HBO¼3=5

ð6:19Þ

where we have made the Boussinesq scale separation
for the velocity field, with mean v0(z) and (isotropic)
fluctuating part vʹ(x,z) (we assume horizontal
isotropy, so for simplicity we ignore the y coordinate).
We consider fluctuations at a single instant in time,
hence time does not enter the equation. Note that

here and in the following, the equality¼
s
means “scales

as” so that the quantity on the left has the same
scaling law as the quantity on the right. If one prefers,
one can take ensemble averages of both sides of
the equation and work with (first-) order structure
functions.

In the spirit of this classical “locally isotropic”
model, we can assume a linear velocity profile v0(z)
so that Dv0ðDzÞ / Dz. To illustrate the implied
anisotropy when this is substituted in Eqn. (6.19),
we may use the ansatz:

DvðDx,DzÞ¼
s
�

ðaDzÞ2 þ
�

bjðDx,DzÞj2
	HBO

	1=2

ð6:20Þ

where a, b are constants. Note that from
Eqn. (6.19), we could have directly used
Dv¼

s
�

ajDzj þ bjðDx,DzÞjHBO

	

, which has the same
scaling behaviours, but the resulting iso-lines have
unrealistic behaviours due to the absolute value func-
tion. In Fig. 6.3 we illustrate this with geometric
constants a ¼ 1.7, b ¼ 1 and we display the large-
scale cross-section (left) and small-scale (a 25-times
blow-up) on the right. We see that at large scales the
velocity is highly stratified, whereas at the small scales
it becomes increasingly isotropic (the contours are
more circular), as expected.

This model clearly has two scaling regimes, one
for small isotropic scales, the other for large strongly
stratified scales:

Dvðl�1Dr Þ�
s
l�HBODvðDrÞ; jDrj << 1

Dvðl�1DzÞ�
s
l�1DvðDzÞ; Dz >> Dx >> 1 ð6:21Þ

where Dr ¼ ðDx,DzÞ. The model is therefore only
isotropic in the small jDrj limit, since it is only in this
case that an isotropic scale reduction of the lag Dr by
the factor l�1 leads to a fluctuation rescaled byl�HBO .
For large enough Dz, we again have a scale symmetry,
although this time it involves reducing only the
vertical component of the lag and yields a different
rescaling l�1.

Trivial anisotropy

Local isotropy assumes a scale break and features two
different scaling regimes. In this section, we modify
this ansatz to restore the overall scaling while main-
taining stratification, but with the same aspect ratio
at all scales (i.e. in Eqn. (6.16) with Hz ¼ 1 so that
G ¼ the identity matrix).

Fig. 6.3 Upper left: local isotropy with broken symmetry
(Eqn. (6.20)). The upper right contours are the same but with a
factor-25 blow-up showing small-scale “local” isotropy). The bottom
left contours show trivial anisotropy with a ¼ 1.7, b ¼ 1 (Eqn. (6.22)),
and the bottom right contours (Eqn. (6.17)) show scaling
anisotropy with Hz ¼ 5/9 with ls ¼ 1. The range displayed is
–5 < Δx< 5, –5 < Δz< 5 (except for the 25� blow-up, upper right,
in which the range is 25 times smaller).
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A simple modification to Eqn. (6.20) is:

DvðDx,DzÞ¼
s
kðDx,DzÞkHBO ;

kðDx,DzÞk ¼
�

ðaDzÞ2 þ jbðDx,DzÞj2
	1=2 ð6:22Þ

where we have introduced a scale function kðDx,DzÞk
which is analogous to the vector norm and plays the
analogous role in anisotropic scaling systems. In this
case it is easy to verify that isotropic scale reductions
lead to scaling for all Dr:

Dvðl�1DrÞ¼
s
l�HBODvðDrÞ ð6:23Þ

The lower left panel of Fig. 6.3 shows the correspond-
ing contours of Dv(Dr), and one can see that they are
indeed ellipsoids with identical shapes at all scales.
The anisotropy implied by the scale function defined
in Eqn. (6.22) is an example of “trivial anisotropy”
because, while contours are anisotropic, the scale
reduction Dr ! l�1Dr needed to relate large and
small fluctuations is nevertheless isotropic.

We can now ask, what is the most general form of
trivially anisotropic scale functions? By definition
they must satisfy the functional scale equation:

kl�1Drk ¼ l�1kDrk ð6:24Þ

By inspection, the general solution is:

kDr k ¼ YðyÞjDrj; tany ¼
z

x
ð6:25Þ

where YðyÞ is an arbitrary positive function of the
polar angle y, and jDrj is the usual polar radius (the
restriction Y > 0 is a physical constraint, so that
the notion of scale is always positive definite). If
the fluctuations DvðDx,DzÞ satisfy Eqn. (6.23) then
for any exponent HBO they can be written as powers
of the trivial scale functions Eqn. (6.21), i.e.
DvðDrÞ ¼ kDrkHBO .

Scaling anisotropy

We now turn to the anisotropic scaling case, with scale
function indicated in Eqn. (6.17). In order to obtain a
power-law (scaling) change in the scale function (and
hence for the fluctuation DvðDrÞ) we must now gen-
eralize the isotropic scale reduction (Eqn. (6.24)) to
make an anisotropic coordinate “blow down”:

kTlDrk ¼ l�1kDrk ð6:26Þ

where Tl is a scale-changing operator introduced in
Eqn. (6.15). If Tl¼ l�1

1, where 1 is the identity

matrix, then we have the isotropic reduction
(Eqn. (6.24)). However, if kDrk is the scale function
defined in Eqn. (6.17) then it satisfies Eqn. (6.26) with
Tl as given in Eqns. (6.15) and (6.16). This can be
seen by inspection and by recalling that since G is a
diagonal matrix:

Tl ¼ l�G ¼

�

l�1 0
0 l�Hz

�

ð6:27Þ

(when G has off-diagonal elements – as in the next
chapter – things are more complicated). G is called
the “generator” of the scale-changing operator Tl.
The transformations Tl associated with such diagonal
generators are “self-affine.” Contour lines of an aniso-
tropic scaling scale function satisfying Eqn. (6.17)
(with ls ¼ 1) are shown in Fig. 6.3 (lower right), and
we see that at scales < ls ¼ 1 the structures are
ellipsoidal, oriented in the vertical direction, whereas
the larger contours are ellipsoidal, oriented in the
horizontal direction, and correspond to increasing
stratification at larger and larger scales. ls is called
the “sphero-scale” because kðls, 0Þk ¼ kð0, lsÞk, so that
typical structures are roundish at this scale. Unlike the
previous case of trivial anisotropy, where the shapes
of the structures (contours) are independent of scale,
here they are scale dependent, although this occurs
without introducing any characteristic length; ls is
simply the scale at which one power law exceeds
another, indeed, from Eqn. (6.17) we can that if the
vertical extent of a structure is denoted by Z and its
horizontal extent by X, then it is not hard to see that
the vertical-to-horizontal aspect ratio of structures
Z/X ¼ðX=lsÞ

Hz�1.
We mentioned that the scale function in

Eqn. (6.17) is only the simplest, “canonical” scale
function which is compatible with the different hori-
zontal (Kolmogorov) and vertical (BO) scaling laws
(Eqn. (6.12)). How general can the scale function
kDrk in the equation DvðDrÞ ¼ ε1=3kDrk1=3 be, such
that Eqn. (6.12) is recovered as special cases (Dz ¼ 0,
Dx ¼ 0, top and bottom of Eqn. (6.12), respectively)?
The answer is that it must satisfy the functional Eqns.
(6.26) and (6.27); however, since here G is diagonal,
we can make a nonlinear coordinate transformation:

ðDx0,Dz0Þ ¼
�

Dx, signðDzÞjDzj1=Hz

	

ð6:28Þ

that transforms the anisotropic scaling Eqns. (6.26)
and (6.27) into the isotropic equation
kl�1Dr0k ¼ l�1kDr0k, with Dr0 ¼ ðDx0,Dz0Þ. The
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general solution of this has already been given: Eqn.
(6.25). The general solution of Eqns. (6.26) and (6.27)
is therefore:

kDrk ¼ Yðy0 Þr0; r0 ¼ ðDx2 þ jDzj2=Hz Þ1=2;

tany0 ¼
Dz0

Dx0
¼

signðDzÞjDzj1=Hz

Dx
ð6:29Þ

where yʹ, rʹ are the polar angle angles and radii in
the primed system; we have nondimensionalized the
distances by ls so that the unit scale is also the
“sphero-scale.” The canonical solution is therefore
obtained by taking Y ¼ 1. The function Y defines
the unit ball via the polar coordinate equation
kDrk ¼ 1:

r0 ¼ Yðy0Þ�1 ð6:30Þ

so thatY> 0 is necessary so that the unit ball is closed;
this ensures that structures are spatially localized. In
Chapter 9 we see how this requirement can be dropped
in space-time to treat unlocalized space-time structures
such as waves. Of course, one should be cautioned that
for sufficiently anisotropic Y(yʹ) functions, there may
not be any scale where structures are “roundish.” In the
next chapter, we consider generalizations of self-affine
transformations to matrix G with off-diagonal elem-
ents and then to nonlinear generators.

Before leaving the question of scale functions let
us note that a one-parameter model for the unit ball
which is sometimes convenient is given by the
following scale function:

kDrk ¼ ls

�

�

�

�

Dx

ls

�

�

�

�

2Z

þ

�

�

�

�

Dz

ls

�

�

�

�

2Z=Hz

 !1=ð2ZÞ

ð6:31Þ

This scale function satisfies Eqns. (6.26) and (6.27) for
any real Z (and with a little effort it can be extended
to complex Z which gives even more possibilities). An
example with Z¼ 1/2 was already given in Eqn. (2.87)
and Fig. 2.15a.

6.1.7 Anisotropic cascades, elliptical
dimensions
Physically, scaling anisotropy corresponds to an
anisotropic rather than an isotropic cascade.
A schematic is shown in Fig. 6.4; compare this to
the corresponding isotropic schematic (Fig. 3.3). We
see that by subdividing the horizontal direction by
ratio l0 and the vertical by the different ratio l0

Hz,
that while the structures start off being horizontally
stratified at large scales, at smaller and smaller scales,
they are more and more vertically oriented (in the
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Fig. 6.4 A schematic of an
anisotropic cascade; compare with its
isotropic counterpart (Fig. 3.3). The
exponent governing the decrease in
area (equivalently the increase in
number) of the sub-eddies with each
iteration is Del ¼ log8/log4 ¼ 3/2. On
the right-hand side we illustrate the
inhomogeneous (intermittent)
anisotropic cascade in which l0

C ¼ 6
of the eight sub-eddies on average
survive so the corresponding elliptical
(anisotropic) dimension of the active
regions of D ¼ Del – C ¼ log6/log2 ¼
1.29. . . Adapted from Schertzer and
Lovejoy (1987).
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figure, l0 ¼ 4 and l0
Hz ¼ 2 respectively, so Hz ¼ log2/

log4 ¼ 1/2). Indeed, the reduction of the areas at each
iteration is by the factor:

An�1

An
¼ l0l

Hz

0 ¼ lDel

0 ; Del ¼ 1þ Hz ð6:32Þ

where An is the area of the anisotropic “eddy” at the
nth iteration (rectangular in the figure). The exponent
Del which characterizes the change in area of the
nonintermittent (homogeneous) cascade (the left-
hand path in Fig. 6.4) is called the “elliptical”
dimension since typical structures are elliptical (as in
Fig. 6.3); indeed, it is easy to see that the contours in
the lower left of Fig. 6.3 (corresponding to the aniso-
tropic scaling scale function, Eqn. (6.23)) also have
areas proportional to lDel with Del ¼ 1 þ Hz.
Following the discussion in Chapter 3, in Fig. 6.4
the left-hand homogeneous (but anisotropic) cascade

can be made intermittent (multifractal) by randomly
killing off eddies (i.e. an anisotropic “b model”), a
deterministic version of which is shown in Fig. 6.5. If
the probabililty of each sub-eddy being “killed off” is
l0

�C, then the average number of eddies at each scale
l0

D ¼ l0
Del-C. Del is thus purely a characterization of

the anisotropy. Extensions to anisotropic multifractal
cascades (anisotropic a models etc.) are straightfor-
ward; in Section 6.1.8 we illustrate this further with
anisotropic continuous-in-scale simulations.

The elliptical dimension provides a convenient
way to characterize both the atmosphere and turbu-
lence models; Fig. 6.6 shows a schematic with the
main isotropic and anisotropic models that have been
proposed to date. As expected, the three-dimensional
and two-dimensional isotropic models have Del ¼ 3, 2
respectively while the anisotropic scaling KBO law
has Hz ¼ 5/9, Del ¼ 23/9. Finally, the quasi-linear
gravity wave models based on dimensional analysis
on the Brunt–Väisälä frequency have Hz ¼ 1/3, hence
Del ¼ 7/3. Note that if the structures are waves rather
than turbulent “eddies” then their characterization in
this way by elliptical dimensions is less physically
relevant.

Fig. 6.7a shows a zoom sequence illustrating the
corresponding stratified structures as functions of
scale; it can be compared to the analogous isotropic
zoom in Fig. 6.7b. Adding details in this way is a
“downscaling” or “disaggregating” of the initial field,
and these zoom sequences graphically show how

Fig. 6.5 An example of a deterministic β model, an anisotropic
“Sierpinski carpet” obtained by dividing the horizontal by factors of 5
and the vertical by factors of 3 at each iteration and removing the
three middle rectangles (keeping the 12 outer ones). Reproduced
from Schertzer and Lovejoy (1985); Del ¼ log15/log5, D¼ log12/log5.
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Fig. 6.6 A comparison of various
turbulence laws according to their
elliptical dimensions.
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multifractal models can be used for downscaling. At
present, various essentially ad hoc downscaling tech-
niques (usually simply multivariate regressions) are
routinely used in many areas of atmospheric science,
for example when (low-resolution) GCM outputs are

used to predict the evolution of much smaller-scale
“local” atmospheric variables. Multifractal models
provide a theoretically well-founded alternative
(Deidda, 2000; Paulson and Baxter, 2007; Gires
et al., 2011; Nogueira et al., 2012).

(a)

(b)

Fig. 6.7 (a) A sequence from a zoom
(downscaling, disaggregation) of a
stratified universal multifractal cloud
model with α ¼ 1.8, C1 ¼ 0.1, H ¼ 1/3,
Hz ¼ 5/9. From top left to bottom right
each successive cross-section
represents a blow-up by a factor 1.31
(total blow-up is a factor� 12 000 from
beginning to end). If the top left
simulation is an atmospheric cross-
section 8 km left to right, 4 km thick,
then the final (lower right) image is
about 60 cm wide by 30 cm high; the
sphero-scale is 1 m, as can be roughly
visually confirmed since the left–right
extent of the simulation second from
bottom on the right is 1.02 m, where
structures can be seen to be roughly
roundish. Reproduced from Lovejoy
and Schertzer (2010). See colour plate
section. (b) A zoom (downscaling,
disaggregation) sequence for an
isotropic cloud with the same
multifractal parameters as for the
anisotropic simulation in Fig. 6.7a, from
upper left to lower right. Each image is
an enlargement by a factor 1.7 of the
previous. As in Fig. 6.7a, the grey
shades are “renormalized” separately in
each image. See colour plate section.
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Fig. 6.8 shows a schematic with the shapes of
structures as functions of scale for the main turbu-
lence models.

6.1.8 Simulations of stratified
multifractals: clouds
To see the effect of self-affine stratification on the
morphologies of structures, we can make the corres-
ponding continuous-in-scale anisotropic multifractal
simulations. The facility with which we can do this
underscores both the appropriateness of both the GSI
and Universal Multifractal formalisms; we can revisit
section Section 5.5.2 on continuous-in-scale cascade
processes, and the fractionally integrated flux model
for the observables. All that needs to be done is to
simply replace the vector norms j�rj everywhere by
scale functions k�rk, and the spatial dimensions d by
elliptical dimensions Del:

εl ¼ eGl ; Glð�r Þ ¼ C
1=a
1 N

�1=a
Del

ð

1�k�r
0 k�l

gað�r
0Þ

k�r� �r
0kDel=a

dd�r
0

ð6:33Þ

where the normalization NDel constant is still given by
an angle integral (Eqn. (5.83)):

NDel
¼ ODel

¼

ð

k�r
0 k¼1

dDel
�r
0 ð6:34Þ

(the details of the explicit calculation are somewhat
technical and are given in Appendix 7A).

The statistics of the resulting v field will satisfy the
anisotropic extensions of the formulae in Section 5.5.3:
D

jDvðDrÞjq
E

¼ kDrkxðqÞ; xðqÞ ¼ qH � KðqÞ

ð6:35Þ

which for any scale function satisfying Eqn. (6.26) is
equivalent to:
D

jDvðTlDrÞj
q
E

¼ l� xðqÞ
D

jDvðDrÞjq
E

ð6:36Þ

In particular, when the generator G of Tl is diagonal
with eigenvalues 1, Hz for the horizontal and vertical
respectively (Eqn. (6.16)), and with scale function
(Eqn. (6.17)), then we recover the statistics in orthog-
onal directions:
D

jDvðDx, 0Þjq
E

¼ DxxxðqÞ

D

jDvð0,DzÞjq
E

¼ DzxzðqÞ
;

xxðqÞ ¼ qH � KðqÞ

xzðqÞ ¼ xxðqÞ=Hz

ð6:37Þ

Fig. 6.8 A schematic diagram showing the change in shape of average structures which are isotropic in the horizontal (slightly curved to
indicate the earth’s surface) but with scaling stratification in the vertical; Hz increases from 0 (upper left) to 1 (lower right); Del ¼ 2 þ Hz.
In order to illustrate the change in structures with scale, the ratio of tropospheric thickness to earth radius has been increased by nearly a
factor of 1000. In units of the sphero-scale (also exaggerated for clarity) here, ls ¼ 1/10 the tropospheric thickness (i.e. about 103–104 times the
typical value), the balls shown are ½, 1, 2, 4, 8, 16, 32 times the sphero-scale (so that the smallest is vertically oriented, the second roundish
and the rest horizontally stratified). Note that in the Del ¼ 3 case, the cross-sections are exactly circles; the small distortion is an effect of
perspective due to the mapping of the structures onto the curved surface of the earth. Reproduced from Lovejoy and Schertzer (2010).
See colour plate section.
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(a) (b)

(c) (d)

Fig. 6.9 (a) Realizations of self-similar multifractal clouds with the same seed for α ¼ 0.8; to be compared with the corresponding
stratified (self-affine) simulations in the following figures. From top to bottom, C1 increases from 0.05 to 0.20, 0.35, 0.50 from left to right,
H increases from 0.05 to 0.20, 0.35, 0.50. (b) Same as Fig. 6.9a, except self-affine with ls ¼ 1 pixel; α ¼ 0.8. These were obtained by replacing the
isotropic vector norm (distance function) by scale functions as described in the text. From top to bottom, C1 for 1D left–right sections
increases from 0.05 to 0.15, 0.25, 0.35 from left to right, H for 1D left–right sections increases from 0.05 to 0.15, 0.25, 0.35. All the simulations
have α ¼ 0.8 and Hz ¼ 5/9. The latter implies that the H, C1 for the 1D up–down sections are 9/5 times larger (i.e. varying from 0.09 to 0.63).
The simulations are 256 � 256 pixels. (c) Same as Fig. 6.9b (α ¼ 0.8), except with ls ¼ 64 pixels. (d) Same as Fig. 6.9a (self-similar), except
with α ¼ 2.
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To see the effect on the resulting morphologies, we
turn to Fig. 6.9, which graphically shows the results of
simulations with varying C1, H, and this for a ¼ 0.8
(self-similar, and self-affine with ls ¼ 1 and 64;
Fig. 6.9a–c, respectively), and a ¼ 2 (self-similar,
and self-affine with ls ¼ 1 and 64; Fig. 6.9d–f, respect-
ively; compare this to the corresponding isotropic
simulations in Fig. 5.34).

6.2 The Brunt–Väisälä frequency and
the classical stable layer approach
to stratification

6.2.1 Discussion
Up until now, we have exclusively discussed statis-
tical (turbulence) approaches to atmospheric
stratification, in the belief that such approaches
are mandatory in light of the enormous atmos-
pheric Reynolds numbers (Re � 1012). However,
there also exists a classical nonturbulent “dynamical
meteorology” approach to stratification in which
the notion of a “stable” atmospheric layer is
central. This idealization plays a central role in
the use of thermodynamic diagrams and in synoptic
meteorology, including in the interpretation of
potential vorticity maps (Hoskins et al., 1985).

In addition, the notion of stable, smoothly varying
layers justifies ubiquitous linear theories. For
example, Nappo (2002) states, “Almost all of what
we know about the nature of gravity waves is
derived from the linear theory” (emphasis in the
original). Using high-resolution dropsonde data
which allow the vertical structure to be measured
to 5 m resolution (i.e. 10–20 times better than
operational radiosonde data and 100 times better
than the standard “significant levels”), we now show
that apparently stable layers are punctuated by
a fractal hierarchy of unstable layers, making it
unlikely that linear theory is appropriate and that
the actual stratification is in fact an emergent high
Re scaling property.

The explanation for roughly linear temperature
fall-off with altitude z (the dry adiabatic lapse rate)
is a classic example of dynamical meteorology. Text-
books explain that when a parcel of air is vertically
displaced, it expands because of the vertical pressure
gradient. The work required lowers the temperature of
the parcel; if this process occurs adiabatically without
water vapour, then one obtains the dry adiabatic lapse
rate � 9.8 K/km. This explanation is at best a first
approximation; more interesting is the sign and mag-
nitude of the deviations. Following Väisälä (1925) and
Brunt (1927), we can consider an atmosphere with a

(e) (f)

Fig. 6.9 (e) Same as Fig. 6.9d (α ¼ 2), except self-affine with ls ¼ 1. (f) Same as Fig. 6.9e, except self-affine with ls ¼ 64.
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uniform (i.e. constant) temperature gradient. When a
parcel of air is vertically displaced by a small amount,
it experiences a restoring force proportional to:

N2 ¼ g@logy=@z ð6:38Þ

where y is the potential temperature and N is the
Brunt–Väisälä frequency. When N2

> 0 the particle
will oscillate about its initial position with frequency
N; the atmosphere is stable. On the contrary, when
N2

< 0, the particle will accelerate away from its
equilibrium position; the atmosphere is locally
unstable. Since the result neglects the possible desta-
bilizing effect of condensation of water vapour,
N2

> 0 implies only “conditional” stability. In a
humid atmosphere the same argument can be made:
taking into account the latent heat released by
condensation of water vapour, the “convective
instability” criterion is the same, with the “equivalent”
potential temperature yE replacing the potential tem-
perature y and NE replacing N; both criteria are used
below.

The above analysis assumes that the air surround-
ing the parcel is motionless; N2

> 0, NE
2
> 0 are static

stability criteria. However, the atmosphere typically
has large vertical shears, and we must consider the
dynamical stability. Surprisingly, this was actually
considered somewhat earlier by Richardson (1920),
who noted that buoyancy tended to stabilize shear
flows and who quantified this effect by the eponym-
ous dimensionless number:

Ri ¼ ðN2
=s2Þ ð6:39Þ

where

s ¼ @v=@z ð6:40Þ

is the vertical shear. Layers with Ri exceeding a critical
value Ric (usually taken � 0.25) are considered
“dynamically” stable, otherwise they are dynamically
unstable (due to the scaling of N2, s2, changing Ric will
only change the fractal exponent characterizing the
clustering of the layers). The atmosphere is thus
sometimes classified: Ri < 0 “unstable stratification”,
0 < Ri < Ric the “stable subcritical regime”, Ri > Ric
the “supercritical regime”.

But do stable layers really exist? A long-recognized
symptom of problems caused by the strong atmos-
pheric inhomogeneity is that – even at a fixed scale –
Ri is an incredibly variable quantity, and its mean
barely – if at all – converges (there are empirical and
theoretical reasons to suspect that it has a Cauchy

probability distribution: Schertzer and Lovejoy,
1985). Indeed, less variable statistically based alterna-
tives such as the “flux” Richardson number (e.g.
Garratt, 1992) are frequently used instead. For
example, the dropsonde data discussed above show
that the mean derivatives defining hsðDzÞi / DzHv�1

with Hv � 0.6–0.75 will diverge as the layers become
thinner and thinner ( Dz ! 0), implying that their
true values will depend on the turbulent dissipation
scale. More recently Dalaudier et al. (1994) and
Muschinski and Wode (1998) discovered thin (even
sub-metric) step-like structures called “sheets” in
otherwise supposedly smoothly varying structures.
Similar results have been reported in the ocean
(Gregg, 1991; Osborne, 1998).

6.2.2 Testing the stable layer notion
with high-resolution dropsondes
In order to see if we could define smoothly varying
stable layers, we used the dropsondes described in
Section 6.1.5, concentrating on the analysis of eight
pairs, with the members of each pair dropped within
0.3 s of each other on 2004/02/29. The two sondes
within a pair are separated by roughly 50 m and
therefore can be used to cross-check each other’s
accuracy. Such intersonde comparisons put the
following upper bounds on the measurement errors:
� 0.014 K, � 1.4 � 10�5 s�2, � 7 � 10�5 s�2 for
temperature, N2, NE

2 respectively. These are suffi-
ciently good that almost all of the layers discussed
here are reproduced from one sonde to the other,
even at the highest resolution. Fig. 6.10 shows the
comparison of N2 calculated at 5 m resolutions for
each sonde in the first pair. That the fluctuations
cannot be attributable to instrument noise is clear
from their close agreement.

Combining N2 with velocity data, we can deter-
mine the dynamical stability (Ri> 1/4) at various
resolutions. At low resolution (320 m, Fig. 6.11), we
obtain the usual first-order approximation to the
vertical structure familiar from operational radio-
sonde resolutions: the atmosphere is unstable in the
very lowest layer with only a few additional thin
unstable layers higher up. At such low resolution,
there appear to exist reasonably wide layers which
are stable, perhaps allowing the application of quasi-
linear gravity wave theories. However, this hope is
dashed when we turn to the finer resolutions (80,
20, 5 m; superposed). Upon closer examination, each
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apparently stable sublayer is found to consist of a
hierarchy of unstable subsublayers, themselves
embedded with stable subsubsub layers etc. with the
same “Russian doll” hierarchical structure holding in
reverse for the initially unstable layers; the blow-up
on the right-hand side of Fig. 6.11 shows this particu-
larly clearly. Fig. 6.12 shows the same profile using
the static stability criterion N2

> 0; we note:
(a) dynamical and static criteria are qualitatively

similar, (b) both sondes infer almost all the same
layers. To show that the unstable layers are indeed
fractal subsets of the vertical, we calculated (Fig. 6.13)
the (conditional) probability P(Dz) of finding a (5 m-
thick) unstable layer at a distance Dz from a given
(5 m-thick) unstable layer. P(Dz) is roughly a power
law; its (absolute) exponent is the correlation
codimension Cc ¼ 1 – Dc (Dc is the correlation
dimension) which characterizes the sparseness of
the unstable layers. Fig. 6.13 shows the results for
24 sondes using the “conditional stability” N2

> 0
criterion, the dynamical stability criterion (Ri > 1/4)
as well as the “convective stability” criterion NE

2
> 0.

The bars show the amplitude of the sonde-to-sonde
variations. If Cc is estimated on each sonde individu-
ally, we obtain: CcN ¼ 0.36 � 0.056, CcRi ¼ 0.22 �
0.037, CcNE ¼ 0.15 � 0.016, based on N, Ri, NE

respectively. This implies an ordering of decreasing
sparseness from conditional instability, dynamical
instability to convective instability. The deviation of
themean behaviour fromperfect power laws is less than
10% over the layers with separations in the range 5 m to
1.5 km. The result CcN > CcRi is a (mathematical)
consequence of the fact that the conditionally unstable
layers are subsets of the dynamically unstable layers.We
should note that vertical scaling laws forN2,Riwere also
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Fig. 6.11 The stability of the
atmosphere as determined by a
dropsonde using the stability criterion
Ri > 1/4 where the Richardson
number (Ri) is estimated using
increasingly thick layers: 5, 20, 80,
320 m thick (black, red, blue, cyan
respectively). The figure shows
atmospheric columns, the left one
from the ocean to 11 520 m (just
below the aircraft), while the right is a
blow-up from 8000 to 9000 m. The left
of each column indicates dynamically
unstable conditions (Ri < 1/4) whereas
the right-hand side indicates
dynamically stable conditions (Ri> 1/4).
The figure reveals a Cantor set-like
(fractal) structure of unstable regions.
Reproduced from Lovejoy et al. (2008).
See colour plate section.
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Fig. 6.10 The Brunt–Väisälä frequency squared (N2) as a function of
altitude. The two sondes were released at an interval of 0.3 s, and
most of the time their two traces are indistinguishable, indicating
that the error in the measurement is less than the width of the lines.
Reproduced from Lovejoy et al. (2008).
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found over land (Schertzer and Lovejoy, 1985), so it is
likely that our results are also valid over land. These
different instability exponents reflect the importance of
water vapour upon the vertical structure.

There are important consequences for the main-
stream theories used to interpret vertical sounding

data. These are the quasi-linear gravity wave theories
notably the saturated cascade theory (Dewan and
Good, 1986; Dewan, 1997) and the diffusive filtering
theory (Gardner, 1994), which require layers with
well-defined, real-valued, smoothly varying Brunt–
Väisälä frequencies (N). If the stable propagating
gravity waves are broken up by a sparse fractal distri-
bution of unstable layers, it is not obvious that those
theories can be saved. However, there is a strongly
nonlinear alternative discussed in Chapter 9, where it
is shown that one can readily make strongly nonlinear
models based on localized turbulence fluxes which
have wave-like unlocalized velocity fields, and this
respecting the observed horizontal and vertical
scaling. This emergent turbulent anisotropic scaling
can give rise to (nonlinear) dispersion relations not so
different than those predicted by linear theory, so it
may be sufficient to reinterpret the empirical studies
of waves in this anisotropic scaling framework.

Finally, the concept of a stable layer plays a
central role in synoptic meteorology not only
through thermodynamic diagrams, but more
importantly through the product of N2 with the
absolute vorticity, i.e. the potential vorticity, PV.
PV maps are interpreted with the help of balance
conditions which are only strictly valid in stable
layers (Hoskins et al., 1985). At the moment PV
analyses are mostly used in modelling the large
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Fig. 6.12 The stability of the atmosphere as determined by two
dropsondes dropped about 30 m apart (indicated by darker and

lighter transitions), using the stability criterion N2 ¼ g
@logy
@z

� 	

> 0

where N2 is estimated using layers at 5 m thickness. The transitions
from unstable (left) to stable (right) are shown as a function of
altitude from the ocean (bottom) to 12 km altitude (top). Nearly the
same fractal structure is found in both, showing that the fractality is
not an artefact of noise. Reproduced from Lovejoy et al. (2008).
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Fig. 6.13 The conditional probability P of finding an unstable layer
at a distance Δz from another unstable layer (at 5 m resolution, the
average over 24 sondes); P / Δz�Cc where Cc is the correlation
codimension (¼ 1Dc where Dc is the correlation dimension of the
unstable layers). The top is for convectively unstable layers, the
middle is for dynamically unstable layers and the bottom is for
conditionally unstable layers. The best-fit absolute slopes CcN ¼ 0.36,
CcRi ¼ 0.22, CcNE ¼ 0.15 implying that the fractal correlation
dimensions of the unstable layers are 0.64, 0.78, 0.85, respectively.
Reproduced from Lovejoy et al. (2008).
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scales with vertical resolutions such that layers
are stable. However, as the models improve in
resolution we may anticipate that the “Russian
Matryoshka doll” picture of the fractal embedding
of stable and unstable layers will become visible and
will have to be taken into account.

6.3 The implications of anisotropic
scaling for aircraft turbulence
measurements

6.3.1 A simple model for interpreting
aircraft measurements in scaling
anisotropic turbulence
In Section 2.6 we already reviewed the classical
aircraft campaigns and discussed the evidence that
they showed transitions from k�5/3 to k�2.4 spectra
with transition scales somewhere in the range
40–200 km. We also reviewed some recent analyses
of data from commercial aircraft (TAMDAR), which
although they had low horizontal resolutions were
sufficiently accurate and numerous so as to allow
direct estimates of < Dv2(Dx,Dz) > in the (Dx,Dz)
(vertical) plane. These structure functions were accur-
ately reproduced by Hz � 0.57, in agreement with the
theory developed earlier in this chapter, which pre-
dicts Hz ¼ 5/9. We also mentioned that a simple
model in which the aircraft fly on constant-slope
trajectories could explain the transition. We now take
a look at this a little more closely using high-spatial-
resolution data from the scientific aircraft campaign
Pacific Storms 2004 (for more details see Lovejoy
et al., 2009b).

Consider a large-scale section of a trajectory
roughly following a sloping isobar with slope s:

Dv ¼ jhl
Hh
s

Dx

ls

� �2

þ
sDx

ls

� �2=Hz

 !Hh=2

ð6:41Þ

(cf. Eqns. (6.12), (6.17)).
When considering the stratospheric ER2

trajectory, Lovejoy et al. (2004) pointed out that in
the simplest model of vertical drift where s was con-
stant, then there would exist a critical lag where the
two terms in Eqn. (6.41) were of equal magnitude:
Dxc=ls � ðsDxc=lsÞ

1=Hz (i.e. Dxc ¼ lss
1=ðHz�1Þ) so that

for Dx >> Dxc, the second term would dominate the
first and we would obtain:

Dv ¼ jhDx
Hh ; Dx << Dxc

Dv ¼ jvs
HvDxHv ; Dx >> Dxc

ð6:42Þ

We would therefore expect a spurious break in the
horizontal scaling at Dxc, after which the aircraft
would measure the vertical rather than horizontal
statistics with exponent Hv rather than Hh. In the
spectra, this transition corresponds to a transition
from k�5/3 (H ¼ 1/3) to k�2.4 (i.e. with H � 0.75
and K(2) � 0.1: b ¼ 1 þ 2H – K(2)); this simple
mechanism thus explains the transition observed in
virtually all the horizontal wind spectra, as discussed
in Section 2.6.2. Similarly, the sloping nature of the
isobars explains how the isobaric wind spectrum can
also have a k�2.4 spectrum.

6.3.2 Detailed investigation using Pacific
Winter Storms 2004 data
In order to test this in more detail, we considered the
Pacific Winter Storms 2004 data, which involved 10
aircraft flights over a roughly two-week period over
the northern Pacific, each dropping 20–30 dropsondes
(these were the data used earlier in this chapter and in
Figs. 1.6c and 2.14). The plane flew along either the 162,
178 or 196 mb isobars to within standard deviations of
� 0.11 mb (i.e. the pressure level was � constant to
within � 0.068%). Each had one or more roughly con-
stant straight and constant-altitude legs more than 400
km long between 11.9 and 13.7 km altitude. The data
were sampled every 1 s, and themean horizontal aircraft
speed with respect to the ground was 280 m/s. In add-
ition, we checked that the standard deviation of the
distance covered on the ground between consecutive
measurements was� 2% so that the horizontal velocity
was nearly constant (in addition, using interpolation,
we repeated the key analyses using the actual ground
distance rather than the elapsed time and found only
very small differences). Table 6.1 shows some of the
characteristics of each of the legs.

The horizontal and vertical winds for the Gulf-
Stream 4 aircraft are calculated by solving for the
difference of inertial ground speeds in three dimen-
sions and the flow angle measurements from various
sensors. In the short term the inertial navigation
system (INS) measurements of ground speed are
much less noisy than ground speeds taken from GPS
positions. While it is possible to smooth the GPS
information to gain smooth ground speeds, that has
not been done here; the INS data have been used. It is
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not clear whether the INS has slower response than
the GPS, or whether the latter’s high-frequency vari-
ability is really “noise” or atmospheric variability.
There are no corrections of the position of the
inertial platform (near the cockpit) to the aircraft
centre of gravity (back toward the trailing edge of
the wing, probably 10 m aft of the INS platform).

Since turbulence is highly intermittent, in order to
obtain robust estimates of exponents, experimental-
ists average their velocity fluctuations over as many
lags as possible. Since Hv > Hh, it is enough that
only some lags have a transition from horizontal to
vertical behaviour for the spurious vertical scaling to
dominate the ensemble statistics for large enough Dx.
For each flight segment and for the averages over
all the lags Dx, we therefore anticipate (cf. Eqn.
(6.41)) that:

hjDvji ¼
�

ðADxÞ2 þ ðBDxÞ2Hv=Hh

	Hh=2
ð6:43Þ

for some empirically determined constants A, B.

Fig 6.14a shows the individual structure functions
for each flight segment (leg) for the longitudinal
components with regressions to the form Eqn. (6.43)
constrained to have Hh ¼ 1/3 and Hv ¼ 3/5 (Hz ¼
5/9 ¼ 0.55, thick line), Hv ¼ 3/4 (Hz ¼ 4/9 ¼ 0.44,
thin line). Alternatively, we can fix Hh ¼ 1/3 and find
the error in the regressions for the ensemble of legs as
function of Hz (Fig. 6.14b), the theoretical fits show-
ing that the optimal Hz � 0.46 � 0.05, 0.45 � 0.05 for
longitudinal and transverse components respectively
(with errors indicated for the optimum Hz values � �
0.04); these values are a bit lower than the 5/9 value
discussed earlier. Finally (not shown, but see Lovejoy
et al., 2009b), we can determine the error-minimizing
exponents Hh, Hv simultaneously; we find (Hh, Hv) ¼
(0.26 � 0.07, 0.65 � 0.04), (0.27 � 0.13, 0.67 � 0.09)
for the transverse and longitudinal components
respectively. We see that the values are within a
standard deviation of the horizontal (Kolmogorov)
value Hh ¼ 1/3 whereas the Hv values are a little larger
than the Bolgiano–Obukhov values.

Table 6.1 Comparison of the various characteristics of the 16 near-straight, flat flight segments (legs) considered in this chapter. The
column Max(Δz) is the difference in altitude between the highest and lowest points on the leg, Dxc is the critical scale beyond which the
vertical exponent dominates the horizontal (Eqn. (6.44)), here estimated as the geometric mean between the longitudinal and transverse
values. For legs 2 and 7, the transition was not attained over the entire leg, so only a lower bound is given. We also give the energy flux ε,
and the sphero-scale ls are determined by the “scale invariant lag” technique (explained in (Lovejoy et al., 2009b)).

Leg no. Length (km) Max(Dz) (m) Dxc (km) ε � 104 (m2s�3) ls (m)

1 2100 72 12.4 0.3 0.04

2 1248 83 > 1200 0.2 –

3 2496 69 84 40. 0.14

4 3348 737 108 0.2 0.05

5 2044 631 12.8 0.4 0.07

6 1476 260 7.6 0.2 0.03

7 568 19 > 400 0.3 –

8 1588 206 30.4 1.2 0.08

9 2924 100 384 30. 0.09

10 2272 172 40 40. 0.25

11 2980 899 100 0.4 0.10

12 3292 883 260 0.4 0.13

13 1532 308 52 0.2 0.60

14 3408 597 64 0.5 0.09

15 2780 191 3.6 5. 0.11

16 1844 178 48 2.0 0.05
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We can use the leg-by-leg regression coefficients
A, B obtained with Hh ¼ 1/3, Hz ¼ 4/9 (close to the
regression value above) to estimate the critical Dxc at
which the two terms in Eqn. (6.43) are equal:

Dxc ¼ AHz=ð1�HzÞ
=B1=ð1�HzÞ ð6:44Þ

We see that in two cases (leg 2 and leg 7) the Dx1/3 law
holds well over the entire leg so that no transition is
observed (the corresponding entry is blank: we are
unable to estimate Dxc and ls). Detailed examination
of the corresponding slopes shows that these are cases
with particularly low slopes which, following our pre-
ceding analyses, favour the horizontal exponents. If in
addition the ls value is particularly large – and it is
highly variable – then there will be no transition over
the observed range of lags Dx�

This analysis gives strong support to our conclusions
about the effect of anisotropic turbulence. In addition,
from the table we can see that the values of both ε and ls
are indeed highly variable (explaining the large leg-to-leg
differences in transition scales Dxc) but the mean values
are not unusual. For example the mean ε � 8 � 10�4

m2s�3 is not so far from the troposphere average value�
10�3 m2s�3 (see e.g. Section 8.1.3) and the estimates
of ls are in the range 3 cm to about 70 cm, which is
exactly the range of the direct estimates from lidar (see
Section 6.5.1) and a little larger than the estimate from
the mean ER2 data (ls � 4 cm) (Lovejoy et al., 2004).

The constant-slope model presented here is only
an approximation to the rather complex interaction
between the aircraft, the wind and the isobars. To get
a more in-depth appreciation of the subtleties, we can
consider the cross-correlations between the wind fluc-
tuations with both altitude and pressure fluctuations:
see Appendix 6B.

We can also re-examine the influence of the
sloping trajectories on the wind fluctuations in
another way. Recall that the aircraft slopes, combined
with the observed sphero-scales and with the observed
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Fig. 6.14 (a) The first-order structure function for the longitudinal
component of the horizontal wind for each of the 16 flight
segments, each displaced by 0.5 in vertical for clarity. Δx is the
horizontal distance in km. The thin line is the regression to the form
Eqn. (6.43) with Hz ¼ 4/9 while the thick line has Hz ¼ 5/9.
Reproduced from Lovejoy et al. (2009b). (b) The RMS error in
estimating log10hjΔvji for longitudinal (far right) and transverse (far
left) components respectively, obtained by fixing Hh ¼ 1/3. The
minima correspond to the estimates: Hz � 0.46 � 0.05, 0.45 � 0.05

for longitudinal and transverse components respectively.
Reproduced from Lovejoy et al. (2009b). (c) The first-order structure
functions for the longitudinal component of the horizontal wind
(<Δv>, bottom, i.e. f ¼ v, units m/s), and the horizontal distance
(<Δx>, top, i.e. f¼ x, units km) as functions of vertical separations (Δz),
estimated for 24 aircraft legs each at 280 m resolution in the
horizontal, 1120 km each. For altitude fluctuations less than about 1m
(corresponding to � 25 km), the wind fluctuations are independent
of the vertical lag; for larger scales they follow almost exactly the
Bolgiano–Obukhov Δz3/5 law (the lower reference line). Similarly, the
mean horizontal displacement as a function of vertical lag (<Δx>)
closely follows the predictions of the 23/9D model for isobars
(reference line slope 5/9). Reproduced from Lovejoy et al. (2010a).
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exponents, lead to transition scales Dxc of the same
order as those observed. Consider now Fig. 6.14c,
which includes an analysis of the mean horizontal
wind shear along 24 4000-point long legs (1120 km),
(a subset of the generally longer legs discussed earlier,
some of which were broken into several 4000-point
sections). This figure uses all the pairs of points on a
trajectory indexed by i, j and calculated as:

where l0 ¼ 100.1 is a scale factor and Nk is the number
of pairs in the kth interval, i.e. between Dz l0

k
< Dzʹ

< l0
kþ1 Dz, and Dzk, Dxk are the corresponding

vertical and horizontal displacements. We can see that
for Dz> 1 m (corresponding to the mean critical
transition scale of about hjDxkji 25 km (see the upper
curve), the wind follows almost exactly the theoretic-
ally predicted Bolgiano–Obukhov scaling Dv � Dz3/5

(the line is for reference, it is not a regression). At the
smaller scales, Dv is independent of Dz, as would be
expected if the slopes of the aircraft were unimport-
ant, a consequence of the fact that the smaller-scale
fluctuations were dominated by turbulent influences
on aircraft drag and lift. By comparing the upper and
lower graphs (for <Dv> and <Dx>, respectively) we
see that the transition is at ~25 km, i.e. roughly the
scale at which the phase relations are reversed and the
k�5/3 spectrum gives way to a k�2.4 spectrum. To put
it another way, if the sloping nature of the isobars
were irrelevant (so that isoheight and isobaric expo-
nents were the same), then why is there any system-
atic variation of Dv with Dz – and why does it follow
so perfectly the Bolgiano–Obukhov predictions?

6.4 Horizontal and vertical analyses
of dynamic and thermodynamic
variables

6.4.1 Horizontal structure function
analyses
Ideally, in order to properly quantify atmospheric
stratification, we should analyse vertical sections.
Unfortunately, such data do not exist for any of the
usual variables of state, and the best we can do is use

remotely sensed data: we turn to this in the next
section. For the usual state variables, the best solution
is to use (near) simultaneous horizontal aircraft and
vertical dropsonde soundings; they are available from
the Winter Storms 2004 experiment, and we now give
a more complete analysis of those data.

When we discussed spectral and cascade analyses
in the horizontal (cf. Figs. 1.6c, 6.14a and Figs. 4.6a,

4.6b) we noted the break induced in the horizontal
wind statistics by the gentle slopes of the isobaric
aircraft trajectories. In Chapter 5, in order to illustrate
the structure function method, we calculated the air-
craft structure functions of various orders, but post-
poned until now a discussion of the results.

In Fig. 5.36a we showed the structure function
results for the pressure and the longitudinal and
transverse wind components (i.e. those parallel and
perpendicular to the direction of the aircraft). The
behaviour for the wind has essentially two scaling
regimes with a 4–40 km transition regime. In com-
parison, since the aircraft attempted to follow
isobars, the pressure has poor scaling (i.e. the devi-
ations from perfect isobaric trajectories). In Fig.
5.36b we showed the corresponding plot for those
fields little affected by the trajectory fluctuations:
the temperature, humidity and log potential
temperature; we see that the scaling is indeed very
good (see also Fig. 1.6c). In Table 6.2 we also give the
corresponding C1 estimates obtained by numerically
estimating Kʹ(1) using regressions over the range 4–
40 km for the thermodynamic variables with the best
scaling. We can see that the various methods (trace
moments, spectra, structure functions) give esti-
mates of C1, H which are very close to each other,
with all fields having roughly the same values: a� 1.8,
C1� 0.05,H� 0.50. In spite of the fact that, classically,
we expect H to be given by dimensional analysis of a
turbulent flux – and hence to be expressed as a ratio
of small integers, here apparently 1/2 – as far as we
know there is no theory which plausibly explains
these values: passive scalar theory yields H ¼ 1/3,
and the classical BO theory applied to the temperature
gives H ¼ 1/5.

hjDvkji ¼
1

Nk

X

lk0Dz0<Dz
0
<lkþ1

0 Dz0

jvðxi, ziÞ � vðxj, zjÞj; Dz
0

¼ jzi � zjj ð6:45Þ

hjDxkji ¼
1

Nk

X

lk0Dz0<Dz
0
<lkþ1

0 Dz0

jxi � xjj; Dz ¼ jzi � zj j; Dx ¼ jxi � xjj ð6:46Þ
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6.4.2 Intermittent sampling intervals
and structure functions in the vertical
Aparticularity of the vertical dropsonde data discussed
in Sections 6.1.5 and 6.2.2 is that themeasurements are
not uniformly spaced. Whereas estimating fluctu-
ations and fluxes is straightforward enough for data
sampled at regular intervals, for data with highly
irregular resolutions we must take into account the
variability of the resolution. The dropsonde resolution
is variable for two reasons: first, even if the sampling
was always at the nominal 0.5 s time interval, the
variable vertical sonde fall speed would lead to variable
vertical sampling intervals. This source of variability is
not too large: due to increased air resistance the mean
vertical sonde velocity decreases from about 18 m/s to
about 9 m/s near the surface; in addition, turbulence-
induced fluctuations increase this range of resolutions
by another factor of~2. However, the variability prob-
lem is made much, much worse because of data
outages – even though these affected only 9.5% of the
observations. The problem is that they affected every
sonde, that they were highly clustered and that they
were sometimes very large (occasionally several kilo-
metres in size). Fig. 6.15 shows the distribution of the
distance between consecutive measurements from two
near-simultaneous sondes (launched 0.3 s apart); one
can see not only that can the outages be large but that
they are highly clustered. If such data are interpolated
onto uniform grids, then their spectra and other stat-
istics can be significantly biased.

When calculating structure functions these prob-
lems are not hard to avoid; in Section 6.1.5 we simply

used point pairs to define the fluctuation Dv(Dz) as
the difference between the velocity at two vertical
levels (indexed by n, m) separated by altitude Dz:

DvðDzÞ ¼ jvðznÞ � vðzmÞj; Dz ¼ jzn � zmj ð6:47Þ

By examining all the N(N – 1)/2 observation pairs
we avoid interpolations; multifractal simulations
show that the pair method is quite robust even in
the presence of large intermittency in the measure-
ments (Lovejoy et al., 2009a). Defining fluctuations
in this way as differences is equivalent to using
a “poor man’s wavelet” and is only valid for
0 < H< 1 (Section 5.5). Since the temperature,
pressure and potential temperatures are known to
be nearly linear with Dz (for the temperature, this is
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Fig. 6.15 Comparison of vertical sampling intervals of two near-
simultaneous sondes. Notice the strong (and typical) clustering of
the outages. The mean Δz is larger at high altitudes due to the lower
air resistance. Reproduced from Lovejoy et al. (2009a).

Table 6.2 Parameter estimates over the “optimum” range 4–40 km. b is the spectral exponent, Hst is from the first-order structure function,
Hb ¼ (b þ K(2) – 1)/2, and Hmean is the average of the two. C1 ¼ Kʹ(1) from the trace moments and C1,st ¼ x(1) – xʹ(1), C1mean is the average.

T logy h

α 1.78 1.82 1.81

β 1.89 1.91 1.99

K(2) 0.12 0.12 0.11

C1 0.064 0.063 0.051

C1,st 0.040 0.042 0.028

C1mean 0.052 � 0.012 0.052 � 0.010 0.040 � 0.012

Hst 0.49 0.50 0.52

Hb 0.51 0.52 0.50

Hmean 0.50 � 0.01 0.51 � 0.01 0.51 � 0.01
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the classical linear adiabatic temperature profile), we
must define fluctuations in a way that is valid over a
wider range of H values; at least for 2 > H> 0. In
Section 5.5 we saw that the basic trick for doing this
is to use the second centred differences that are
classically defined for evenly spaced zn by:

DvðDzÞ¼

�

�

�

�

vðznþmÞ þ vðzn�mÞ

2
�vðznÞ

�

�

�

�

;

Dz ¼ znþm � zn ¼ zn � zn�m

ð6:48Þ

where the subscripts are the integer indices of the
measurements. Graphically, this definition is equiva-
lent to finding the distance in the v direction between
the central point (zn, v(zn)) and the line joining the
points (znþm, v(znþm)), (zn–m, v(zn–m)). To obtain a
fluctuation estimate valid for unevenly spaced zn, we
can simply use the distance from the line to obtain the
following estimate:

DvðDzÞ¼jvðzn�mÞ þ ðzn � zn�mÞs�vðznÞj;

s ¼
vðznþmÞ�vðzn�mÞ

znþm � zn�m

Dz ¼
�

ðzn � zn�mÞðznþm � znÞ
	1=2

ð6:49Þ

Since now there are three points needed to define the
fluctuation, there is not a unique choice of scale (lag)
Dz with which to associate the fluctuation. The above
choice (the geometric mean) evenly weights the loga-
rithm of the scales and is appropriate for scaling
fluctuations. In order to implement this definition it
is usually not possible to consider all the triplets of
points (this is of order N3 for series of length N). Our
choice was based on the fact that the outages affected
only 9.5% of the points, so we considered only the
triplets with altitudes zn–m, zn, znþm, and for each
scale we considered all the integer pairs n, m. Note
that this choice, along with the use of the geometric
mean for Dz, means that there will be few statistics for
the largest factor of 2 in scale. Also, since most of the
points are regularly spaced, zn– zn–m is typically not so
different from zn – znþm, so the definition does not
“mix” different scales too much.

We may now apply the fluctuation analyses to the
atmospheric fields whose fluxes were analyzed above.
Using the definitions in Eqns. (6.47) and (6.49) for the
fluctuations for estimating the qth-order structure
functions (see Eqn. (5.98)), we obtain Figs. 6.16a
and 6.16b for the dynamic and thermodynamic fields,
respectively. They have been nondimensionalized by

dividing by the value <Df>(Dz) for Dz ¼ 10 m,
although there is no expectation that the lines converge
to a point as for themoments of the fluxes. In the figure,
we used definition Eqn. (6.47) for the fluctuations
of v, h, ws (since H < 1) and definition Eqn. (6.49)
for p, log y, log yE, r, T (sinceH is near 1 or larger). In
the case of the pressure, we see that H � 2, so we
should perhaps have further generalized the definition
of fluctuations so as to obtain a result valid for H < 3.

From the figures, the linearity of the log fluctu-
ation moments versus log Dz is quite striking. Indeed,
we will see in the next subsection that the scaling of
the moments apparently extends to somewhat larger
scales than the scaling of the fluxes. In order to assess
both the quality of the scaling and to compare the
scaling of the different fields we refer the reader to
Table 6.3, where we have calculated the exponent H ¼
x(1) from the mean of the exponents calculated for
Dz < 300 m and Dz > 300 m (300 m is the geometric
mean of the observed range 10 m to 10 km). The
range indicated by the “�” is half the difference. If the
spread indicated in this way is small then the scaling is
effectively well respected over the whole range; we see
that the H values for p, ws are particularly well
defined, whereas for T, logy it is less so.

We made no attempt to investigate the altitude
dependence of the exponents from the structure
functions, but this was done with the flux moment
analyses discussed in the next section, and the param-
eters for this analysis are also given in the table for
comparison. The altitude dependence of the expo-
nents, although small, is partially responsible for the
imperfect scaling since the thickest layers necessarily
involve points at high altitudes. To estimate C1 from
the structure (fluctuation) exponent x(q), we can
exploit the equation x(q) ¼ qH – K(q) so that
xʹ(1) ¼ H – C1 and hence C1 ¼ x(1) – xʹ(1). However,
for these fields, H is much larger than C1; indeed, it is
often the order of the error in the estimates of H,
hence the C1 will not be too accurate. Since the fluxes
do not depend on H they can be used to directly
estimate K(q) and hence C1; we therefore consider
the flux-based estimate of C1 to be more accurate:
see the next section.

6.4.3 Cascades in the vertical
By treating the measurement intervals in both the
vertical and in time Lovejoy et al. (2009a) obtained a
surprising result: the outages had almost exact
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cascade structures with rather large intermittencies
(C1time � 0.21, C1vert � 0.23) with outer scales near
the outer scale of the data (� 200 s and � 3 km,
respectively). In order to overcome this extreme
outage problem, two developments are needed. The
first is a robust technique to estimate the fluxes, the

second a method of statistical correction to the scaling
exponents in order to correct for the strongly variable
resolutions (Lovejoy et al., 2009a).

In order to estimate the turbulent fluxes from
such intermittent data, recall that in a scaling regime
for a field v, the fluxes are related to the fluctuations
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Fig. 6.16 (a) Nondimensionalized
dynamical variables, moments of the
fluctuations Δf; S(Δz) ¼ <Δf(Δz)q>.
Clockwise from upper left: f ¼ v, p, r, ws.
Moments q ¼ 0.2, 0.6, 1, 1.4, 1.8.
Reproduced from Lovejoy et al. (2009a).
(b) Same as Fig. 6.16a but for the
thermodynamic variables, fluctuation
analysis. Clockwise from upper left: f¼ T,
log θ, h, log θE. Moments q ¼ 0.2, 0.6,
1, 1.4, 1.8. Reproduced from Lovejoy
et al. (2009a).
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through the basic flucuation/flux relation Dv(l) =
jll

H. With regularly spaced data, the usual way to
estimate the flux is to degrade it starting from the
highest resolution in the scaling regime (so that the
above law holds), and estimate the fluctuations at the
finest scale (e.g. by absolute first differences or by
absolute wavelet coefficients). The result is the flux
at the finest resolution; one then degrades the result
by averaging over larger and larger scales. However,
we can also estimate the fluctuations from the local
derivatives; for example (for uniformly spaced data)
for the nth flux estimate, we can use the data at the
(n–1)th and (nþ1)th points to yield a “centred
difference” estimate:

DvlðznÞ �

�

�

�

�

dvðznÞ

dz

�

�

�

�

l

l � snl; sn ¼

�

�

�

�

vðznþ1Þ � vðzn�1Þ

znþ1 � zn�1

�

�

�

�

ð6:50Þ

where sn is the local absolute slope. We saw that in the
scaling regime jl ¼ Dv(l)/<Dv(l)>. At least if H< 1,
we therefore have the estimate jl ¼ s/< s>. In order
to generalize this to intermittent locations zn, we
can simply include the point zn and estimate sn by
a linear regression of the point triplets:
�

zn�1, vðzn�1Þ
�

,
�

zn, vðznÞ
�

,
�

znþ1, vðznþ1Þ
�

n o

. This

method has the advantage of not being too sensitive
to the noise in either the data (v) or the position
estimates (z) (these factors were found to make

interpolations unreliable for derivative estimates;
similarly, estimates of spectra obtained from inter-
polated series will contain serious artefacts due to
the interpolation). The resulting series of sn values
determined at the irregular locations zn can then be
interpolated at uniform intervals. Providing that
one recognizes that their resolutions are not
fixed, the (normalized) slopes can be used as esti-
mates of the normalized fluxes (jl ¼ s/< s>). One
can then use the interpolated s series to obtain
regularly sampled values, systematically degrading
these to obtain a series of lower- and lower-
resolution flux estimates as usual. The final step is
to statistically correct the result for this variable-
resolution effect.

To see how this method works we determined
the fluxes for the simultaneous sonde pair
analysed in Fig. 6.15. The results for the main
dynamic and thermodynamic fields are shown in
Fig. 6.17a. We can see that the estimates for the
two sondes are very similar (the curves are mostly
indistinguishable), even though, as Fig. 6.15 shows,
the outages were significantly different. In Fig.
6.17b, we blow up a particularly intermittent
section, which shows the enormous variability of
the fluxes (especially the humidity and equivalent
potential temperature), which is nonetheless well
reproduced by both sondes. Finally, in Fig. 6.17c
we examine a section of the data that was

Table 6.3 Vertical parameter estimates from from dropsondes using both structure functions and moments of the fluxes. The rows H,
C1,fluc are from the structure function (fluctuation) analyses over the entire range 0–10 km; they are indicated as the means of the fits from
30–300 m and 300–3000 m; the spread is half the difference (H is from x(1), C1 from x(1)-xʹ(1)). The row C1 is from the flux analyses in
Section 6.4.3 reduced by the factor 1.39 to account for the intermittency of the sonde outages. C1,>6km is the same but for the upper part
only (6–10 km); this shows some of the variation with altitude but is also an estimate of the 200 mb values that can be compared to
the horizontal aircraft values at roughly this flight level (Table 6.5). The rows α, Leff, δ are from the flux moment analysis over 0–10 km
(δ is the residual, Eqn. (4.16))

T Logy LogyΕ h v p r

H 1.07 � 0.18 1.07 � 0.18 0.87 � 0.10 0.78 � 0.07 0.75 � 0.05 1.95 � 0.02 1.31 � 0.12

C1,fluc 0.066 �
0.038

0.051 �
0.027

0.140 �
0.101

0.144 �
0.028

0.023 �
0.016

0.043 �
0.032

0.123 �
0.103

C1 0.049 0.046 0.106 0.103 0.071 0.032 0.065

C1,>6km 0.072 0.071 0.069 0.091 0.088 0.072 0.077

α 1.70 1.90 1.90 1.85 1.90 1.85 1.95

Leff
(km)

5.0 4.0 25 16 1.3 5.0 13

δ (%) 1.4 1.2 1.9 1.4 2.3 1.1 1.4
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particularly poorly sampled by the sondes (Fig.
6.15): we see that even here the two sondes give
fairly similar flux estimates, although at different
resolutions.

When this technique was applied to the dropsonde
data, the moments displayed in Figs. 6.18a and 6.18b
were obtained. As for the structure function analysis,
the quantities that we analysed can be roughly
grouped into two categories: dynamic and thermo-
dynamic variables. The dynamic variables (Fig. 6.18a)
were the modulus of the horizontal wind v, the
pressure p, the total air density (r, including that
due to humidity), and the sonde vertical velocity ws.
We also separately analyzed the north–south and
east–west components of the horizontal wind, but
the results were not much different and we will not
discuss them further. For the vertical sonde velocity,
the fluctuations around a quadratic fit (corresponding
to a constant deceleration from 18 m/s to 9 m/s) were
used. Due to the parachute drag, the fluctuations in ws

depend on both the vertical and horizontal wind, so it
should not be used as a surrogate for the vertical
wind.

The cascade structures displayed in Figs. 6.18a
and 6.18b are biased due to the outages, so the flux
estimates have strongly variable resolutions. It turns
out that these can be taken into account and simple
statistical corrections can be made (see the some-
what technical details in Lovejoy et al., 2009a); in
the case here, they effectively boost the C1 by a
factor of about 1.39. Table 6.3 compares the cor-
rected exponents obtained in this way, both those
over the entire range 0–10 km and those from
the higher range 6–10 km indicating that the
intermittency generally increases with altitude, the
exception being the humidity and the derived
equivalent potential temperature. The basic regres-
sions were taken over the range 10–300 m. From the
figures we can see that with small deviations d (the
residuals Eqn. (4.16); see Table 6.3) all the fields well
respect to the predictions of cascade theories over
the range 1 km to 10 m.
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Fig. 6.17 (a) Comparison of normalized (and hence
nondimensional) fluxes from a simultaneous sonde pair. For each
field, the profiles are so close as to be nearly indistinguishable. The
acceleration was not analyzed, since the noise was too large.

Reproduced from Lovejoy et al. (2009a). (b) Detail of Fig. 6.17a
showing that even very intermittent layers can be well reproduced
from sonde to sonde. Reproduced from Lovejoy et al. (2009a).
(c) Comparison of normalized flux estimates from the two sondes for
a particularly poorly sampled section from Fig. 6.17a. Reproduced
from Lovejoy et al. (2009a).
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Fig. 6.18 (a) The dynamical fields v, p,
r, ws (clockwise from upper left) for
q ¼ 0.2, 0.4, . . ., 2. Reproduced from
(Lovejoy et al., 2009a). (b) The same as
for Fig. 6.18a except for the
thermodynamic fields T, log θ, h, log θE
(clockwise from upper left), reproduced
from (Lovejoy et al., 2009a).
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6.5 Direct verification of anisotropic
cascades using lidar backscatter
of aerosols and CloudSat
radar reflectivities

6.5.1 Simultaneous horizontal and
vertical analyses; structure functions
Lidar and radar are in many ways ideal methods for
studying the vertical stratification since they directly
yield vertical cross-sections. We therefore return to
the unique dataset of airborne lidar backscatter from
aerosols already discussed in Section 1.2.4. The data
were taken over three afternoons in August 2002 near
Vancouver, British Columbia: see Fig. 1.7b, and the
zoom (Fig. 1.7c), for an example showing the
extremely fine details, including hints that at the small
scales the structures are no longer flat, but start to be
stretched in the vertical; compare this with the simu-
lation in Fig. 6.7a.

According to the isotropic Corrsin–Obhukhov
passive scalar theory (Section 2.3), the mean absolute
fluctuations in the aerosol density r should scale as:

DrðDx,DzÞ¼
s
w1=2ε�1=6jðDx,DzÞjHCO ; HCO ¼ 1=3

ð6:51Þ

where w and ε are the passive scalar variance and
energy fluxes, respectively, and we have used the
Corrsin–Obhukhov exponent HCO ¼ 1/3. The exten-
sion to anisotropic turbulence is effected simply by
replacing the (isotropic) vector norm jðDx,DzÞj by
the scale function kðDx,DzÞk:

DrðDx,DzÞ¼
s
w1=2ε�1=6kðDx,DzÞk1=3;

kðDx,DzÞk ¼ Yðy0Þr0
ð6:52Þ

where:

r0 ¼ ls
Dx

ls

0

@

1

A

2

þ

�

�

�

�

Dz

ls

�

�

�

�

2=Hz

0

@

1

A

1=2

;

tany0 ¼
Dz0

Dx0
¼

signðDzÞjDz=lsj
1=Hz

ðDx=lsÞ

ð6:53Þ

(with Hz ¼ 5/9; see Eqn. (6.29) for the nondimen-
sional version).

We first test the special horizontal (Dz¼ 0, yʹ¼ 0)
and vertical (Dx ¼ 0, yʹ ¼ p/2) cases:

DrðDx, 0Þ¼
s
w1=2ε�1=6Yð0ÞDx1=3

Drð0,DzÞ¼
s
w1=2ε�1=2j1=5Y

�

p

2

�

Dz3=5 ð6:54Þ

The first (horizontal) law is the usual Corrsin–
Obhukhov law, but the second (vertical) law
(obtained using Eqn. (6.13) for ls in terms of the
buoyancy variance flux j) is a new prediction of the
23/9D anisotropic scaling theory.

We can now test Eqn. (6.54) by analyzing the first-
order (q ¼ 1) structure function averaged over the
nine available cross-sections (Fig. 6.19a). The first-
order structure function is interesting because we
expect K(1) to be small enough that the horizontal
and vertical H’s (Hh and Hv) can be estimated as
xh(1) � Hh ¼ 1/3, xv(1) � Hv ¼ 3/5. We can see from
the figure that not only is the scaling excellent in both
horizontal and vertical directions, but in addition the
exponents are very close to those expected theoretic-
ally. In fact, we find from linear regression: Hh ¼
0.33 � 0.03, Hv ¼ 0.60 � 0.04. Also visible in the
figure is the scale at which the functions cross; this is a
direct estimate of the sphero-scale, which we find here
varies between 2 cmand 80 cm,with anaverage of 10 cm.

Next, we can empirically verify Eqn. (6.52) for
directions other than the coordinate axes; indeed, we
can estimate Y(yʹ). To test this on the data, it suffices
to use the nonlinear coordinate transformation
ðDx

0
,Dz

0
Þ ¼

�

Dx, signðDzÞjDzj1=Hz

	

(Eqn. (6.28))
which makes the structure function S1(Dxʹ,Dzʹ) ¼
<Dr(Dxʹ,Dzʹ)> only trivially anisotropic; this is the
anisotropic scaling analysis technique (ASAT; Radke-
vitch et al., 2007, 2008). Taking constant yʹ rays, we
obtain Fig. 6.19b; we see that the lines are parallel with
exponent 1/3 in all directions as expected. The differ-
ence between the 1D structure functions in different
directions means that the unit ball is not a circle
(sphere). To clearly see this “trivial” anisotropy
Yðy0Þ we remove the theoretically expected rʹ depend-
ence by calculating the “compensated” 2D structure
function r0

�1=3
S1ðr

0 , y0Þ, averaging it over log10ðr
0Þ:

Sc, 1 ¼ hr0�1=3
S1ðr

0 , y0Þilogr0 � Yðy0Þ1=3 as a function
of polar angle y0 – it determines the shape of the unit
ball. Sc, 1 is useful because, within rather small
intermittency corrections, it is expected to be inde-
pendent of rʹ. Fig. 6.19c was determined from r0�1=3S1
values as functions of log10ðr

0Þ and y0 with increments
of log10ðr

0Þ ¼ 0.2. Along rays of fixed angle y0, the
relative error (the ratio of Sc,1 and standard deviation)
does not exceed 10% over wide ranges of scale
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Fig. 6.19 (a) The symbols show the first-order vertical structure function, and first-order horizontal structure function for the ensemble of
nine vertical airborne lidar cross-sections. ρ is the dimensionless backscatter ratio, the surrogate for the passive scalar aerosol density; Δr is
either the vertical or horizontal distance measured in metres. The lines have the theoretical slopes (not regressions!) 3/5, 1/3, and they intersect
at the sphero-scale here graphically estimated as ~10 cm. Reproduced from Lilley et al. (2008). (b) 2D structure function S1 as function of
r0 (indicated R0 in the plot) for four directions (θ

0

¼ 0 (short dashes, corresponding to r0 ¼ Δx0), π/4 (long dashes), π/2 (long, short dashes,
corresponding to r0 ¼ Δz0)), 3π/4 (long, short, short dashes) for a single cross-section in the nonlinearly transformed (Δx0 , Δz0) coordinates. The
solid line has the theoretical slope of 1/3. Reproduced from Radkevitch et al. (2008). (c) Polar plot of compensated structure
function r

0�1=3
S1ðlog10ðr

0
Þ, θ

0

Þ averaged over for the same cross-section as in Fig. 6.19b (black line) with angle representing the direction
of ðΔx

0
,Δz

0
Þ and the distance from the origin representing the size of S1,c; the averages are over 0:2 < log10ðr

0
Þ < 2:8. The quantities log10ðΔxÞ

and log10ðΔzÞ=Hz show distance from the centre of the plot in time and vertical directions, but they are not Cartesian coordinates. The
grey lines are compensated averaged 2D structure function� standard deviation. Reproduced from Radkevitch et al. (2008). (d) Contour plot of
S1 with different nonlinear transformations in polar coordinates with radius ¼ log10r

0 and the polar angle ¼ θ0 . Upper left: isotropic
turbulence (no transformation, Hz ¼ 1); upper right: 23/9D model (Hz ¼ 5/9); bottom: gravity waves (Hz ¼ 1/3). Note that although the x0

(left–right) and z0 (up–down) coordinate directions show the distance from the centre of the plot in the corresponding direction, they are not
Cartesian coordinates of the plot. Pacific 2001 0815t6, vertical–horizontal cross-section. If Hz is such that Eqn. (6.50) is satisfied, then the
spacing between the contours is constant in all directions (close to the upper right, Hz ¼ 5/9 case), this criterion does not imply that the
contours have shapes independent of scale. Reproduced from Radkevitch et al. (2008). See colour plate section.
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(r0max=r
0
min > 103 in many instances); often this vari-

ation does not exceed 5% (Fig. 6.19c). The ranges
chosen for averaging are indicated in the captions
for the figures. Thus, the ASAT technique applied to
first order (q ¼ 1) 2D structure functions allows us to
verify the theory to within about 10% over more than
three orders of magnitude of space-space scales, and
this at various angles in (xʹ,zʹ) space. Note that from
its definition, the structure functions are symmetric
with respect to inversion about the origin.

While the near-constancy of the compensated
structure functions as functions of angle gives strong
support to the correctness of the coordinate trans-
formation and passive scalar theory (the exponent
1/3 in Eqn. (6.52)), one can also use the same tech-
nique to test the alternatives, the Ds ¼ 7/3 gravity
waves, and the Ds ¼ 3 isotropic turbulence. This can
be easily done by using the corresponding nonlinear
coordinate transformations and visually checking for
the constancy of the resulting Y functions.

Fig. 6.19d shows a comparison of contour plots of
logðS1ðlogðr0=riÞ, y

0ÞÞ with the nonlinear transform-
ation Eqn. (6.28) corresponding to different models:
isotropic turbulence, the 23/9D model and quasi-
linear gravity waves. If the contours of logðSðr0 , y0ÞÞ
are invariant under an isotropic scale change (they
have the same shapes), then the corresponding con-
tours of logðS1ðlogðr0=riÞ, y

0ÞÞ will not have the same
shapes but they will be rather equally spaced in all
directions (Ri is a nondimensionalizing inner scale;
below Ri, the signal is dominated by instrumental
noise). The advantage of using a ((log(r0/ ri),y0)) space
representation is that we can visually represent a
huge range of scales on a single picture. For the upper
left case in Fig. 6.19d there is no transformation
of coordinates, and we can see that as we move
from contour to contour the spacing between the
contours is different in the horizontal and vertical
directions. For the upper right case (using the
theoretical transformation from the 23/9 model), we
can see that the contours are spaced pretty much the
same distance apart (i.e. equally spaced in all direc-
tions as expected). Finally, in the bottom case, the
gravity wave value of Hz ¼ 1/3 is used in the trans-
formation, again leading to contours which are not
equally spaced – this time they are closer in the verti-
cal than in the horizontal. Note that all the contours
are spaced at equal factors of S1 of 1.12 (for the 23/9
model, i.e. with H ¼ 1/3, this corresponds to a factor
of 1.41 in scale), the total range of scales is roughly

100. Overall, the 23/9D model gives the best scale
invariance of the three tested.

6.5.2 Simultaneous horizontal and
vertical cascades from lidar data
In order to determine the cascade structures, we can
estimate the fluxes from the absolute finite difference
Laplacian (as discussed in Chapter 4). A direct hori-
zontal/vertical comparison of the normalized fluxes
Mq is given in Figs. 6.20a and 6.20b. We see that the
cascade structure predicted by Eqn. (4.1) is well
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Fig. 6.20 (a) Horizontal analysis of the moments of the normalized
lidar backscatter ratio for 10 atmospheric vertical cross-sections
(Lref ¼ 20 000 km, corresponding to l ¼ 1). The curves are for the
moments of order q ¼ 0.2, 0.4, . . ., 2. The largest directly accessible
scale is ~100 km, and the lines converge to an effective outer
scale of Leff � 25 000 km. Reproduced from Lovejoy et al. (2009a).
(b) The same cross-sections as in Fig. 6.20a but analyzed in the
vertical direction (Lref ¼ 10 km corresponding to l ¼ 1). The largest
directly accessible scale is ~3 km, the point of convergence is
Leff � 50 km: see Table 6.4. Note that the vertical axis is not the same
as for the horizontal analysis; this is a consequence of the scaling
anisotropy; the exponents are roughly in a constant ratio.
Reproduced from Lovejoy et al. (2009a).
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respected: not only are the lines quite straight, they
also “point” to the effective outer scale of the
process, – i.e. the scale at which a multiplicative
cascade would have to start in order to account for
the statistics over the range observed. We see that, as
before, for the horizontal analysis Leff is a little larger
than the physical scales (� 25 000 km, 50 km for the
horizontal and vertical respectively). Table 6.4 shows
some of the parameters characterizing K(q), and
shows that they are indeed quite different for the
horizontal and vertical directions.

6.5.3 The construction of space-space
diagrams from lidar data
If we define a “structure” in a field f as a fluctuation in
the value of f of magnitude Df, then we can use this
to statistically define the relation between the hori-
zontal and vertical extents of structures. For example,
using the first-order structure function we can
equate the horizontal and vertical fluctuations:
hjDf ðDxÞji ¼ hjDf ðDzðDxÞÞji, which gives an implicit
relation Dz(Dx) between the horizontal and vertical
extents (Dx, Dz respectively); i.e. for each horizontal
lag Dx, what is the vertical lag Dz which gives the
same mean fluctuation? Using the scale function
(Eqn. (6.17)) and corresponding relation for the fluc-
tuations in terms of the scale function, we see that this
is equivalent to using kðDx, 0Þk ¼ k

�

0,DzðDxÞ
�

k or
Dz ¼ lsðDx=lsÞ

Hz . The same idea is used in Chapter 8
on space-time cross-section data to produce classical
“space-time” (“Stommel”) diagrams, so here we use
the expression “space-space” diagrams. The existence
of spatial vertical lidar cross-section data spanning
many orders of magnitude in scale allows us to empir-
ically determine this statistical correspondence dir-
ectly and accurately.

Fig. 6.21 shows the result on the nine vertical
cross-sections used in Fig. 6.20. We see that on a
log-log plot the inferred log Dx – logDz relationship
is reasonably linear and that the slope is very near to
the theoretical value Hz ¼ 5/9 (shown by reference

lines; the scaling is not good at the largest distances
where the statistics are poor). The extrapolations of
the lines both to larger and to smaller scales are
particularly striking and have important implications.
First, at smaller scales, we can estimate the sphero-
scale (ls) by the intersection of the extrapolation of
the empirical line with the solid black reference line,
Dx ¼ Dz. We find that it is in the range 20 cm to 2 m,
similar to the other estimates discussed above; it thus
seems that the extrapolation is quite reasonable down
to metric scales or less. However, equally impressive is
the extrapolation to larger scales: we see that extropla-
tion to the planetary scale (20 000 km) implies a
corresponding vertical extent of ~10 km, i.e. the
thickness of the troposphere. In other words, there
is no obvious reason why the scaling stratification

Table 6.4 Statistics derived from backscatter ratios of 10 vertical lidar cross-sections. Table from Lovejoy et al. (2009a).

Field Resolution (m) d̄ (%) C1 H a Leff (km)

B vertical 12 m � 192 m 0.4 0.11 0.60 1.82 50

B horizontal 12 m � 192 m 0.5 0.076 0.33 1.83 25 000
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Fig. 6.21 A space-space (horizontal/vertical) diagram from nine
vertical lidar sections obtained from first-order structure functions
(this is from a slightly different subset of the data analysed in
Figs. 6.20a, 6.20b). The dashed lines have theoretical slopes 5/9, the
thick black line is the bisectrix (x ¼ y). The sphero-scale is the
intersection of the empirical lines with the bisectrix (the solid line at
the left). It can be seen that the sphero-scales are somewhat variable,
but mostly between 20 cm and 2 m. At the larger scales, we see
that the earth size (20 000 km) roughly corresponds to the
troposphere thickness (10 km). Note that the empirical statistics are
not so good at their largest scales (~3–10 km, where there are
few structures over which to average; this is the likely explanation for
the rise of three of the curves over the extreme factor 2 in scale).
Reproduced from Lovejoy and Schertzer (2010).
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Box 6.1 CloudSat: reconciling convection with wide-range scaling

On the face of it, our claims of wide-range horizontal and vertical scaling fly in the face of the phenomenology of

atmospheric convection which – ever since Riehl and Malkus (1958) – has relied on phenomenological models based

on scale separations (although see Lilly, 1986a, 1986b, for attempts to reconcile it with turbulence theory with the

help of helicity). The apparent incompatibility of horizontal scaling and convection was debated by Yano (2009) and

the appendix of Lovejoy et al. (2009b). In Section 1.3, we discussed the phenomenological fallacy, i.e. the dangers of

inferring mechanism from form, from phenomenology. In principle, convective phenomenology need not contradict

the observation of wide-range anisotropic scaling. To make this more concrete and convincing, we need to show

how to get structures traversing the troposphere in height while being only 100 km or so across (the “typical”

horizontal scale cited for convection). In terms of generalized scale invariance this implies vertical cross-sections

being roundish in shape at around 1–10 km, i.e. with “sphero-scales” being much larger than the range 0.01–1 m

observed in passive scalars or in the horizontal wind (Section 6.3). The point is that if we define a “convective cell” as

one that spans most of the vertical extent of the troposphere – and which typically has a comparable horizontal

extent (e.g. the 100 km cited by Yano, 2009) – then for the argument to work, one would require a cloud liquid water

field with a much larger sphero-scale than those which have been observed in the aircraft and lidar data.

In order to empirically examine this question, we can appeal to the CloudSat orbiting radar (1.08 km resolution

in the horizontal, 250 m in the vertical from 2006 to the present: see Fig. 6.22 for an example). With wavelength

(3 mm, 94 GHz), much smaller than that of the TRMM radar (2.2 cm; see Section 4.4.2), CloudSat can detect signals

about 104 times weaker (down to Z � 0.01 mm6/m3) and therefore can detect much smaller drops. Since Z is

proportional to the sum of the squared drop volumes it is highly correlated with the sum of the drop volumes

(i.e. with the liquid water content), and it is thus a good surrogate for convection.

We can use the CloudSat data to determine structure functions (as in Section 6.5.3), and from there determine the

corresponding space-space diagrams. Fig. 6.23a shows the result for fluctuations defined from orbit-by-orbit averages

0 100 200 300 400 500

Fig. 6.22 A small sample of the first of the 16 CloudSat orbits analysed here (log density plot). The cross-section is 16 km high, 650 km
wide (presented with a 1 : 4 aspect ratio). Notice the large convective cell about 15 km high, 200 km across.
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Fig. 6.23 (a) A space (horizontal)–space (vertical) diagram estimated from the absolute reflectivity fluctuations (first-order structure
functions) from 16 CloudSat orbits. Reproduced from Lovejoy et al. (2009b). (b) The theoretical shapes of average vertical cross-sections
using the CloudSat-derived mean parameters from Fig. 6.23a: Hz ¼ 5/9, with sphero-scales 1 km (top), 100 m (middle), 10 m (bottom),
roughly corresponding to the geometric mean and one-standard-deviation fluctuations. The distance from left to right is 100 km, from
top to bottom 20 km. It uses the canonical scale function (Eqn. (6.17)). The top figure in particular shows that structures 100 km wide will
be about 10 km thick whenever the sphero-scale is somewhat larger than average. Reproduced from Lovejoy et al. (2009b).
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Box 6.1 (cont.)

as well as from an ensemble average over all the orbits. The mean of the individual orbit-by-orbit Dx(Dz) curves

(obtained from orbit-by-orbit structure functions) and the curve obtained from the ensemble-averaged structure

function ensemble are nearly identical; the orbit-by-orbit spread is shown as one-standard-deviation curves above

and below (the curves are occasionally double-valued along the Dx axis due to statistical fluctuations). In addition to

the empirical curves, we have provided two theoretical reference lines with slopes Hz ¼ 5/9, 1, the latter correspond-

ing to isotropy. The basic behaviour is very similar to that of the lidar backscatter (Fig. 6.21). The main difference is the

value of the “sphero-scale” determined by the intersection of the two lines, which is about 100 m. Structures at larger

scales are flat, while at smaller scales they are elongated in the vertical. Although the exponents for Z and for lidar

aerosol backscatter are nearly identical (given by the theoretical anisotropic Corrsin–Obhukov values), the corres-

ponding sphero-scales ls are about a factor 1000 larger (although, as can be seen from the error, there is a large scatter;

the mean of log10ls with ls in km is� –1.6� 0.9, i.e. one-standard-deviation bars are 5–500 m, geometric mean 50 m).

Fig. 6.23b shows the corresponding average contours of cloud reflectivity structures, showing how they very gradually

tend to rounder shapes at the larger scales. It thus seems possible that the fundamental distinction between

convective as opposed to stratiform dynamics is the much larger sphero-scale in the former. In the 23/9D model,

this would be the natural consequence of the much larger buoyancy variance flux j in convection.

Box 6.2 Comparison of the stratification of different fields: estimating Hz, Del

Through the analyses presented in this book, we have shown that atmospheric fields are scaling over much of the

meteorologically significant range in both the horizontal and vertical, so that the dynamics are scaling, turbulent but

anisotropic. The simplest anisotropic turbulence model involves a unique scale function for all the fields. This would

imply that the ratio of horizontal and vertical components is Hhor/Hver ¼ Hz ¼ constant, so that for universal

multifractals ahor ¼ aver and C1hor/C1ver¼ Hz.

Combining the results from the aircraft and the dropsondes and taking into account a small apparent altitude

dependence of the sonde exponents (so as to estimate them at the ~200 mb aircraft level), we obtain Table 6.5.

Although in the table we give the ratio of the C1 values, their values are small, so that their relative errors are large and

their ratios have large uncertainties. Since the H’s are larger, the ratio Hhor/Hver to estimate Hz is more reliable than using

C1hor/C1ver; indeed, in the latter case the error is very hard to reliably estimate and is not indicated in the table except in

the lidar case. The main conclusion is that T, logy and B are within a standard error bar of the 23/9D result (Hz ¼ 5/9)

whereash has a somewhat larger value. At the same time, the v, T, logy fields are apparently anomalously lowwith regard

to the 23/9D prediction of 5/9; this was the conclusion of the detailed analysis of aircraft data in Sections 2.6.2 and 6.3.

If the ratios in Table 6.4 are taken at face value then we are led to the conclusion that two or more scale

functions are required to specify the scale of atmospheric structures. While this is certainly possible, let us for the

moment underline the various difficulties in obtaining the in-situ estimates: the nontrivial vertical sonde outages,

the nontrivial aircraft trajectory fluctuations. In addition, detailed analysis of the altitude dependence of the

horizontal velocity exponent in Section 6.1.5 indicates that starting with the theoretical Boligano–Obukhov value

3/5 near the surface, the exponent increases somewhat with altitude to the value � 0.75 at 10–12 km. Similarly, the

humidity may have both horizontal and vertical variations, which may account for their high Hz values. We should

therefore regard these studies as only early attempts to quantify the stratification.

It is interesting to note that the stratification of the earth’s crust andmantle also display anisotropic scaling but in the

opposite direction to the atmosphere. Rather than having a small sphero-scale with stratification increasing at larger

scales, (i.e. Hz< 1), the sphero-scales are planetary in size and the stratification increases at smaller scales (i.e. Hz> 1). For

example, the magnetic susceptibility and rock density have Hz 2, 3 respectively (see Lovejoy and Schertzer, 2007).

Table 6.5 Statistics derived from the estimate of the vertical Hv, C1v from sondes (Table 6.3, the C1,> 6km value). The horizontal
values for Hh for T, logy, h are from Table 6.2 (from 4–40 km); for the lidar reflectivity B it is from Table 6.4. Finally, the C1 for v is for the
range 4–40 km using trace moments. For the horizontal v, the transverse wind component was used, since it was not very
coherent with the altitude fluctuations and was considered more reliable.

T Logy h v B

Hz ¼ Hh/Hv 0.47 � 0.09 0.47 � 0.09 0.65 � 0.06 0.46 � 0.05 0.55 � 0.02

Hz ¼ C1h/C1v 0.72 0.71 0.44 0.45 0.69 � 0.2
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should have a break anywhere in the meteorologically
significant range of scales.

There are various ways to generalize and extend the
method. For example, we could determine the hori-
zontal/vertical relations for weak and strong events by
considering structure functions with exponents q < 1
or q> 1. Alternatively, we could use the statistics of the
fluxes (the normalized moments Mq) to establish the
relation usingMqðDxÞ ¼ Mq

�

DzðDxÞ
�

; this method is
used in Chapter 8, where we also use it to determine
space-time (“Stommel”) diagrams.

6.6 Zonal/meridional anisotropy
in reanalyses

6.6.1 Spectral scaling in stratified
anisotropic scaling systems
In this chapter, we have only discussed the special case
of scaling anisotropy with diagonal G (stratification in
orthogonal directions, “self-affine” scaling). While this
is at least a good approximation to vertical sections, in
the horizontal things will generally be more compli-
cated, with structures (such as cloud morphologies)
displaying not only differential “squashing” but also
differential rotation with scale; G has off-diagonal
elements, and furthermore these will also vary from
place to place. A potential exception is the north–
south/east–west anisotropies imposed notably by the
strong equator-to-pole gradients. We shall see that
such gradients are apparently strong enough to lead
to differential stratification in the horizontal reanalysis
fields, although – significantly – not in the correspond-
ing fluxes, which on the contrary display trivial aniso-
tropies. This EW/NS stratification is the subject of this
last section, and it is important since virtually the only
statistical scaling technique that has been applied to
characterizing reanalyses is to estimate the angle-inte-
grated spectra (below) and then to assume isotropy.

Let us recall the basics (see also Appendix 2A). For
a process in a d-dimensional space with wavevector k,
Fourier transform ffð�kÞ we have the spectral density:
D

ffð�kÞ
gfðk0 Þ

E

¼ dkþk0Pð�kÞ ð6:55Þ

In data analysis, f is discrete and over a finite domain,
the d function is simply a proportionality constant (the
number of degrees of freedom) so that P(k)/ hjv(k)j2i.
If the system is statistically isotropic, then P only
depends on the vector norm of �k: Pð�kÞ ¼ Pðj�kjÞ. Now

perform an isotropic Fourier space “zoom” �k ! l�k
(i.e. a standard “blow-up”) by factor l > 1 so that in
physical space there is an inverse blow-up: �r ! l�1

�r.
If the system is “self-similar,” i.e. if it is both isotropic
and scaling, then the condition that the smaller scales
are related to the larger scales without reference to any
characteristic size (i.e. that it is “scaling”) is that the
spectra follow power-law relations between large
wavenumbers lj�kj and smaller ones j�kj:

Pðjl�kjÞ ¼ Pðlj�kjÞ ¼ l�sPðj�kjÞ ð6:56Þ

i.e. that the form of P is independent of scale. Eqn.
(6.54) is satisfied by the following scaling law for P:

Pð�kÞ ¼ j�kj
�s ð6:57Þ

We can now obtain the power spectrum E(k) (with
k ¼ j�kj) by integrating over all the directions:

EðkÞ ¼

ð

dSk

Pðk0 Þdcl
1
2k0 ð6:58Þ

where Sk is the d-dimensional sphere of radius k and
dSk is its boundary: in d ¼ 1 it is the end points of the
interval from –k to k, in d ¼ 2 it is the circle radius k,
in d ¼ 3, the spherical shell radius k. If the process is
isotropic in 2D, E(k) ¼ 2p kP(k), and in 3D, E(k) ¼
4p k2 P(k). In terms of data analysis, where one has a
finite rather than an infinite sample size, this angle
integration is advantageous because it reduces the
noise. In the following examples, we therefore take
power-law dependence of the spectrum:

EðkÞ � k�b; b ¼ s� d þ 1 ð6:59Þ

as evidence for the scaling of the field f, the exponent
b being the “spectral slope.” Note that in some areas
of geophysics, angle averages (P(k)) are used rather
than angle integrals; this has the disadvantage that the
resulting spectral exponents will depend on the
dimension of space, so that 1D sections for example
will have exponents which differ by one from 2D
sections. In contrast, the angle integrations used here
yield the same exponent b in spaces of any dimension
(i.e. b is independent of d but s is not: see Eqn. (6.59)).

The angle integrals over the spectral densities
P(kx,ky) are advantageous since it reduces the spec-
trum to a function of a single variable (the modulus of
the wavevector) while simultaneously improving the
statistics. While clearly the angle integral (Eqn. (6.58))
can be applied to any field to obtain E(k) from
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P(kx,ky), if the latter is not isotropic then the classical
interpretation of the result can be wrong or mislead-
ing. This is especially true if the scaling is anisotropic
with different exponents in different directions.

As a first hint that horizontal anisotropy might
complicate the estimation of spectral exponents from
reanalyses, recall that in Section 4.2.3 we have already
examined the horizontal cascade structure in both
zonal and meridional directions and concluded
that the exponents of the turbulent fluxes were
(within statistical error) the same, although typically
(depending somewhat on the field in question) there
was a trivial anisotropy corresponding to an aspect
ratio of about 1.6, with structures in the meridional
direction “squashed” by this much with respect to the
zonal direction. In order to directly check the isot-
ropy/anisotropy we therefore proceed as follows: first,
since the largest east–west distance is 180�, each lati-
tudinal band from –45� to þ45� is broken into two
longitudinal sections, one from 0� to 180� and the
other from 180 to 0� longitude, i.e. each 180� � 90� or
20 000 � 10 000 km or 120 � 60 reanalysis pixels (as
usual, all spectra use Hanning windows to reduce
spectral leakage). Although it might appear that the
use of this cylindrical map projection might in itself
lead to a significant statistical anisotropy, the actual
bias in the spectral density is only of the order of a few
percent (Lovejoy and Schertzer, 2011).

Fig. 6.24 shows the P contours obtained by taking
averages over the squared moduli of the 2 � 365
transforms: the spectrum is shown with 2 : 1 aspect
ratio such that circular large k contours indicate isot-
ropy. We note that this is more or less the case for the
largest wavenumbers corresponding to ~2 pixels (the
Nyquist wavenumber) in real space. One sees that at
larger and larger scales (smaller and smaller wave-
numbers, near the centre), the contours become
increasingly elliptical with the ellipses oriented in
the ky direction corresponding to real-space struc-
tures extended in the east–west direction; overall the
small Fourier space ellipses have aspect ratios � 2.
The only – but significant – exception is for the
meridional wind, which is also increasingly elliptical
(by about the same amount) but elongated in the
east–west rather than the north–south direction. In
comparison, for the fluxes there was also an EW
elongation of structures – but with the key difference
that due to the apparent isotropy of the flux expo-
nents their anisotropy was the same at all scales; it
was “trivially anisotropic” with about the same factor

(1.6 � 0.3: Table 4.1). In contrast, for the fields the
effect changes markedly with scale, from near isot-
ropy at single-pixel scales to fairly strong stratification
elongation at the largest scales.

The scale-by-scale change of the aspect ratio com-
bined with the scaling exhibited by the fluxes suggests
that the spectral density respects an anisotropic
scaling symmetry:

Pð�kÞ / k�kk
�s ð6:60Þ

hs

W

T

U

Z

V

Fig. 6.24 Contour plots of log P. Left–right is kx, vertical direction
is ky. Upper left is the specific humidity, upper right is the
temperature, middle is the zonal (left) and meridional (right) winds.
Lower left is the vertical wind, and lower right is the geopotential.
Contours of the logarithm of the theoretical canonical scale
functions (blue) all have Hy ¼ 0.8 (except for v, which has Hy ¼ 1/0.8)
and the sphero-wavenumbers are ks ¼ 60, 30, 60, 30, 60, 30
respectively for hs, T, u, v, w, z. Due to the Nyquist frequency, the
largest ky is 30 cycles/90

� corresponding to 2 pixels. Due to the 2 : 1
aspect ratio (which compensates for the 2 : 1 change in range of kx
with respect to ky), a circle the diameter of the square in the
figure corresponds to isotropy at a 2-pixel scale. Reproduced from
Lovejoy and Schertzer (2011). See colour plate section.
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where k�kk is the (nondimensional) “scale function”
satisfying the functional scaling equation:

kl�G
�kk ¼ l�1k�kk ð6:61Þ

where l is a scale ratio and G is the generator of
the anisotropy (e.g. Eqns. (6.26), (6.27)). It is
important to note that here we consider the change
in the anisotropy of a scalar quantity over a range
of scales; this is quite different from the more usual
approach to anisotropy in the meteorological litera-
ture (e.g. Hoskins et al., 1983), which is rather to
consider the anisotropy of a vector quantity (e.g. the
wind) at a unique (e.g. model) scale. Here, in the
horizontal (x,y), using a cylindrical projection, we
take:

G ¼

�

1 0
0 Hy

�

ð6:62Þ

From Section 6.1.6 we see that the “canonical”
solution of the scale Eqn. (6.61) with G given by
Eqn. (6.62) is:

k�kk ¼
�

ðkx=ksÞ
2 þ ðky=ksÞ

2=Hy

	1=2
ð6:63Þ

where Hy is the ratio of the east–west and north–south
scaling exponents and ks is the “sphero-wavenumber,”
the size of the roughly isotropic (circular) contours
(Eqn. (6.63) is a dimensionless scale function; a
dimensional one can be obtained by multiplying
by ks). Before continuing, let us note that the real-
space counterpart to Eqns. (6.60) to (6.63) is that the
fluctuations in the field Df follow:

Df ðDr Þ ¼ jlHs kDrk
H ; Dr ¼ ðDx,DyÞ;

kDrk ¼
�

ðDx=lsÞ
2 þ ðDy=lsÞ

2=Hy

	1=2
ð6:64Þ

where the real-space “sphero-scale” ls � 1/ks and
again the canonical scale function in Eqn. (6.63) is
only the simplest. From Eqn. (6.64) we see that the
east–west (Dx) and north–south (Dy) exponents are
different:

Df ðDx, 0Þ / DxHEW ; Df ð0,DyÞ / DyHNS ;

HEW ¼ H; HNS ¼ HEW=Hy ð6:65Þ

One way to test Eqns. (6.60) to (6.65) is to use the 1D
east–west and north–south spectra EEW(kx) and
ENS(ky) obtained by integrating the P defined by Eqns.
(6.60), (6.63):

EEWðkxÞ¼

ð

Pðkx,kyÞdky¼Ax
kx

ks

0

@

1

A

�bEW

;

bEW¼s�Hy; s>Hy

ENSðkyÞ¼

ð

Pðkx,kyÞdkx¼Ay

ky

ks

0

@

1

A

�bNS

;

bNS¼
s�1

Hy
; s>1

ð6:66Þ

where Ax, Ay are dimensionless constants of order
unity (which will change somewhat depending on
the exact scale function solution (Eqn. (6.61)) – recall
that the canonical scale function (Eqn. (6.63)) is only
a special case). A useful consequence of Eqn. (6.66) is
that it implies the following simple relation between
exponents:

Hy ¼
bEW � 1

bNS � 1
ð6:67Þ

To determine space-space relations (between kx, ky) we
can use the fact that the contribution to the total
variance from all the structures smaller than a given
wavenumber k is given by the integral of E(k) from k to
infinity. We can therefore exploit this fact to obtain a
1 : 1 relation (an implicit equation) between kx and ky:

ð

1

kx

Exðk
0
xÞdk

0
x ¼

ð

1

ky

Eyðk
0
yÞdk

0
y ð6:68Þ

If bx > 1, by> 1, then the kx – ky relation implicit in
Eqn. (6.68) (with the help of Eqns. (6.66), (6.67))
reduces to:

ky ¼ k0 s
kx

k0 s

� �Hy

ð6:69Þ

where kʹs � ks (since Ax � Ay � Hy � 1). It is
interesting to note that Endlich et al. (1969) applied
essentially the same idea in order to obtain a space-
space relation for vertical sections of the horizontal
wind using aircraft and Jimsphere data to estimate the
corresponding 1D spectra. However, they mistakenly
used the spectral power densities directly (Ex(kx) and
Ez(kz)) to relate kx and kz rather than the total power
as in Eqn. (6.68). The results will generally be differ-
ent, since the densities are measured with respect to
different spectral resolutions in the kx, ky directions
whereas the integrated power is independent of the
spectral resolutions.
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This gives us a simple way to check if the anisot-
ropy is scaling: we can directly determine the kx, ky
relation from the 1D spectra (Eqn. (6.68)) and then
see if it is roughly a power law (Eqn. (6.69)). For the
key zonal and meridonal winds, the corresponding
space-space relations are shown in Fig. 6.25, where
we have used lines with slope 1.25, which closely fits
the u data, and slope 1/1.25 ¼ 0.80, which closely fits
the v data (in both cases, the slopes ¼ 1/Hy). It is
noteworthy that the scaling of the space-space rela-
tions in Fig. 6.25 is superior to that of the individual
zonal and meridional 1D spectra (Figs. 6.26a, 6.26b);
this is possible because the latter have some residual
deviations to scaling caused by the hyperviscosity.
Our result is pleasingly symmetric, since if we reflect
the system about a NE/SW line then u and v compon-
ents as well as x and y axes are interchanged and Hy is
replaced by 1/Hy so that the observed anisotropy
respects this basic symmetry. Also shown in the figure
is the bisectrix; the point at which this line intersects
the space-space ky(kx) curve has kx ¼ ky ¼ kʹs, where
kʹs is the “sphero-wavenumber” (Eqn. (6.63)). We see
that kʹs is indeed close to the largest wavenumber
available (due to the Nyquist wavenumber, for ky
this is 60/2 ¼ 30 with ky ¼ 1 corresponding to
(10 000 km)�1). Similarly, the maximum anisotropy
is given by the extreme low ky aspect ratios: it corres-
ponds to a factor � 100.3 � 2.

To test the idea further, we refer the reader to
Fig. 6.24, which shows the spectral densities P with

theoretical contours superposed corresponding to
Hy ¼ 0.8 (or for v, Hy ¼ 1/0.8 ¼ 1.25) and with ks
fit to the nearest factor 2. It was found to be always
either 30 or 60 cycles/10 000 km, corresponding to
either twice the pixel scale of the public data (1.5�) or
twice the pixel scale of the raw reanalysis data (0.7�).

0.6 0.8 1.0 1.2 1.4 1.6

0.6

0.8
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1.2

1.4

1.6
Log10kx

Log10ky

Fig. 6.25 The empirical space-space relations for the zonal
wind (u, bottom), and meridional wind (v, top) calculated using
the implicit relation Eqn. (6.68). The reference lines have slopes ¼
1/ Hy ¼ 0.8, 1, 1/0.8. The sphero-wavenumber is where the
bisectrix (middle) intersects the space-space line. Reproduced from
Lovejoy and Schertzer (2011).
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Fig. 6.26 (a) The zonal spectra obtained by integrating P in the y
(east–west) direction averaged over logarithmically spaced
wavenumber bins. The slopes of the reference lines are those
predicted from the (more accurately estimated) slopes of the angle
integrated spectrum using Eqn. (6.71). The reference lines have
absolute slopes (β): 1.90, 2.40, 2.40, 2.75, 0.52, 3.35 (for hs, T, u, v, w, z
respectively, see Table 4.1). The smallest wavenumber (k ¼ 1)
corresponds to 20 000 km. Reproduced from Lovejoy and Schertzer
(2011). (b) The meridional spectra obtained by integrating P in the x
(north–south) direction averaged over logarithmically spaced
wavenumber bins. The slopes of the reference lines are those
predicted from the (more accurately estimated) isospectral slopes
using Eqn. (6.71). The reference lines have absolute slopes (β): 2.12,
2.75, 2.75, 2.40, 0.40, 3.94 (for hs, T, u, v, w, z respectively, see
Table 4.1). The smallest wavenumber (k ¼ 1) corresponds to
20 000 km. Reproduced from Lovejoy and Schertzer (2011).
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6.6.2 The implications of scaling
horizontal anisotropy for reanalyses
In order to understand this anisotropic spectral
behaviour, let us note three key aspects of the results
which appear to be robust: (a) the fields appear to
have systematic scale-by-scale anisotropies whereas
the corresponding turbulent fluxes do not; (b) the
anisotropic exponent Hy seems to be nearly the same
for all fields (the only exception being v, for which it
is the reciprocal, as would be expected by symmetry);
(c) all the fields display an apparent isotropy at wave-
numbers corresponding to~1.5� resolutions, i.e. very
nearly the resolution of the reanalyses. Since physic-
ally there is nothing special at ~1.5� resolution that
would make north–south and east–west fluctuations
typically equal in magnitude (and this for all the
fields), it would appear that the overall effect is an
artefact of the numerics, which have strong isotropic
constraints at the (hyper) dissipation scale while at the
same time having large-scale anisotropies imposed by
the boundary conditions. These large-scale con-
straints correspond physically to the strong north–
south gradients, which are typically much larger than
the east–west ones. This suggests that the models/
reanalyses could be significantly improved by
doubling their north–south resolutions with respect
to their east–west resolutions.

Notice that we are making the perhaps surprising
suggestion that boundary conditions could change
scaling exponents. However, it is difficult to see how
this could be otherwise, since for the anisotropic
scaling to have more profound causes one would
expect the fields to be dominated by physically differ-
ent turbulent fluxes in the north–south and east–west
directions, yet we have shown (Table 4.1) that the
fluxes (which are responsible for the nonlinear con-
tribution to the exponents K(q), x(q)) seem only to
display trivial anisotropy (i.e. Hy ¼ 1 for the fluxes,
only the outer scales are different). It seems that the
scaling anisotropy is restricted to the linear part (DxH

corresponds to a fractional integration of order H of
the turbulent flux), while the more fundamental non-
linear part appears to be isotropic. The ability of the
boundary conditions to introduce scaling anisotropy
has in fact already been noted in radiative transfer on
isotropic multifractal clouds when anisotropy is
introduced by the boundary conditions, which are
cyclic in the horizontal and in the vertical with radia-
tive flux impinging from the cloud top only. The

consequence is that the internal cloud radiative
fluxes have scaling anisotropies even though the cloud
liquid water does not (Lovejoy et al., 2009c).

Is it worth mentioning one last implication of the
Hy � 0.8 differential scaling. If we consider the aver-
age area of horizontal structures as functions of their
zonal extent, then we find A � Dx DxHy � DxDel,
where the effective “elliptical dimension” Del ¼ 1 þ
Hy ¼ 1.80. This yields yet another argument against
the relevance of two-dimensional isotropic turbulence
to the atmosphere: even horizontal cross-sections are
not isotropic – they are not even two-dimensional! If
the atmospheric models (not just reanalyses) share
this feature of having horizontal sections with Del ¼
1.80, then it would seem that attempts such as those
by Takayashi et al. (2006) to demonstrate the possible
coexistence of 2D and 3D isotropic turbulent regimes
are doomed to failure – if only because even the
horizontal fails to display 2D isotropy.

6.6.3 The power spectrum of anisotropic
scaling fields, spurious breaks in the
scaling and reanalyses
No matter what the correct explanation for the
reanalysis horizontal anisotropy, it has consequences
for estimates of the (supposedly) isotropic spectral
exponents, and even for the extents of the scaling
regimes. To see this, let us estimate the angle-inte-
grated spectrum (Eqn. (6.58)) assuming that the spec-
tral density P has scaling anisotropy (i.e. that it has the
form given by Eqns. (6.60) to (6.63)). One obtains:

EðkÞ � k�bl ; bl ¼ minðbEW , bNSÞ; k << ks

EðkÞ � k�bh ; bh ¼ maxðbEW ,bNSÞ; k >> ks

ð6:70Þ

with bl the low- and bh the high-wavenumber spectral
exponents of the angle-integrated spectrum. We thus
see that there is a break in the spectrum at ks. Note
that this break is spurious in the sense that it is a
consequence of the isotropic integration; the full 2D
spectral density P is perfectly scaling. However, bEW
and bNS are related by Eqn. (6.67) so that for Hy< 1:

bl ¼ minðbEW , bNSÞ ¼
bEW ; bEW > 1
bNS; bEW < 1

ð6:71Þ

with a corresponding equation for bh using the max-
imum rather than the minimum (and the converse
inequalities for Hy> 1).
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Although the spectrum is not isotropic, if we are
careful we can still use the isotropic E(k), which has
the advantage of improving the estimates, since the
integration reduces the statistical fluctuations. Since
we found that ks is very nearly the wavenumber cor-
responding to one pixel we always have k < ks, so we
do not expect a break: the angle-integrated exponent
will always correspond to bl (Eqns. (6.70), (6.71)).
The approximation (Eqn. (6.70)) improves at small
k so that good estimates can easily be obtained by
numerically estimating P using numerical Fourier
transforms over the available 120 � 60-point grids
and then integrating the latter over circular annuli,
keeping only the k < 30 part. Since there is a 2 : 1
aspect ratio, this is equivalent to integrating over
ellipses with corresponding 2 : 1 aspect ratios; the
same result (Eqn. (6.70)) holds but the convergence
to the power law k�bl is faster.

Fig. 1.5b shows the results for the six fields. To
make the scaling even more evident, we have averaged
the spectrum over 10 logarithmically spaced intervals
per order of magnitude (except for the lowest decade,
where all the wavenumbers are indicated). Due to the
2 : 1 aspect ratio, the spatial scale corresponding to a
wavenumber k ¼ 1 corresponds to 20 000 km in
the east–west and 10 000 km in the north–south dir-
ection. From the figure, we see that the scaling is
generally excellent. The only exception is for the
meridional wind, which exhibits a sharp break at
wavenumbers corresponding to 1250–2500 km; for
the low wavenumbers it follows another scaling
regime with b � –0.2 whose origin is obscure – it is
far from any theoretically proposed value. Table 4.1
shows the values of the isotropic exponents bl esti-
mated to the nearest 0.05.

We can now use the relatively accurate angle-
integrated exponent estimates to understand the 1D
spectra in the zonal and meridional directions
(Figs. 6.26a, 6.26b). Since the scaling is not as good
as for the angle-integrated spectrum, we have added
reference lines with the theoretical exponents (calcu-
lated from bl using formulae (6.66), (6.70), (6.71)
above with Hy ¼ 0.80). We see that the agreement
between the 1D spectra and the line theoretically pre-
dicted from the angle¼integrated spectra is excellent.

In order to understand the significance of the
various H exponents deduced from the spectra, recall
that H is the classical nonconservation parameter. In
the fractionally integrated flux model, it is also the
order of fractional integration needed to obtain the

field from a pure cascade. Contrary to a, C1, which
characterize the intermittent cascade processes and
which can apparently only be evaluated numerically
or empirically, H is a value that traditionally has been
estimated by dimensional analysis (e.g. the H ¼ 1/3 in
the Kolmogorov law). However, scanning the values
in Table 4.1, we see that several are problematic. Let
us first consider the geopotential height z. Direct
empirical estimates are problematic because although
aircraft generally attempt to follow isobaric surfaces
so that p � constant, we have seen that because of
turbulence this is only a good approximation at large
scales (and the transition point varies considerably
from flight to flight); the mean spectral exponent for
wavenumbers < (200 km)�1 from the 24 aircraft legs
discussed above is b � 4 (see Fig. 3d in Lovejoy et al.,
2009b), but because of the small range it may be
compatible with the reanalysis estimate b � 3.35. Its
large value indicates that it varies very smoothly; the
fact that it is greater than unity means that horizontal
pressure derivatives are smooth: Dp/Dx � DxH�1,
which for H> 1 is well behaved at small Dx. Turning
our attention to w, although the H was too difficult to
reliably measure from aircraft, it was indirectly esti-
mated from lidar backscatter in Radkevitch et al.
(2008) as being in the range –0.1 to –0.2; this analysis
thus supports the conclusion that the vertical wind
has an exponent H with small negative value. Unlike
the other H exponents in the weather regime, which
are positive, this implies that vertical wind fluctu-
ations diminish rather than increase with scale (see
Chapter 10).

In order to understand the H values for the wind,
humidity and temperature, we have constructed Table
6.6. This compares the ECMWF reanalyses, aircraft
(Lovejoy et al., 2010b) and dropsonde estimates
(Sections 6.2, 6.3). Starting with the wind, and con-
centrating on the zonal component, we note that there
is excellent agreement between the dropsonde (verti-
cal) value and the ECMWF isobaric value. As argued
in Section 6.3, this is because the isobars are gently
sloping so that at large enough scales one obtains the
vertical rather than horizontal values. As a conse-
quence, the aircraft value given in the table is the
theory value 1/3 which was argued to be compatible
with the small-scale aircraft statistics when corrected
for intermittent turbulent motions of the aircraft. The
H value for the humidity (0.54) is at least close to the
measurements (0.51), although to our knowledge it is
not predicted by any existing theory. Similarly, the
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temperature H is far from the aircraft H although it is
close to the isobaric wind H, suggesting that at least in
the reanalysis it is estimated as a passive scalar (it would
then be an isobaric estimate rather than an isoheight
estimate similar to the H for the horizontal wind).

6.7 Summary of emergent laws
in Chapter 6
In the simplest “trivial” anisotropy, the shapes of (aver-
age) structures are the same at all scales. Self-affinity is
the simplest form of nontrivial, scaling anisotropy:
structures become more and more stratified as the
scale changes. The self-affine scale function k�rk is
linear with respect to the contraction parameter l�1

kTl�r k ¼ l�1k�rk ; Tl ¼ l�G ð6:72Þ

where Tl is the scale-changing operator and the
generator G is a diagonal matrix. In the (x,z) (e.g.
vertical) plane, the simplest “canonical” self-affine
scale function is:

k�rk�ls

 

�

x

ls

�2

þ

�

z

ls

�2=Hz

!1=2

; G¼

�

1 0
0 HZ

�

ð6:73Þ

which satisfies Eqn. (6.72) with the G indicated. To
take account of such stratification, we simply replace
the isotropic scale defined by the vector norm j�rj
by the anisotropic scale function k�rk, i.e. make every-
where the replacement j�rj ! k�rk so that for example

the anisotropic extension of the basic emergent laws
can be written:

Df ðDrÞ ¼ jkDrkkDrk
H ð6:74Þ

For horizontal and vertical lags this implies:

DvðDr Þ ¼ jhDx
Hh ; Dr ¼ ðDx, 0Þ

DvðDrÞ ¼ jvDz
Hv ; Dr ¼ ð0,DzÞ ð6:75Þ

with:

Hz ¼ Hh=Hv ð6:76Þ

and where the horizontal and vertical are dominated
by the fluxes jh, jv respectively and satisfy:

jh ¼ j

jv ¼ jl
1�1=Hz
s

ð6:77Þ

where ls is the (roughly) isotropic “sphero-scale”
satisfying:

kðls, 0Þk ¼ kð0, lsÞk ð6:78Þ

A specific example is the 23/9D model with:

jh ¼ ε1=3; Hh ¼ 1=3
jv ¼ f1=5; Hv ¼ 3=5

ð6:79Þ

where ε is the energy flux and f is the buoyancy
variance flux. This leads to:

ls ¼
ε5=4

f3=4
ð6:80Þ

Table 6.6 A comparison of the ECMWF interim multifractal parameters (isobaric) with those estimated for aircraft (horizontal) and
dropsondes (vertical). The aircraft C1’s have been multiplied by the factor (3/2)1.8 ¼ 2.07 in an attempt to take into account the fact that the
aircraft measure scaling-regime estimates of fluxes whereas the ECMWF estimates are more dissipation-scale fluxes (Eqn. (4.15)).

Source h T v

α ECMWF 1.77 � 0.06 1.90 � 0.006 1.85 � 0.012

aircraft 1.81 1.78 1.94

dropsonde 1.85 1.70 1.90

C1 ECMWF 0.102 � 0.009 0.077 � 0.005 0.084 � 0.006

aircraft 0.083 0.108 0083

dropsonde 0.072 0.091 0.088

H ECMWF 0.54 0.77 0.77

aircraft 0.51 � 0.01 0.50 � 0.01 1/3a

dropsonde 0.78 � 0.07 1.07 � 0.18 0.75 � 0.05

a Because of the issue of vertical aircraft movement, this (Kolmogorov) value was inferred, not directly estimated (see Lovejoy and
Schertzer, 2011).
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with Hz ¼ (1/3)/(3/5) ¼ 5/9. Since the volumes
of nonintermittent structures is Vol ¼ DxDyDz, we
find:

Vol � DxDel ; Del ¼ TraceG ¼ 2þ Hz ð6:81aÞ

where Del is the “elliptical dimension.”
The real-space statistics of the fluctuations in this

2D example are given in terms of the structure
function:

hjDnjqi ¼ kDrkxðqÞ; xðqÞ ¼qHh � KðqÞ ð6:81bÞ

with the scale function in Eqn. (6.79) and where K(q),
x(q) are the horizontal exponents. The corresponding
spectral density is:

PðkÞ ¼ kkk�s; s ¼ 1þ xð2ÞþHz ð6:81cÞ

where the canonical Fourier scale function is:

kðkx, kzÞk ¼

 

kx

ks

� �2

þ
kz

ks

� �2=Hz

!1=2

ð6:81dÞ

where ks is the “sphero-wavenumber” with (generally)
ks �2p/ls.
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Appendix 6A: Revisiting the revised EOLE experiment:

the effect of temporal averaging

In Section 2.6.1 we took a new look at a classical
EOLE constant-density balloon experiment designed
to test the 2D/3D isotropic turbulence model and
revisited by Lacorta et al. (2004). The EOLE satellite
tracked the balloons (“mostly every 2.4 hours”:
Lacorta et al., 2004, then interpolated them to an
hourly resolution). The structure function is thus
effectively averaged over this time Dt. In their nota-
tion we have:

S ¼




�

�

�

_X
ð1Þ

� _X
ð2Þ
�

�

�

2
�

ð6:82Þ

where the overbar is an averging over Dt and X(1), X(2)

are the coordinates of two different balloons (in the
horizontal; ignore the vertical here). Writing this out
explicitly, using V ¼ X and assuming translational
invariance:

S ¼
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ð6:83Þ

where Dt ¼ t00 � t0 and SðjDXj, jDtjÞ is the space-time
Eulerian structure function, assumed here to be hori-
zontally isotropic:

S
�

jDXj, jDtj
�

¼
�

jDV j2


ð6:84Þ

We now follow Lacorta et al. (2004) and Morel
and Larchevêque (1974) and assume that during the
averaging period Dt the separation does not change
much:

jXð2Þ � Xð1Þj � d ð6:85Þ

Finally, if u0 is the typical large-scale velocity (esti-
mated as 30 m/s � 100 km/hour by Lacorta et al.,
2004), then we also have:
�

�

�Xð1Þðt00Þ � Xð2Þðt0Þ
�

�

� << u0

�

�

�t00 � t0
�

�

� ð6:86Þ

This just says that the overall advection is much larger
than the diffusion during the interval Dt. We can now
determine the effect of the temporal averaging, i.e. the
low temporal resolution. With these approximations,
Eqn. (6.83) becomes:

S¼
2
ffiffiffi

2
p

Dt2

ð

Dt=
ffiffi

2
p

0

 

ð

ðDt� t
ffiffi

2
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Þ

0

½Sðd,tÞ�Sð0,tÞ
dt0
!

dt

¼
2

Dt2

ð

Dt=
ffiffi

2
p

0

ð
ffiffiffi

2
p

Dt� tÞ½Sðd,tÞ�Sð0,tÞ
dt

ð6:87Þ

If we now consider the particles separated in the y
(e.g. north–south) direction, and the main advection
in the x direction (e.g. east–west), then:

SðDx,Dy,DtÞ ¼
u20
L2=3

kðDx,Dy,DtÞk2H ð6:88Þ

with H ¼ 1/3. The scale function can be taken as
either:

kðDx,Dy,DtÞk ¼ jDx � u0Dtj þ jDyj ð6:89Þ

or:

kðDx,Dy,DtÞk ¼ ðjDx � u0Dtj
2 þ jDyj2Þ1=2 ð6:90Þ

(the difference between the two choices is only in
the trivial anisotropy). In the former case we have:

Sðd, tÞ �
u20
L2=3

ðdþ u0tÞ
2H ð6:91Þ
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while for the latter:

Sðd, tÞ �
u20
L2=3

�

d2 þ ðu0tÞ
2
	H

ð6:92Þ

These different choices correspond to different shapes
for the space-time unit balls (others are also possible).

We now use the following approximations:

Sðd, tÞ � Sð0, tÞ �
u20
L2=3

h

ðdþ u0tÞ
2H � ðu0tÞ

2H
i

�

u20
L2=3

d2H ; t << d=uo

u20
L2=3

ðu0tÞ
2H
d; t >> d=uo

ð6:93Þ

Plugging these into the integral (Eqn. (6.87)), we find
two regimes:

S �

u20
L2=3

d2H ; d >> u0Dt

u20
L2=3

ðu0DtÞ
2H d

u0Dt
; d << u0Dt

ð6:94Þ

(for H < 1).
Or, using the other scale function (quadratic form,

Eqn. (6.92)), we obtain

Sðd, tÞ � Sð0, tÞ �
u20
L2=3

�

�

d2 þ ðu0tÞ
2
	H

� ðu0tÞ
2H
�

�

u20
L2=3

d2H ; t << d=u0

u20
L2=3

ðu0tÞ
2H d2

ðu0tÞ
2 ; t >> d=u0

ð6:95Þ

Plugging this into Eqn. (6.87), we obtain:

S �

u20
L2=3

d2H ; d >> u0Dt

u20
L2=3

d2Hþ1

ðu0DtÞ
2Hþ1 ; d << u0Dt

ð6:96Þ

(for H < 1/2; see Fig. 2.9).
The exact behaviour when the averaging is

important (d << u0Dt) thus depends on various
detailed assumptions. However, the qualitative behav-
iour and the transition scale is robust.

In all cases, the interpretation is straightforward:
the temporal averaging decreases the variability for
distances < u0Dt, i.e. on distance scales less than the
typical advection distance. It is hard to understand
how both Lacorta et al. (2004) and Morel and Larch-
evêque (1974) failed to notice this; instead they
attempted to find physical interpretations for the
behaviour down to 50 km even though u0Dt
according to their own data was at least 200 km. For
example, Lacorta et al. (2004) claim “At distances
smaller than 100 km our results suggest an exponen-
tial decay with e folding time of about 1 day in rough
agreement with Morel and Larchevêque (1974)”.
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Appendix 6B: Cross-spectral analysis between wind,

altitude and pressure

In Sections 2.6.2 and 6.3 we discussed a simple model
for the aircraft trajectory: that it was straight but
gently sloping. At the same time, various analyses
indicated that it was more fractal than straight, so
that this model is at best only a rough approximation
and it is necessary to further pursue the relationship
between aircraft altitude, pressure and wind in order
to understand the scale-by-scale statistical relations.
A convenient way to do this is to use the spectral
coherence. Consider the cross-spectrum Shg and nor-
malized (complex) cross-spectrum shg of two (1D)
functions h, g:

shg ¼
Shg

ðSggShhÞ
1=2

; Shg ¼ h~hðkÞ
~
g
∗

ðkÞi

~hðkÞ ¼

ð

1

�1

eikxhðxÞdx; ~gðkÞ ¼

ð

1

�1

eikxgðxÞdx

ð6:97Þ

where the ensemble average is estimated from the 24
disjoint legs each 4000 points (1120 km) long and the
tilde (~) indicates Fourier transform. We can define
the coherence Chg and the phase yhg as the modulus
and phase of shg:

shgðkÞ ¼ ChgðkÞe
iyhg ðkÞ ð6:98Þ

(see e.g. Landahl and Mollo-Christensen, 1986). In
Fig. 6B.1, averaging over all the legs, we show these
both for h ¼ altitude and g ¼ longitudinal wind and
for h taken as the pressure and g as the longitudinal
wind. Recall that because of the normalization 0 �
C� 1, C is a kind of wavenumber-by-wavenumber
correlation coefficient, with the important difference
that it is positive definite. For identical functions (h¼ g)
C ¼ 1, while for statistically independent functions

CðkÞ � 1=
ffiffiffi

n
p

, where n is the number of independent
samples used to estimate the ensemble average. Here
we considered the first 4000 points of each sufficiently
long flight segment (so that n ¼ 24), and hence the
coherence for statistically independent wind and

Fig. 6B.1 Coherences (C, right axis) and phases (θ, left axis) of the
longitudinal wind with pressure and altitude (the bottom oscillating
curves, indicated by “p” and “z” respectively). The solid lines are
coherences; those greater than 0.2–0.3 are statistically significant,
and they are highly significant over most of the range. The dashed
lines are phases (confidence intervals were suppressed for clarity;
they are significant over most of the range). A positive phase means
that the wind leads (pressure or altitude), a negative phase that it
lags behind. Between about 4 and 40 km, the altitude leads the wind
but the pressure lags behind: the situation is reversed at larger scales
(smaller wavenumbers). The direct interpretation is that for the
higher wavenumbers ((4 km)�1

> k > (40 km)�1, corresponding to
time scales of 10–150 s) the aircraft autopilot and inertia cause
the change in altitude, with the pressure then following the altitude.
For the smaller wavenumbers (k < (40 km)�1), the situation is
reversed, with the pressure changes causing the change in wind and
altitude; this is presumably the regime where the aircraft tightly
follows the isobars. Comparing with Fig. 2.14, we see that the
spectra of the longtitudinal and transverse curves, which have slopes
–5/3 and –2.4, have transitions at wavenumbers approximately at
the phase change scale. Adapted from Lovejoy et al. (2009b).
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altitudes is CðkÞ � 0:20 (see Lovejoy et al., 2009b, for
more refined “bootstrap” estimates of uncertainties).

The coherence is only the modulus; we therefore
also considered the phases: y¼ yzv, ypv (i.e. with h¼ z
and p respectively and g ¼ v in Eqn. (6.98), see
Fig. 6B.1). With this choice, y > 0 indicates that the
altitude (pressure) fluctuations lag behind the wind
fluctuations while y < 0 indicates the converse. From
Fig. 6B.1 we consider the various regimes.

(a) k > (3 km)–1 (log10k > –0.5)
Starting the analysis at the small scales (large wave-
numbers), we see that, as expected, due to the inertia
of the aircraft, which prevents it from rapidly
responding to changes in wind, the coherence and
phase with respect to the altitude is not statistically
signficiant (left column).

(b) (40 km)–1 < k < (3 km)–1 (–1.5 < log10k < –0.5)
Moving to lower wavenumbers, we first remark that
there are apparent significant and even very strong
coherences and phase relations for essentially all the
larger scales (although the statistics are poor below
about about k< (500 km)�1) with the relation
between pressure and wind a bit stronger than that
between altitude and wind. When we consider the
phases, we see that whereas the pressure continues
to lag behind the wind (ypv> 0), the wind lags behind

the altitude changes (yzv< 0). This could be a conse-
quence of the autopilot (on a time scale of 10–100 s)
adjusting the level due to the smaller-scale turbulent
trajectory fluctuations (typical time constants for air-
craft roll modes are of the order of several seconds,
and response to rudder and aileron commands are
also of this order). In this range the wind follows the
classical k�5/3 spectrum so that the fractal aircraft
trajectories do not significantly affect the spectrum
(they only affect the intermittency corrections).

(c) k < (40 km)�1
– (60 km)�1 (log10k < –1.5)

Finally, at the larger scales, we see that the phases
of both the altitude and pressure with respect to the
longitudinal component reverse sign. In this regime,
the pressure leads the wind fluctuations while the
altitude lags behind. This is presumably the regime
in which the aircraft closely follows the isobars.
From Figs. 6B.1 and 2.14 we see that this is also
the regime where the wind spectrum follows the
k�2.4 rather than k�5/3 law; in Section 6.3.1 we argue
that it is this “imposed” vertical displacement that
leads to the spurious appearance of the vertical
exponent 2.4. This regime is consistent with the
aircraft closely following isobars with the latter caus-
ing the wind and altitude fluctuations. More details
and evidence for these interpretations can be found
in Lovejoy et al. (2009b).
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Chapter

7
Generalized scale invariance
and cloud morphology

7.1 Beyond self-similarity
and self-affinity

7.1.1 The basic elements of GSI
We have seen that the usual approach to scaling is first
to posit (statistical) isotropy and only then scaling, the
two together yielding “self-similarity.” Indeed, the
combination of the two is so prevalent that the terms
“scaling” and “self-similarity” are often used inter-
changeably! The generalized scale invariance (GSI)
approach that we have presented in this book is rather
the converse: it first posits scale invariance, and then
studies the remaining nontrivial symmetries. In the
previous chapter we discussed simple models of
scaling stratification in which the relation between
large and small structures was different in two orthog-
onal directions; to distinguish it from “self-similarity”
this is often called “self-affinity.” More generally, a
scale-invariant system will be one in which the small
and large scales are related by a scale-changing oper-
ation that involves only the scale ratios; the system has
no characteristic size. In what follows we outline the
basic elements necessary for defining such a system; we
follow the development initiated in Schertzer and
Lovejoy (1985). To be completely defined, GSI needs
not only a rule that determines how to change scale; it
also requires a definition of how to measure the scale.
This can be done in a constructive manner by starting
from a unit scale (see below for a more abstract defin-
ition). Although this is not indispensable, it is closer to
our usual way of thinking, i.e. to refer to a standard of
measurement.

In this approach, the general idea of GSI is to
build up a family of balls Bl defining vectors of
generalized scale L/l, where L is a given (usual) scale,
which can be taken as unity. This can be done with
the help of rather arbitrary unit ball B1 and a general-
ized scale transform Tl that transforms the unit ball
B1 into a ball Bl reduced by a factor l in scale. The
main question is to find the minimal requirements on

Tl (and a given measure on B1) so as to obtain
something corresponding to a (generalized) notion
of scale. Keeping this general idea in mind, we can
now consider these requirements.

Following Schertzer et al. (1999, 2002) and Schert-
zer and Lovejoy (2011), we start by giving a compact
axiomatic definition of GSI. Following this terse pre-
sentation, we flesh it out with a detailed discussion of
the 2D case.

The elements of GSI

Tl is a generalized contraction on a vector space E; it
is a one-parameter (semi-) group for the positive real-
scale ratio l (l � 1 for a semi-group), i.e.:

8l, l0 ∈ Rþ
: Tl0∘Tl ¼ Tl0l ð7:1Þ

and admits a generalized scale denoted k�rk (double
lines to distinguish it from the usual Euclidean metric
j�rj), which in addition to being nonnegative, satisfies
the following three properties:

(i) nondegeneracy, i.e.:

k�rk ¼ 0 , �r ¼ 0 ð7:2Þ

(ii) linearity with the contraction parameter 1/l, i.e.:

8�r ∈ E, 8l ∈ Rþ
: Tlk�rk � kTl�rk ¼ l�1k�rk ð7:3Þ

(iii) strictly decreasing balls: the balls defined by this
scale, i.e.:

Bℓ ¼ f�rj k�rk � ℓg ð7:4Þ

must be strictly decreasing with the contraction Tl:

8L ∈ Rþ
, 8l > 1 : BL=l � TlðBLÞ � BL ð7:5Þ

and therefore:

8L ∈ Rþ
, 8l0 � l � 1 : BL=l0 � BL=l ð7:6Þ

The usual Euclidean norm j�rj of a metric space is the
scale associated with the isotropic contraction
Tl�r ¼ �r=l. Properties (i), (ii) are rather identical to
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those of a norm, whereas (iii) is weaker than the
triangle inequality, which is required for a norm. As
for norms, unicity of generalized scale is not expected
for a given Tl:

Using a function to define the unit scale and unit ball B1
From the above, we can see that if we define a unit
scale (the vectors such that k�rk ¼ 1), this defines the
borders of a unit ball B1, and using the scale-changing
operator, this defines the other (nonunit) scales and
balls. In general, the unit ball B1 will be defined by an
implicit equation:

B1 ¼ f�r : f1ð�rÞ < 1g;

∂B1 ¼ f�r : f1ð�rÞ ¼ 1g ð7:7Þ

where ∂B1 is the “frontier” of the unit ball, and f1 is a
function of position (r) (the use of open balls has the
advantage that they generate a topology of the space
(Lovejoy and Schertzer, 1985; Schertzer and Lovejoy,
1985)). Comparing Eqn. (7.7) with Eqn. (7.4), we see
that f1ð�rÞ ¼ k�rk.

The ball B1 defining the unit scale vectors can be
arbitrary, but if among all the balls Bl’s there is an
isotropic ball (e.g., circle or sphere), we call the
corresponding scale the “sphero-scale,” and it is often
convenient to take the corresponding ball as the unit ball
B1. When it exists, this sphero-scalemay only correspond
to the scale where structures are roughly spherical,
vaguely roundish, approximately isotropic – and we use
the expression for these cases too (cf. the self-affine canon-
ical scale function when ls = 1, Eqn. (6.17)). For simplicity
we often assume the existence of a sphero-scale.

The scale-changing operator Tλ which transforms

the scale of vectors by scale ratio λ

In order to define the nonunit scales and balls, we can
exploit the scale changing operator Tl (Eqn. (7.3)). Tl

is the rule relating the statistical properties at one
scale to another and involves only the scale ratio. This
implies that Tl has certain properties. In particular, if
and only if l1l2 = l, then:

Bl ¼ TlB1 ¼ Tl1l2B1 ¼ Tl1Bl2 ¼ Tl2Bl1 ð7:8Þ

i.e. Tl has the same group properties as multiplication
by the scale ratio l and it is also commutative:

Tl ¼ Tl2Tl1 ¼ Tl1Tl2 ð7:9Þ

This implies that Tl is a one-parameter multi-
plicative group with parameter l:

Tl ¼ l�G ð7:10Þ

where G is the generator of the group (Fig. 7.1). We
use the negative sign since in turbulent cascades
energy flux is typically transfered from large to small
scales, so that we are usually interested in reductions
by factor l; Tl reduce sizes by factor l. We will not
require that the inverse operators Tl

�1 ¼ Tl�1 exist,
hence we really only have a semi-group (the inverse,
however, usually does exist if G is matrix). We saw in
Chapter 6 that the action of G is straightforward when
G is diagonal – it leads to stratification along one of
the axes. However, when G has off-diagonal elements,
the effect is more complex; it involves rotation: see
Fig. 7.2, for an example showing a generalized “blow

Tλ1

Tλ2

Tλ

Aλ1

Aλ

λ1

λ

λ2

A

Fig. 7.1 Illustration of the group property of the scale-changing
operator. Reproduced from Schertzer and Lovejoy (1996).

Fig. 7.2
A generalized blow-
down with
increasing l of the
acronym “NVAG.”
If G = I, we would
have obtained a
standard reduction,
with all the copies
uniformly reduced
converging to the
centre of the
reduction. Here the
parameters
determining G are
c ¼ 0:3, f ¼ �0:5,
e ¼ 0:8 (see Section
7.1.4), and each
successive reduction
is by 28%.
Reproduced from
Schertzer and
Lovejoy (1996).
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down” of the acronym “NVAG” showing how the
reduction is combined with both stretching and rota-
tion; this is discussed further below.

A technical consideration in constructing a viable
GSI system is that the corresponding balls Bl must be
decreasing ðBl1 � Bl2 ;l1 > l2Þ: this is necessary to
insure that the vectors rl are unique. Let us consider
this question in more detail by introducing the func-
tion fl to define Bl. From Eqns. (7.3) and (7.7) we can
define Bl from the function fl defined as:

8�r : flð�rÞ ¼ f1ðT
�1
l �rÞ,

Bl ¼ f�r : flð�rÞ < 1g

∂Bl ¼ f�r : flð�rÞ ¼ 1g ð7:11Þ

Alternatively, in terms of the scale function, we have:
flð�rÞ ¼ kT�1

l �rk. In order to ensure that the frontiers
of the balls do not cross and that the scale is thus
uniquely defined, consider the balls defined by l and
l + dl; it is easy to see that since a crossing point
satisfies ∂fl=∂l ¼ 0 we must have:

∂fl

∂l
> 0 ð7:12Þ

for all �r. This positivity (rather than negativity)
requirement is necessary to ensure that Tl corres-
ponds to a scale reduction rather than enlargement.

A simple example is when f ð�rÞ is a quadratic form:

f1ð�rÞ ¼ ð�r
TA�rÞ

1=2 ð7:13Þ

where A is a matrix and T indicates “transpose” (see
Box 7.1) For this case, there is an exact result obtained
for the decrease condition (Schertzer and Lovejoy,
1985). Indeed, the necessary and sufficient condition
that the balls TlðBLÞ � BL=l are strictly decreasing
with the contraction group Tl is:

SpecðsymðAGÞÞ > 0 ð7:14Þ

where symð:Þ denotes the symmetric part of a linear
application and where Spec(.) denotes the set of
eigenvalues. When A is furthermore positive and
symmetric, i.e. the ball BL is an ellipsoid, this condi-
tion reduces to:

SpecðsymðGÞÞ > 0 , ReðSpecðGÞÞ > 0 ð7:15Þ

We now show step by step how to construct a GSI
system respecting the axiomatic definition above.

If G is an n � n matrix and r is an n-dimensional
vector and (the usual case) G is diagonalizable with
transformation matrix O:

G0 ¼ O�1GO ð7:16Þ

so that G 0 is diagonal (with eigenvalues Li, with i =
1. . ., n), then we obtain:

l�G ¼Ol�G0

O�1 ¼O

l�L1 0 . . . 0
0 l�L2

. . . 0
. . . . . . . . . 0
0 0 0 l�Ln

0

B

B

@

1

C

C

A

O�1

ð7:17Þ

The most general case of linear GSI requires Jordan
matrices, which can be considered as almost diagona-
lizable and introduces more complex terms (Schertzer
et al., 1999). When Τl is a more general, i.e. no longer
linear, generator, we must define it with the help of
differential equations (Section 7.3) – equivalently by
using the corresponding infinitesimal generator that
defines infinitesimal scale transformations.

In order to get a feeling for these transformations,
consider the 2D case where G is a 2 � 2 matrix. When
G is diagonizable, there are two cases of interest: the
first when L1, L2 are both real and the second when
they form a complex conjugate pair. Consider first the
real case: we see that in the space �r

0 ¼ O�1
�r where G

0

is diagonal; that the situation is identical to the cases
of stratification discussed in Chapter 6: at large l the
structures are stratified along one of the axes, while at
small l they are stratified (squashed) along the other.
In the original �r space, this corresponds to squashing
along (generally nonorthogonal) eigenvectors, (Fig. 7.3,
lower left).However, when the eigenvalues are complex,
the behaviour is different.WritingL1= d – a,L2= d + a
where d is real and a is pure imaginary, we see that in
addition to (isotropic) scale reductions associated with
l�d, there will be rotations associated with the factors
l�a ¼ e�ijajlogl. As l ! 1 the phase ijajlogl goes
through an infinite range corresponding to an infinite
number of rotations of structures (see Fig. 7.3 lower
right for an example).

Defining measures/integrals

For a single point with position vector�r, the scale/size
is determined by the scale ratio l such that
kT�1

l �rk ¼ 1, but this is not enough to define the “size”
of sets of points. For smooth sets, size is defined with
the help of metric properties, such as the diameter of
the set. However, for convoluted sets, this is not
always manageable. It was therefore useful to use a
more general approach based on the mathematical
measure/integral of these sets (Schertzer and Lovejoy,
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1985). This corresponds to first defining a family of
elementary sets (here, the Bl’s), and then the meas-
ure/integral of each of these. Using these elementary
sets, the measure (for example an anisotropic Haus-
dorff measure) of an arbitrary compact set can then
be defined by covering the arbitrary set by the Bl’s.

There are various ways to define the generalized
scale f of the Bl’s; for example, we may take fD as a
usual D-dimensional (mathematical) measure, e.g. the
ordinary volume integral in a space of dimension D:

fDðBlÞ ¼

ð

Bl

dD�r ð7:18Þ

so that for example in a two-dimensional space, D = 2,
f will be proportional to the square root of the area of
Bl. We can rewrite this as:

fDðBlÞ ¼

ð

flðrÞ<1

dD�r ¼

ð

f1ðT�1
l

rÞ<1

dD�r

¼ l�Del

ð

B1

dDr0 ¼ l�DelfDðB1Þ; �r ¼ Tlr
0 ð7:19Þ

where we have used the transformation of variables
indicated and the Jacobean of the transformation of
variables:

dD�r ¼ detðTlÞd
Dr0 ¼ l�TrðGÞdDr0 ¼ l�DeldDr0

ð7:20Þ

If the “elliptical dimension” Del = TrG (the trace of G)
does not correspond to the dimension of the embed-
ding space D, then a convenient “elliptical” scale fel is
defined by the following relation:

fDel

el ðBlÞ ¼ fDðBlÞ ð7:21Þ

so that:

felðBlÞ ¼ fD=DelðBlÞ ¼ l�1felðB1Þ ð7:22Þ

Wecould also use some (positive) powerfel ! ðfelÞ
d
f0

el

(e.g. the area of Bl rather than the square root of the
area) which would be equivalent to l ! ld ¼ l0 ; this
amounts to using a different generator G ! G=d ¼
G0 , (d > 0) and hence a different elliptical dimension
Del ! Del=d ¼ D0

el. The resulting triplet G0, f0
el and

D0
el is an equally good GSI system; the actual choice is

a matter of convenience (see the next section for an
example). In terms of the examples in Chapter 6,
where we used the horizontal extent of the ball as our
definition of size, we could for example alternatively
take the area or the square root of the area of the balls.

7.1.2 Some properties of linear GSI
In order to illustrate the basic properties of the scale-
changing operators Tl = l�G we shall again only
explicitly consider the two-dimensional case; see
Section 7.1.6 for three dimensions. However, even in
2D, G is a 2 � 2 matrix which depends on four
parameters; fortunately not all the parameters lead
to qualitatively different families of balls Bl, and we
can therefore establish a hierarchy of their influence.

First, it is convenient to decomposeG into “pseudo-
quaternions” (or equivalently, Pauli matrices):

G ¼ d1þ e1þf Jþ cK ð7:23Þ

where:

1 ¼
1 0

0 1

� �

; I ¼
0 �1

1 0

� �

J ¼
0 1

1 0

� �

; K ¼
1 0

0 �1

� � ð7:24Þ

These matrices satisfy the following anticommutation
relations:

Fig 7.3 Examples of balls and trajectories for linear GSI with
sphero-scale isotropic case: c = 0, f = 0, e = 0, (top left); self-affine
case: c = 0.35, f = 0, e = 0 (top right); stratification-dominant case
a2> 0with no rotation: c= 0.35, f= 0.25, e= 0 (bottom right); rotation-
dominant case a2 < 0: c = 0.35, f = 0.25, e = 0.6; d = 1 for all cases
with sphero-scale at 30 units (pixels) out of a total of 512. The
parameters are defined in Eqns. (7.23) and (7.24). Reproduced from
Lewis et al. (1999).
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fI, Jg ¼ 0; fI,Kg ¼ 0; fJ,Kg ¼ 0 ð7:25Þ

(e.g. {I,J} ¼ IJ þ JI ¼ 0).
A fundamental parameter for the description of the
overall type of anisotropy present in the system will be
given by the discriminant of the characteristic poly-
nomial of G:

a2 ¼ ðTrðGÞ=2Þ2 � DetðGÞ ¼ c2 þ f 2 � e2 ð7:26Þ

This is equivalent to the determinant of the traceless
part of G and determines whether the eigenvalues:

Lx ¼ d þ a; Ly ¼ d � a ð7:27Þ

are real or complex. For clarity we have used the
notation Lx = L1, Ly = L2.

The condition of decrease of the balls (Eqn. (7.5))
for G is merely:

TrðGÞ > 0 and detðGÞ > 0 , d > 0 and d2 > a2

ð7:28Þ

In Box 7.1, we explore the effect of changing the
parameters on the balls defined by quadratic forms
(ellipses). However, to more generally understand the
various possible morphologies of linear GSI in two
dimensions, it is very helpful to first reduce the
number of parameters. Clearly parameters which
simply rotate structures or which give them isotropic
dilations do not change the morphologies, so of the
four parameters c, d, e, f therefore only two need to be
considered. For example, we are interested in charac-
teristics of G which are independent of absolute
orientation. Therefore, consider the primed coordin-
ate system rotated by angle y:

G0¼ R�1GR
R ¼ 1cosyþ Isiny

ð7:29Þ

where R is the rotation matrix. Clearly, the 1 and I
components of G commute with R so that they are
unaffected by the rotation; hence d, e are rotationally
invariant. In addition, both the trace (= 2d) and
determinant (= d2 – a2) are rotational invariants
(alternatively, and equivalently, the eigenvalues
d � a are invariant, Eqn. (7.27)), so that we have
d, e, a as rotational invariants. We therefore may
conclude that since a2 + e2 = f 2 + c2 the latter is also
invariant; let us define r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ f 2
p

(not to be con-
fused with the polar coordinate).

It is useful to now consider the interpretation of
the above in terms of eigenvectors. First, the

eigenvalues of G are d � a and the (unnormalized)
eigenvectors are:

c � a

f þ e
, 1

� �

ð7:30Þ

The angle between the two eigenvectors (Dy) is
given by:

cosðDyÞ ¼ cosðyþ � y�Þ ¼
e

r
ð7:31Þ

which is rotationally invariant as expected. When e< r
and as e approaches r, the eigenvalues are real and the
eigenvectors becomemore andmore parallel; for e> r,
they become complex. The average eigenvector orien-
tation angle (y) satisfies:

cosð2yÞ ¼ cosðyþ þ y�Þ ¼
�f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ f 2
p ¼

�f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ e2
p

ð7:32Þ

c, f thus determine the absolute orientation of the balls
but not the shapes. This means that we can consider
only the case r = f, c = 0 without loss of generality
(alternatively, as in Fig. 7.6, taking r = c, f = 0 is the
same but in a frame rotated by y = p/4). This means we
need only consider the following matrix:

G ¼
d r � e

r þ e d

� �

ð7:33Þ

A further restriction on the parameter space is a
consequence of the fact that interchanging the x and
y axes (i.e. a reflection of structures about the
bisectrix, the line x = y) is equivalent to changing
the sign of e (this follows since e ! –e implies G !
GT (the transpose). Therefore one need only consider
e > 0.

Finally, overall “blow-ups” do not change the
morphologies of structures. For example, if we nor-
malize G by (half ) its trace:

G0 ¼ G=d ð7:34Þ

then a scale function k�rk
0

satisfying the scale equation
for G0:

kl�G0

�rk
0 ¼ l�1k�rk

0 ð7:35Þ

is obtained from the original scale function
(satisfying kl�G

�rk ¼ l�1k�rk) by:

k�rk
0 ¼ k�rk

d ð7:36Þ
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so that in 2D we can always take Trace G = 2
(i.e. d = 1). Therefore, if we are only interested in
exploring the various morphologies in 2D linear GSI,
it suffices to consider d = 1, r = f, c = 0, i.e. to only
consider the matrix:

G ¼
1 r � e

r þ e 1

� �

ð7:37Þ

the scale functions corresponding to arbitrary 2 � 2
matrices can be obtained from the above by rotations
and dilations (isotropic blow-ups). Finally, this sim-
plified G can be diagonalized by:

G
0

¼ O�1�G �O ¼
1� a 0
0 1þ a

� �

ð7:38Þ

where a2 ¼ r2 � e2 (note that if in the above a is
real, then it is always > 0) and the diagonalizing
matrix O is:

O ¼
1

2

�

�ðr þ eÞ�1=2 ðr þ eÞ�1=2

ðr � eÞ�1=2 ðr � eÞ�1=2

	

;

O�1 ¼
�

�ðr þ eÞ1=2 ðr � eÞ1=2

ðr þ eÞ1=2 ðr � eÞ1=2

	

ð7:39Þ

Box 7.1 The example of quadratic balls

While the nonlinear transformations described in Section 7.1.4 are the most convenient for numerical simulations,
further insight into the operation of l�G with nondiagonal G can be obtained by considering the effect of the scale-
changing operator on the shapes of the balls in a particularly simple family: those defined by quadratic forms.
Consider the unit ball defined by f1:

f1ð�rÞ ¼�r
TA1�r ¼ 1 ð7:40Þ

in two dimensions where A1 is a 2� 2 matrix and r = (x,y) is a positive vector on the frontier of the unit ball, and A1 is
a symmetric 2 � 2 matrix describing the unit ball (A1 must be symmetric so that the eigenvalues are positive, so the
balls are closed). The lack of a subscript on the position vectors will henceforth be taken to mean vectors on the unit
ball unless otherwise specified.

Defining Al implicitly from the equation flð�rÞ ¼�r
TAl�r , we have:

Al ¼ ðT�1
l ÞTA1T

�1
l ¼ lG

T

A1l
G ð7:41Þ

The no-crossing conditions (Eqns. (7.5), (7.12)) now reduce to:

�r
T symðAlGÞ�r > 0 ð7:42Þ

where sym indicates the symmetric part (i.e. symAlG = ((AlG)
T + (AlG))/2). The above condition is satisfied as long as

the eigenvalues of sym(AlG) are> 0 and in fact for sym (A1G), i.e. Eq. 7.14, with the help of the mapping lG (Schertzer
and Lovejoy, 1985). In the case where a sphero-scale exists, then A1 can be taken as the identity, and we require only
the positivity of the eigenvalues of symG. In two dimensions, this is equivalent to Trace G> 0, det(symG)> 0. Pecknold
et al. (1997) show how to extend this result to the case of quartic (and more general polynomial) balls which have
various qualitative differences with quadratics, notably that they can be closed and nonconvex (e.g. Fig. 7.4).

To obtain an explicit expression for l�G ¼ e�G lnl, we can use the series expansion of the exponential function
with pseudo-quaternions (Eqn. (7.20)) combined with the following identities:

Fig. 7.4 Fourth order polynomial ball with

f1ð�rÞ ¼ �r
TA1�rð Þ

2
þ �r

TB1�rð Þ
2
where A1, B1 are 2 � 2 matrices,

showing nonelliptical contours. On the left is a convex

stratification-dominant example, with G ¼
1:5 0:13

1:27 0:5

� �

; on

the right is a rotation-dominant example showing highly

nonconvex shapes, with G ¼
1:1 �0:1

0:3 0:9

� �

. Adapted from

Pecknold et al. (1997).
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Box 7.1 (cont.)

ðG� d1Þ2n ¼ a2 ð7:43Þ

where n is an integer and a2 = c2 + f 2 – e2. Using this and writing u = logl we therefore obtain:

Tl ¼ l�G ¼ l�dlðG�d1Þ ¼ l�d
1coshðauÞ � ððG� d1Þ

sinhðauÞ

a

� �

ð7:44Þ

When a2 < 0 the above formula holds, but with jaj replacing a and ordinary trigonometric functions rather than
hyperbolic functions. Examples of both balls and trajectories (the locus of points �rl ¼ Tl�r1 , obtained by l varying
with r1 fixed) are shown in Fig. 7.3.

We can now consider the effect of Tl on quadratic balls, recalling the two basic cases depending on whether the
eigenvalues of G are real or complex (a2> 0, a2 < 0 respectively) corresponding to domination by stratification or by
rotation. To see this explicitly, decompose the matrix Tl as follows:

Tl ¼ Ry2SABRy1 ð7:45Þ

where Ry is a rotation matrix which rotates by an angle y, and SAB is a “stretch” matrix:

Ry ¼
cosy �siny
siny cosy

� �

; SAB ¼
A 0
0 B

� �

ð7:46Þ

If we apply this to a circular unit ball B1, we obtain:

Bl ¼ TlB1 ¼ Ry2SABB1 ð7:47Þ

where we have used the fact that Ry2B1 ¼ B1 (a circle is invariant under rotation). Since SABB1 is an ellipse with axes
A, B, we have therefore have the simple interpretation that Bl is an ellipse with axes A, B rotated by angle y2. In order
to understand the effect of Tl on B1 it therefore suffices to determine how A, B, y2 vary with scale ratio l. A first step
is to write:

Ry2SABRy1 ¼
1

2

ðAþ BÞcosyþ þ ðA� BÞcosy� ðA� BÞsinyþ þ ðA� BÞsiny�
ðAþ BÞsinyþ þ ðA� BÞsiny� ðAþ BÞcosyþ � ðA� BÞcosy�

� �

ð7:48Þ

where yþ ¼ y2 þ y1 and y� ¼ y2 � y1. Equating this element by element to our expression for l�G (Eqn. (7.43))
we obtain:

l ¼ ðABÞ�
d
2 ð7:49Þ

Recalling that we can always choose d = 1, we see that this is equivalent to:

l�1 ¼

ffiffiffiffiffiffiffiffiffi

area

p

r

ð7:50Þ

With this we also find:

ε
ffiffiffiffiffiffiffiffiffiffiffi

εþ 1
p ¼

ffiffiffi

B

A

v

u

u

t �

ffiffiffi

A

B

v

u

u

t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ f 2

a2

v

u

u

t sinh2ðauÞ; ε ¼
B

A
� 1 ð7:51Þ

where ε is the “ellipticity”. For the angle y2, we find:

y2 ¼
1

2
tan�1 f

c

� �

�
1

2
tan�1 e

a
tanhðauÞ

� 	

ð7:52Þ

Eqns. (7.47) and (7.48) tell us how an initial circle at l = 1 (u = 0) changes its ellipticity ε and orientation y2 with
scale l.

We now consider the two qualitatively different cases, a2 > 0 and a2 < 0.

7.1 Beyond self-similarity and self-affinity

235



7.1.3* Scale functions in linear GSI in 2D
In Section 6.1.4 we saw how to find a solution of the
scaling Eqn. (6.26) when Tl = l�G and G is a diagonal
matrix. It is therefore straightforward to apply the
same method to any diagonalizable G; it suffices to
diagonalize it before applying a (nonlinear) trans-
formation of variables. Consider for simplicity the
two-dimensional case, with the two eigenvalues Lx,
Ly. When these are real we have the following coord-
inate transformations:

�r
0 ¼ O�1

�r

�r
00

¼ ðx
00

, y
00

Þ ¼
�

signðx
0

Þjx
0

j1=Lx , signðy
0

Þjy
0

j1=Ly

	

ð7:55Þ

From the above discussion we see that:

kl�G
�rk ¼ l�1k�rk $ kl�1r

00

k ¼ l�1kr
00

k ð7:56Þ

so that the solution of the functional scale (Eqn. (7.56))
is the same as for the self-affine diagonal G case
(Section 6.1.4) except for the doubly primed variables:

k�r k ¼ Yðy
00

Þr
00

; r
00
¼ jr

00
j ¼ ðx

02=Lx
þ jy

0

j2=LyÞ1=2;

tany
00

¼
y
00

x
00 ¼

signðy
0
Þjy

0
j1=Ly

signðx0Þjx0 j1=Lx
ð7:57Þ

Once again, the condition that the balls are decreasing
with l (no crossing of balls) is that Y(y00) > 0 and the

choice of the otherwise arbitrary Y determines the
shape of the unit ball: in polar coordinates its equa-
tion is rn ¼ 1=Yðy00Þ.

The self-affine case and the above have real eigen-
values. Let us now consider the case where the eigen-
values form a complex conjugate pair: Lx = d – a,
Ly = d + a where d = Re(Lx), and a = �i Im(Lx).
Once again, we diagonalize by (the now complex) O
(Eqn. (7.39)), and obtain:

�r
0 ¼ O�1

�r ¼ ðz0 , � z0
∗

Þ ð7:58Þ

where z0 is complex (the real and imaginary parts of
the x0 and y0 coordinates are independent, but x0 and
y0 are no longer independent of each other) and “∗” is
the complex conjugate. If we now make the nonlinear
transformation of variables:

z00 ¼ jz0 jð1þaÞ=d z0

jz0 j
ð7:59Þ

then a scale function satisfying the scale function
(Eqn. (7.54)) can be obtained by taking:

k�rk ¼ Y
�

argðz00Þ
	

jz00 j ð7:60Þ

where once again Y > 0 defines the unit ball (arg(z00)
denotes the argument (phase) of the complex variable z00).

While Eqns. (7.57) and (7.60) are indeed solutions
of the scale function (Eqn. (7.56)), they are not opti-
mal for simulations because we see from Eqn. (7.39)

Box 7.1 (cont.)

Stratification dominance, a2 > 0

In this case, as u ! 1 ðl ! 1Þ, ) B=A ! 1; as u ! �1 ðl ! 0Þ, A=B ! 1, i.e. we have extreme stratification.
Considering the rotation, we have:

y2 !
1

2
tan�1 f

c

� �

�
1

2
tan�1 e

a

� 	

; u ! �1 ð7:53Þ

i.e. a total rotation of tan�1ðe=aÞ (Note that at u = 0 the major and minor axes are exchanged, hence there appears
to be an extra p/2). The total rotation is thus bounded.

Rotation dominance, a2 < 0

In Eqns. (7.51), (7.52), we replace the hyperbolic trigonometric functions by the usual trigonometric functions and
use jaj to represent the modulus of a. From the equation for y2, we now find that there are an infinite number of
rotations as u ! 1 (the logarithm “wavelength” ¼ 2p=jaj) and the ellipticity oscillates, with maximum ratio:

B

A

� �

max

¼ 2
e

jaj

� �2

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
jaj2

e2

s0

@

1

A� 1 ð7:54Þ

From this, we can conclude that if the unit ball is sufficiently elliptical, there will be no circular balls at any scale.
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that the diagonalizationmatrixO is singular when r = e
(i.e. when a = 0). This means that for a fixed Y

function, if we slowly vary the parameters r, e the
morphologies will change in a correspondingly singu-
lar manner near the r = e part of the parameter space
where a becomes complex. It is, however, easy to avoid
this by a further transformation of variables: multiply-
ing by O (instead of O�1). For real eigenvalues:

�r
ð3Þ ¼ �r

ð2ÞY
�

yð2Þ
	

; �r
ð4Þ ¼ O�r

ð3Þ ð7:61Þ

where the superscript (i) indicates the ith transform-
ation of variables (so that�r

ð0Þ ¼ �r,�r
ð1Þ ¼ �r

0,�r
ð2Þ ¼ �r

00),
and y(i) denotes the polar angle in �r

(i) space. The
final transformation O removes the singular
transformation O�1 in the initial diagonalization step
so that the overall transformation�r

(0) !�r
(4) becomes

continuous in the parameter a. Finally, the scale func-
tion is simply the usual vector norm of �r

(4):

k�rk ¼ j�r
ð4Þj ð7:62Þ

For the case of complex eigenvalues, we first define
the complex coordinate z(1):

�r
ð1Þ ¼ O�1

�r
ð0Þ ¼

�

zð1Þ,�zð1Þ∗
	

ð7:63Þ

From this we make the following transformations:

zð2Þ ¼ zð1Þjzð1Þja

zð3Þ ¼ zð2ÞY
�

arg
�

zð2Þ
		

�r
ð4Þ ¼ O

�

zð3Þ,�zð3Þ∗
	

ð7:64Þ

where argz indicates the argument of the complex z
and once again the scale function is just the norm or

�r
(4): k�rk ¼ j�r

ð4Þj; and once again, the condition that
the balls do not cross is: Y > 0.

In addition to studying the effect of the two G
parameters r, e which determine the scale-changing
operator, we can also investigate the effect of varying
the shape of the unit ball defined by Eqns. (7.57) and
(7.60) for k�rk ¼ 1, i.e. the polar equation in the
doubly primed coordinates:

rð2Þ ¼ 1=Yðyð2ÞÞ ð7:65Þ

where r(2), y(2) are the polar coordinates in the �r
(2)

space. The “canonical” scale function is obtained by
taking Y = 1 so that the unit ball is a circle in the �r

(2)

space; this corresponds to a roundish but not exactly
circular ball in the original �r space.

7.1.4 Illustrating the effect of varying G
and the unit ball with multifractal
simulations
We now would like to see the effect of introducing
scaling anisotropy on multifractal simulations. In
Section 7.1.2, we showed how to reduce the number
of exponents in 2D from four (c, d, e, f ) to two (r, e),
and in Section 7.1.3 we showed how to easily create
scale functions with quite general unit balls and
respecting the anisotropic scaling symmetries while
being continuous in the parameters. In order to
explore the possible morphologies, the last element
we need is therefore a specification of the unit ball.
A convenient one-parameter parametrization is:

Yðy
00

Þ ¼ 1þ
1� 2�k

1þ 2�k
cosy

00

ð7:66Þ

The parameter k allows us to examine the effect of
possibly very nonroundish unit scales. Since k =
log2(r

(2)
max/r

(2)
min) where r(2)max, r

(2)
min are the maximum

and minimum radii of the sphero-scale, k has a simple
interpretation (the ratio in �r

(2) space will be close to
the ratio in the original �r space). For example, with
this definition, we see k = 10 implies a unit scale
which “mixes” conventional scales over a factor of
more than 1000 (= 2k).

Once again, multifractal simulations proceed as in
the stratified case (Section 6.1.8), i.e. by following the
same procedure as in the isotropic multifractals but
with j�r j ! k�rk; d ! Del. In addition to the some-
what more complicated calculation of the scale func-
tion, the calculation of the angular integral (needed
for normalizing the generator, ODel; Eqn. (6.34)) is
also more involved and is given in Appendix 7A.

An important practical complication is that the
simulation region will generally not have the same
shapes as any of the balls; i.e. the limits of the simula-
tion region will in general not coincide (even approxi-
mately) with lines of constant k�rk. This means that a
possibly significant range of scales will not be totally
resolved by the convolution integrals. Fig. 7.5a graph-
ically shows the problem. There are three scales to
consider: the smallest scale that is totally resolved by
the rectangular 1 � 1 pixel grid (k�r1k; i.e. which
completely encloses the central pixels), the largest
scale that is totally resolved within the simulation
region (k�r2k), and the largest scale that crosses
(and hence influences) the integration region (k�r3k).
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Fig. 7.5b shows the contribution of the structures
from each of the ranges k�r1k to k�r2k and k�r2k to
k�r3k, showing what is missed if the contribution of
the larger scales is not taken into account. The solu-
tion adopted for the simulations shown here was to
“nest” simulations by using low-resolution versions of
scale functions over the range k�r2k to k�r3k and then
to use the multiplicative property of the cascade
(Fig. 7.5b). Finally, we note that, as discussed in
Appendix 5B, there will be “finite size effects” at the

smallest scales. It turns out that the method outlined
in Appendix 5B to alleviate some of these effects still
works (but again, with j�rj replaced by k�rk), although
when the scale function is too variable near the pixel
scale even this is problematic (the method only takes
care of the lowest-order correction and this may no
longer be adequate).

With these technical issues behind us, we can
now consider the effect of varying the parameters
c, e, k as shown in the multifractal simulations
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Fig. 7.5 (a) A schematic diagram
showing the balls associated with the
canonical system with ls = 8 and: d = 1,
c = –0.1, f = –0.2, e = 0.1. kr1k = 0.2 is
the smallest scale which is completely
resolved by the 1�1 pixel grid, kr2k =
6.3 is the largest scale completely
resolved by the 64�256 pixel
simulation region; kr2k = 74 is the
largest scale that influences the
simulation region. (b) This shows the
contributions from the fully resolved
band (scales kr1k to kr2k) and the
partially resolved band kr2k to kr3k to
the total simulation; a = 1.6, C1 = 0.1
(same G as in Fig. 7.5a).
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(Figs. 7.6a–7.6f ). All the simulations have a = 1.8,
C1 = 0.1, H = 0.33 (roughly the empirical parameters
for clouds), and are simulated on 256 � 256 grids
with the same starting seed so that the differences
are due only to the anisotropy (the colours go from
dark to light, indicating values low to high).
For isotropic unit scales (k = 0, Fig. 7.6a, top row)

we see the effect of varying c. On the right we
display the contours of the corresponding scale
functions.

Moving on to Fig. 7.6b, we take k = 10 so that the
unit ball has a range of scales of 210; the structures are
more filamentary. In the bottom row we take e = 0,
displaying the effect of varying c: G is thus diagonal,

(a)

(b)

Fig. 7.6 (a) k = 0: we vary c (denoted i) from –0.3, –0.15, . . ., 0.45 left to right and e (denoted j) from –0.5, –0.25, . . ., 0.75 top to bottom.
On the right we show the contours of the corresponding scale functions. For these and other simulations, see the “Multifractal Explorer”:
www.physics.mcgill.ca/~gang/multifrac/index.htm. Reproduced from Lovejoy and Schertzer (2007). (b) Same as Fig. 7.6a except that k = 10.
Reproduced from Lovejoy and Schertzer (2007).
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the structures are “self-affine” (no rotation). Fig. 7.6d
is the same as the bottom row of Fig. 7.6c except that
e = 0.75, showing the effect of rotation. Since a2=c2-
e2<0 here ( f = 0), the eigenvectors of l�G rotate
continuously with scale (this is discussed in more
detail in Box 7.1). In Fig. 7.6e we fix c = 0 and vary
e, and Fig. 7.6f is the same except that c = 0.15 so that

there is both the effect of stratification (c), and rota-
tion (e). Here the eigenvalues are again complex
except in the third column with e = 0.

More examples of two-dimensional simulations
are shown in Fig. 7.7a and 7.7b; all except the upper
left are rotation-dominant with large e values. In the
simulations, the unit ball was parameterized by the

(c)

(d)

Fig. 7.6 (c) e = 0; c is increased from –0.3, –0.15, . . ., 0.45 left to right, from top to bottom, k is increased from 0, 2, 4, . . ., 10.
See text for more details. Reproduced from Lovejoy and Schertzer (2007). (d) The same as Fig. 7.6c except that e = 0.75. Reproduced
from Lovejoy and Schertzer (2007).
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integer n (here n = 1) and by the parameter x in the
range –p/2 < x < p/2:

Yðy
00

Þ ¼ 1þ sinðxÞcosðny
00

Þ ð7:67Þ

When n = 1, this is an equivalent parametrization to
Eqn. (7.66) using k. The relation between the two can
be seen since:

rmax=rmin ¼ cot2½ðp=2� xÞ=2
 ¼ 2k ð7:68Þ

so that the structures are particularly “wispy” for the x
near p/2 = 1.57. . . (see especially the bottom row with
x = 1.5: rmax=rmin � 800). In these large x cases, we
can still make out the “signature” of the spiral-shaped
scale function (Fig. 7.7b). While it may seem artificial

(e)

(f)

Fig. 7.6 (e) c = 0; e left to right is –0.5, –0.25, . . ., 0.75. Reproduced from Lovejoy and Schertzer (2007). (f) Same as Fig. 7.6e except that
c = 0.15. In all rows, from top to bottom, k is increased (0, 2, 4, . . ., 10), and the right-hand side shows the corresponding scale functions.
Reproduced from Lovejoy and Schertzer (2007).

7.1 Beyond self-similarity and self-affinity

241



to use such large ratios, remember that in the real
atmosphere a cloud 100 m across has already had a
range of (isotropic) scales of 105; the wisps of a cirrus
would be the result of an even larger range of scales of
anisotropic stretching. Starting with a highly aniso-
tropic unit ball and modelling a 1 km structure could
be considered as an attempt to take into account this
large range of scales that have operated down from a
presumably more isotropic planetary scale.

In Chapter 5 we discussed the fact that in general
the cascades are “unbounded” in the sense that they
produce singularities of arbitrarily high order (this is
the case of the universal multifractals for a � 1, for
example). In this case, a sufficiently large number of
realizations of the process will almost certainly have
singularities which are almost certainly absent on any
single realization. However, some of these very strong
singularities (structures) are only seen very rarely. In
order to simulate these very rare realizations, we
can “help” the cascade by artificially boosting the
values of the subgenerator g(r) (Eqn. (5.78)). The
simulations in Fig. 7.8a have had their single central
subgenerator value g(rc) boosted by a factor N; in the
figure N increases from 8 to 64 by factors of 2 (left to
right). We see that as N increases, the basic scale
function shape appears as a dominant structure out
of the chaos.

7.1.5 Simulations in three dimensions,
rendering with simulated radiative transfer
Moving from two to three dimensions allows us to
obtain much more realistic renditions of clouds by
allowing radiative transfer to be modelled instead of
simply using false colours. The simplest way to extend
the results of the previous sections to three dimensions
is to allow for vertical stratification, but without rota-
tion in the vertical plane, i.e. to usematrices of the form:

G ¼
d r � e 0

r þ e d 0
0 0 Hz

0

@

1

A ð7:69Þ

In any case, 3 � 3 matrices can in general be brought
into this form by appropriate similarity
transformations. In this case, the diagonalizing matri-
ces are:

O ¼
1

2

�ðr þ eÞ�1=2 ðr þ eÞ�1=2 0

ðr � eÞ�1=2 ðr � eÞ�1=2 0
0 0 2

0

@

1

A

O�1 ¼
�ðr þ eÞ1=2 ðr � eÞ1=2 0

ðr þ eÞ1=2 ðr � eÞ1=2 0
0 0 1

0

@

1

A ð7:70Þ

and again we perform a series of coordinate transform-
ations starting with the case of real eigenvalues, a2 > 0:

(a) (b)

Fig. 7.7 (a) Examples of 2D simulations on 512 � 512 pixel grids with a = 1.8, C1 = 0.1, H = 0.333, d = 1, f = 0. Upper left: c = 0.8, e = 2, ls = 512,
x = 1.3 (2k = rmax/rmin � 54). Upper right: c = –2/7, e = 0.1, ls = 32, x = 0.7 (2k � 5). Lower left: c = 0.3, e = 1.2, ls = 32, x = 1.5 (2k � 800). Lower
right: c = 0.3, e = 1.2, ls = 1, x = 1.5 (2k � 800). (b) The scale functions corresponding to Fig. 7.7a.
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�r
ð1Þ ¼ O�1

�r
ð0Þ

xð2Þ

yð2Þ

zð2Þ

0

@

1

A ¼

jxð1Þj1=ð1�aÞ xð1Þ

jxð1Þj

0

@

1

A
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ð7:71Þ

with a2 = r2 – e2 as usual. We now use a spherical
polar coordinate representation:

x ¼ Rsinfcosy
y ¼ Rsinfsiny
z ¼ Rcosf

ð7:72Þ

where y, f are the polar and azimuthal spherical
angles. We can express the next transformation as:

(a)

(b)

Fig. 7.8 (a) Each row shows a different realization of a random
multifractal process with a single value of of the subgenerator g(�r )
(Eqn. 5.78) at the centre of a 512�512 grid replaced by the
maximum of g(r) over the field boosted by factors of N increasing by
2 from left to right (from 8 to 64) in order to simulate very rare events
(a = 1.8, C1 = 0.1, H = 0.333). The scaling is anisotropic with complex
eigenvalues of G, the scale function is shown in Fig. 7.8b. (b)
Contours of the (rotation dominant) scale function used in the
simulations (Fig. 7.8a).
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Rð3Þ

fð3Þ

yð3Þ

0

@

1

A ¼

Rð2ÞY
�

fð2Þ, yð2Þ
	

fð2Þ

yð2Þ

0

B

@

1

C

A
ð7:73Þ

whereY
�

fð2Þ, yð2Þ
	

> 0 is the function specifying the
unit ball; in three dimensions, the unit ball is a func-
tion of y, f. Finally, to get the scale function
k�rk ¼ j�r

ð4Þj ¼ Rð4Þ, we take:

�r
ð4Þ ¼ O�r

ð3Þ ð7:74Þ

The case a2 < 0 is the straightforward extension of the
corresponding 2D result. Again, the normalization
constant NDel = ODel is a nontrivial calculation and
is given in Appendix 7A.2.

In order to be able to understand and control the
shape of the unit ball, we can parametrize it (cf. Eqn.
(7.67) in 2D); a convenient way is:

Y
�

fð3Þ,yð3Þ
	

¼
�

1þsinxycos
�

nyy
ð3Þ
		�

1þsinxfcos nff
ð3Þ
		�

ð7:75Þ

where ny, nf are integers, and the two parameters xy,
xf are chosen to vary the shape of the unit ball. If
needed, extra parameters y0, f0 can be introduced to
rotate the unit ball: replace y by y – y0 and f by f –

f0; for an example of some of the convoluted shapes
that are possible, see Fig. 7.9. Recall that the spherical
polar radius of the unit balls = Y�1 so that as the x

approach p/2, the unit ball becomes divergent (there
is a wider and wider range of scales in the r(0) space:
see Eqn. (7.68) and the examples in Section 7.1.4). As
a final comment about the unit ball parametrization,
in three dimensions, we can separately specify both
the scale of roughly isotropic horizontal sections (the
horizontal sphero-scale, ls) and the scale of roughly
vertical sections, the vertical sphero-scale, lsz.

In order to visually appreciate the effect of varying
some of the (now numerous!) parameters, we refer
the reader to Fig. 7.10 for a rotationally dominant
(a2< 0) series showing top (Fig. 7.10a) and side views
(Fig. 7.10b) of a multifractal simulation of a cloud
liquid water density, along with simulations of ther-
mal infrared (wholly absorbing and emitting radiative
transfer) and visible radiance fields (top view, Fig.
7.10c, and bottom view, Fig. 7.10d; totally scattering
atmospheres, single scattering only; see also the cover
simulation). In Fig. 7.10e we simulate a thermal infra-
red field (emitting and absorbing radiative transfer)
obtained by assuming a linear temperature profile

and constant extinction coefficients (ratios of optical
to cloud liquid water densities). We see that quite
realistic morphologies are possible. In Watson et al.
(2009) and Lovejoy et al. (2009) we give results on
radiative transfer in multifractal clouds with full mul-
tiple scattering (see Box 7.2 for an overview).

In Fig. 7.11 we use more rotationally dominant
examples to simply show the effect of changing the
unit ball on the density field; as the scale functions
become more and more anisotropic (xy approaches
p/2), the structures become more and more
filamentary, wispy. In Figs. 7.12a–7.12f we show for
selected parameters cases of (horizontally) rotationally
dominant simulations with only 16 pixels in the verti-
cal direction, also showing the corresponding thermal
IR and visible fields. As the parameters of the unit ball
(xy, xf) become larger, the contours of the scale func-
tions become thinner, more stretched, and this tends to
break up the structures more andmore. In Figs. 7.13a–
7.13d we show another series with stratification dom-
inant, also showing the effect of changing the vertical
versus horizontal sphero-scale.

7.1.6 Implications of anisotropic
multifractals for the interpretation of data
Contrary to the extreme case of deterministic scale
invariance, statistical scale invariance is almost cer-
tainly broken on every single realization; it is the

Fig. 7.9 A contour of the scale function corresponding to a
single scale; this is a strongly rotationally dominant case with ny = 2,
nf = 1, xy = xf = 1.4, d = 1, c = 0.5, e = 1, f = 0, Hz = 0.8, ls = 64.

Generalized scale invariance and cloud morphology

244



(a)

(b)

Fig. 7.10 (a) The top layers of three-
dimensional cloud liquid water density
simulations (false colours), All have d = 1,
c = 0.05, e = 0.02, f = 0, Hz = 0.555, a = 1.8,
C1 = 0.1, H = 0.333 and x0 = 0.25 and are
simulated on a 256 � 256 � 128 point grid
(a2 > 0; stratification dominant in the
horizontal). The simulations in the top
row have ls = 8 pixels (left column), 64
pixels (right column), xy = 0 (top row),
xy = 3/4 (bottom row). Note that in these
simulations the ls = 8, 64 applies to both
vertical and horizontal cross-sections
(i.e. ls = lsz). (b) A side view of Fig. 7.10a.
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(c)

(d)

Fig. 7.10 (c) The top view of the same clouds
with single scattering radiative transfer; incident
solar radiation at 45� from the right, mean
vertical optical thickness = 50. See colour plate
section.(d) Same as Fig. 7.10c except viewed
from the bottom. See colour plate section.
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(e) Fig. 7.10 (e) Same as Fig. 7.10d except
for a false-colour rendition of a thermal
infrared field (assuming a constant
extinction coefficient and a linear
vertical temperature profile). See colour
plate section.

Fig. 7.11 Simulations of cloud liquid water density with ls increasing by factors of 4 from 1/4 to 64 (right) with xy = 1/2, 1, 3/2 top to
bottom row. All simulations have the same random seed and parameters a = 1.8, C1 = 0.1, H = 0.333, xf = ½, n = 2, d = 1, c = 0.05, e = 0.5,
f = 0 (rotation dominant) the grid is 512�512�16 pixels. The parametrization of the unit ball is from Eqn. (7. 60).



statistical ensemble that is symmetric. The enormous
variability, intermittency, of multifracals makes it
particularly important to have a large database
with a large range of scales and many realizations
so as to average fluctuations and approximate the

theoretically predicted ensemble scaling. In fact, due
to the singularities of all orders (see Chapter 5) the
variability of multifractals is much greater than that
of classical stochastic processes; for example, rare
(extreme) singularities are produced by the process

(b)

(c) (d)

(a)

Fig. 7.12 Simulations of cloud liquid water density (top left). Top right is the corresponding thermal IR field, the bottom left is the top
view, the bottom right is the bottom view. The parameters are a = 1.8, C1 = 0.1, H = 0.333, xf = 1/2, n = 2, d = 1, c = 0.05, e = 0.5, f = 0
(rotation dominant). The grid is 512 � 512 � 16 pixels and xy = 1/4, ls = 1/4. (b) Same as previous but different random seed and
xy = 1/2, ls = 1/4. (c) Same as previous but xy = 1, ls = 1/4. (d) Same as previous but xy = 1/4, ls = 1.
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yet they are almost certainly absent on any given
realization (the second-order multifractal transitions
discussed in Chapter 5). What may be nothing more
than normal multifractal statistical variability can
thus easily be interpreted as breaks in the scaling.

Anisotropy introduces further difficulties for
analysis and parameter estimation. For example, In
Section 6.6 we saw how scaling anisotropy can lead
to spurious scale breaks and exponent estimates.
Now that we have a more general appreciation of
anisotropic scaling, we can return to its effects on
data analysis, showing how – unless it is carefully
taken into consideration – it can readily lead to spuri-
ous conclusions. Rather than giving a purely theoret-
ical discussion, let us consider the analysis of a 1D
transect (Fig. 7.16a). Although this example was ini-
tially developed in the context of bathymetry transects
(Gagnon et al., 2006), it explicitly demonstrates sev-
eral issues that occur in atmospheric analyses.

Fig. 7.16a compares the energy spectra of two
individual transects as well as the ensemble over all
the transects. One of the transects passes through
“Mt. Multi,” the highest peak in the simulated range,
another through a randomly chosen transect not far
away. One can see that the Mt. Multi scaling is pretty
poor; a naive analysis would indicate two ranges with

a break at about 10 pixels with high-frequency expo-
nent b = 2.5, low-frequency b = 1.5 (this is a large
change in spectral slope). Clearly this break has noth-
ing to do with the scaling of the process (which is
perfect except – due to finite grid-size effects – for the
highest factor of two or so in resolution).

In comparison, the randomly chosen transect has
better scaling, but with b � 2 whereas the angle-
integrated spectrum averaged over an infinite
ensemble of realizations has b = 2.17. Even the
average over the transects shows signs of a spurious
break at around 16 pixels (the scale where the
north–south and east–west fluctuations are roughly
equal in magnitude, the “sphero-scale”); this
explains why the theory line does not pass perfectly
through the curve corresponding to the average of
the transects. Clearly, since a priori the physically
relevant notion of scale is not known, the first task
should be to determine it (with the matrix G). How-
ever, this is still a difficult problem (see however
Section 7.2). Obviously, even for fixed parameters,
had we chosen a different random seed, the results
for the individual transects would have been some-
what different (even the average over the transects
would have been a bit different): see the example in
the next section.

(e) (f)

Fig. 7.12 (e) Same as previous but xy = 3/4, ls = 1. (f) Same as previous but xy = 3/4, ls = 64.
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(a)

(b)

(c)

(d)

Fig. 7.13 (a) Three-dimensional cloud
simulations showing the effect of
changing the unit ball with
stratification-dominant G. All have
a = 1.8, C1 = 0.1, H = 0.333, Hz = 0.555,
c = 0.4, f = 0.2, n = 1 xf = 0, ls =
(horizontal size/4). Clouds top left to
right, bottom left to right are labelled
A, B, C, D respectively; cloud A has
lsz = ls, B, C, D have lsz = ls/4. A, B have
x = 1, C, D have x = 0. A, B, C are on
512 � 512 � 32 pixel grids, D is on a
256 � 256 � 128 pixel grid. These
labels are used in the following figures.
(b) The sides of Fig. 7.13a (simulations
A, B, C, D, top to bottom). (c) The top
(single-scatter) radiation field
corresponding to A, B, C, D with mean
optical thickness = 10 and the sun
incident at 45� from the right. See
colour plate section. (d) Cross-sections of
the scale functions of the simulations in
Fig. 7.13a. Top left is the central
horizontal section of the scale function
for clouds A, B; the top right for clouds
C, D. The next down (the top long
section) is a central vertical cross-
section of the of the scale function for
cloud A; below it, for cloud B; the
bottom for clouds C, D (although
cloud D is 256 � 256 � 128 instead of
512 � 512 � 32 pixels).
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Conclusions about broken scaling in Fig. 7.16a are
therefore erroneous. The reason is that the assump-
tion that the scaling is isotropic is false, and therefore
breaks in statistics on 1D subspaces (transects) do not
imply that the full process is not scaling (this is the
same break that was discussed in Section 6.6, Eqn.
6.70). A second reason, discussed a bit further below,
is that there can be systematic biases due to the use of

conditional statistics – such as studying the transect
that happens to pass through a special feature such as
Mt. Multi, rather than a randomly chosen transect.

The strong singularities in multifractals can
lead to quite different morphologies being in close
proximity. This is often interpreted in terms of
nonstationarities corresponding to different processes
at work in different regions, or, at the very least,

(a)

(b)

Fig. 7.14 (a) An example with a = 1.8,
C1 = 0.1, H = 0.333, on a 512�256�128
pixel grid (128 is the thickness). The
parameters are ny = nf = 1, xy = 0.3,
xf = 0.8, c = 0.2, e = 0.1, f = 0.05, Hz =
0.555 with ls = 16, lsz = 4. The upper left
is the liquid water density field, top
horizontal section, to the right is the
corresponding central horizontal cross-
section of the scale function. The bottom
row shows one of the sides (256�128
pixels) with corresponding central part of
the vertical cross- section. (b) The top is
the visible radiation field (corresponding
to Fig. 7.14a) looking up (sun at 45� from
the right); the bottom is a side radiation
fields (one of the 512 � 128 pixel sides),
average optical thickness = 10, single
scattering only. See colour plate section.
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(d)

(c) Fig. 7.14 (c) An example with a =
1.8, C1 = 0.1, H = 0.333, on a
512�512�64 grid (the latter is the
thickness). The parameters are ny = 1,
nf = 2, xy = 0.3, xf = 0.8, c = 0.2,
e = 0.5, f = 0.2 (rotation dominant),
Hz = 0.555 with ls = 128, lsz = 32. The
upper left is the liquid water density
field, top horizontal section, to the
right is the corresponding central
horizontal cross-section of the scale
function. The bottom row shows one
of the sides (512�64 pixels) with
corresponding central part of the
vertical cross-section. (d) The top is the
visible radiation field (corresponding
to Fig. 7.14c), looking up (sun at 45�

from the right); the bottom is a side
radiation fields (one of the 512 � 64
pixel sides), the average optical
thickness = 5, single scattering only.
See colour plate section.
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variations in the parameters of a single basic
model. However, with multifractals such interpret-
ations may well be unwarranted: the basic multifractal
processes are statistically stationary/homogeneous in
the strict sense that over the region over which they
are defined (which is necessarily finite), the ensemble

multifractal statistical properties are independent of
the (space/time) location (and this for any spectral
slope b). Rather than discussing this at an abstract
level, let us see what happens when we analyse a
self-similar 1024 � 1024 multifractal simulation
(Fig. 7.16b).

(b)

(a) Fig. 7.15 (a) In this sequence, we see
the effect of varying the horizontal and
vertical sphero-scales: the left column
two columns are views of the top
cloud liquid water density simulation
with (1st column) ls = 1, (2nd column),
ls = 8, columns 3, 4 are corresponding
side sections, the clouds are
256�256�128 pixels in size. As we
move from top to bottom the vertical
sphero-scale increases from lsz= ls/4
(top) to lsz= ls to lsz= 4 ls (bottom). All
the simulations have a = 1.8, C1 = 0.1,
H = 0.333, d = 1, c = 0.5, e = 2, f = 0, Hz =
0.555, ny = nf = 2, xy = 0.4, xf = 0.75.
Note here that the vertical structure
of the unit ball is strongly anisotropic.
(b) The downward (left two columns)
and side (right two columns)
radiative transfer fields corresponding
to Fig. 7.15a with the sun from the
right at 45� .
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Box 7.2 Radiative transfer in fractal and multifractal clouds

An understanding of cloud and radiation variability and their interrelations over wide ranges of scales is of
fundamental importance in meteorology and climatology. It is also a challenging problem in the physics of
disordered media.

The classical theory of radiative transfer (Chandrasekhar, 1950) is elegant but is only relevant in 1D (“plane
parallel,” horizontally homogeneous) media. Yet the use of 1D models has long dominated the field; this is
because when we turn to horizontally inhomogeneous media, there is no consensus on the appropriate model of
heterogeneity, nor is the transport problem analytically tractable. As a consequence, the effect of horizontal
variability was underestimated, usually reduced to the problem of inhomogeneity of the external cloud/medium
boundaries (e.g. cubes, spheres, cylinders: Busygin et al., 1973; McKee and Cox, 1976; Preisendorfer and Stephens,
1984), with the internal cloud and radiance fields still being considered smoothly varying if not completely
homogeneous. When stronger internal horizontal inhomogeneity was considered it was typically confined to
narrow ranges of scale so that various transfer approximations could be justified (Weinman and Swartzrauber,
1968; Welch et al., 1980).

When the problem of transfer in inhomogeneous media finally came to the fore, the mainstream approaches
were heavily technical (see Gabriel et al., 1993, for a review), with emphasis on comparisons of general-purpose
numerical radiative transfer codes (see the C3 initiative: Cahalan et al., 2005) and the application to huge large
eddy simulation cloud models (Mechem et al., 2002). At a more theoretical level, the general problem of the
consequences of small-scale cloud variability on the large-scale radiation field has been considered using
wavelets (Ferlay and Isaka, 2006) but has only been applied to numerical modelling. As a consequence, these
“3D radiative transfer approaches” have generally shed little light on the scale-by-scale statistical relations
between cloud and radiation fields in realistic scaling clouds (e.g. Marshak and Davis, 2005). Overall, there has
been far too much emphasis on techniques and applications, with little regard for understanding the basic
scientific issues.

The simplest interesting transport model is diffusion; on fractals see the reviews by Bouchaud and Georges
(1990) and Havlin and Ben-Avraham (1987), and on multifractals see Meakin (1987), Weissman (1988), Lovejoy et al.
(1993, 1998) and Marguerit et al. (1998). However, except in 1D (Lovejoy et al., 1993, 1995), diffusion is not in the
same universality class as radiative transport (Lovejoy et al., 1990).

The first studies of radiative transport on fractal clouds (with a constant optical density on the support) were
those by Gabriel et al. (1986, 1990), Cahalan (1989, 1994), Lovejoy and Schertzer (1989), Davis et al. (1990), Lovejoy
et al. (1990), Barker and Davies (1992) and Cahalan et al. (1994). These works used various essentially academic
fractal models and focused on the (spatial) mean (i.e. bulk) transmission and reflectance. They clearly showed that
(1) fractality generally leads to nonclassical (“anomalous”) thick cloud scaling exponents, (2) the latter were strongly
dependent on the type of scaling of the medium, and (3) the exponents are generally independent of the phase
function (Lovejoy et al., 1990). Some general results applicable to multifractal clouds may be found in Naud et al.

(1997) and Schertzer et al. (1997).
Some general theoretical results exist for conservative cascades (H = 0), both for single scattering for log-normal

clouds (a = 2, Lovejoy et al., 1995) and for more general (a < 2) “universal” multifractal clouds which are dominated
by low-density “Lévy holes” where most of the transport occurs (Watson et al., 2009). The latter show how to
“renormalize” the cloud density, to relate the mean transmission statistics to those of an equivalent homogeneous
cloud. In Lovejoy et al. (2009) these are extended (numerically) to H > 0 and with multiple scattering including the
case of very thick clouds. By considering the (fractal) path of the multiply scattered photons, it was found that due to
long-range correlations in the cloud, the photon paths are “subdiffusive,” and that the corresponding fractal
dimensions of the paths tend to increase slowly with mean optical thickness. Reasonably accurate statistical
relations between N scatter statistics in thick clouds and single scatter statistics in thin clouds were developed,
showing that the renormalized single-scatter result is remarkably effective. This is because of two complicating
effects acting in contrary directions: the “holes” which lead to increased single-scatter transmission and the
tendency for multiply scattered photons to become “trapped” in optically dense regions, thus decreasing the
overall transmission.

All results to date are for statistically isotropic media. For more realism, future work must consider scaling
stratification as well as the statistical properties of the radiation fields and their (scaling) interrelations with cloud
density fluctuations.
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We can now consider the “regional” variability in
the spectral exponent b by dividing the simulation
into 8 � 8 squares, each with 128 � 128 pixels. Fig.
7.16c (left) shows the histogram of the 64 regression
estimates of the compensated spectral exponent Db:
the mean is close to zero as expected, but we see a
large scatter, implying that there are some individual
regions having Db as low as 1.2, some as high as 2.7;
the standard deviation is � 0.3. As we shall see later,
this would imply a random variation in local esti-
mates of DH of � 0.3/2 = � 0.15 (which is of the
order of the difference in the H of the topography
observed between continents and under oceans,
although with this spread in Db, DH will decrease as
the size of the dataset increases). In Fig. 7.16c, we can
also see the large variations in the log prefactors
(log10E1; EðkÞ ¼ E1k

�b). If this is interpreted in terms
of roughness, the roughest of the 64 regions has about
103 times the variance of the smoothest. While it
would obviously be tempting to give different phys-
ical interpretations to the parameters in each region,
this would be a mistake. On the other hand, this does
not imply that the roughest and the smoothest would
be associated with identical erosional, orographic or
other processes; the point is that in a full coupled
model these processes would be also be scaling and
would have correlated variations. Fig. 7.16 also dem-
onstrates the fact that if data from special locations
(such as near mountains) are analysed we may expect
systematic biases in our statistics and parameter
estimates.

7.2 GSI data analysis

7.2.1 GSI in Fourier space: determining G
In this section, we consider how to empirically
estimate G. In the cases considered up until now
(stratification), the eigenvectors were orthogonal
and their directions known (horizontal, vertical)
and it sufficed to make standard 1D analyses
along these axes. Alternatively, in some cases, the
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Fig. 7.16 (a) A simulated bathymetry transect. The parameters are

G ¼
0:7 �0:02

0:02 1:3

� �

, α = 1.9, C1 = 0.12, H = 0.7. The energy spectra

of the transect passing through “Mt. Multi” (the highest peak in the
simulation) and through another (randomly chosen) transect are
shown as well as the ensemble over all the transects. Reproduced
from Gagnon et al. (2006). (b) A self-similar multifractal (with some
trivial anisotropy) simulated on a 1024 � 1024 point grid with
observed universal multifractal parameters (H = 0.7, C1 = 0.12,
α = 1.9); the spectral exponent is β = 1 + 2H – K(2) = 2.17.
Adapted from Gagnon et al. (2006). (c) Left: after dividing Fig. 7.16a
into 64 128 � 128 squares, we calculated the isotropic spectrum in

each, and fit the slope to the lowest factor 16 in scale (we remove
the highest factor 4 due to numerical artefacts at the highest
wavenumbers). The resulting Δβ is given in the left; it is twice the
ΔH, showing that H can vary by 0.5 over a single region. (right):
A histogram of the log10E1 (E1 is the spectral prefactor: E(k)=E1k

�β)
showing variation of a factor of 1000 from the smoothest to
roughest subregion. Adapted from Gagnon et al. (2006).
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horizontal direction was sufficiently isotropic that
angle integration/averaging (for examples see Figs.
1.8b, 1.10b, 1.12) was sufficient to reduce the system
to a nearly self-similar form. However, assumptions
of isotropy can be dangerous as shown by the spec-
tral analyses in Section 6.6, where such a reduction
led to misinterpretations due to the horizontal
stratification!

We now consider the more general case where the
directions are not known. Recall the qth-order struc-
ture functions (Sq(D�r)) of anisotropic but scale invari-
ant multifractal fields (f(�r)):

SqðDrÞ ¼ hjf ð�rÞ � f ðDr þ�rÞj
qi ð7:76Þ

This is the spatial version of Eqn. (2.71). The structure
function satisfies:

SqðTlDrÞ ¼ Sqðl
�GDrÞ ¼ l�xðqÞSqðDrÞ ð7:77Þ

where x(q) = qH – K(q) is the structure function
exponent; this is a generalization of the isotropic
and self-affine statistics (Section 6.1.7). From Eqn.
(7.77), we can see clearly the basic difficulty in
empirically testing for scaling and estimating the
parameters: in order to estimate the statistical par-
ameters x(q) (i.e. H, K(q), or for universal multi-
fractals, H, C1, a), we need to know G; in order to
determine G, we need to know x(q). In the simplest
case, we can assume that G is a matrix so that the
generator of the anistropy is constant over our
system; in the next section, we show that this may
be overly restrictive: G is generally nonlinear, at best
admitting linear approximations over limited spatial
domains.

Consider the problem of quantitatively under-
standing different cloud types, or land surface
morphologies. These fields are rife with anisotropic
structures, textures, and the latter vary over huge
ranges of scale. In both cases, isotropic spectra yield
excellent scaling; for example, Fig. 7.17a shows an
example of a cloud radiance field; Fig. 7.17b shows
its power spectral density (P(k), Eqns. (2.109),
(6.55)), which displays somewhat elliptical
structures, aligned (as expected) roughly perpen-
dicular to the real-space structures in Fig. 7.17a. In
spite of this clear anisotropy, the angle-integrated
(isotropic) spectrum (Eqns. (2.109), (6.55)) is quite
accurately scaling (Fig. 7.17c). This indicates on the
one hand that we can use isotropic analyses to
estimate x(q); it also suggests using spectral

densities as a convenient way to investigate the
anisotropies and estimate G.

Before continuing, we first note that by comparing
the functional Eqn. (6.62) with the scale function Eqn.
(6.26), we see that the general solution is:

SqðDrÞ / kDrkxðqÞ ð7:78Þ

where the scale function is symmetric with respect
to the G: kl�GDrk ¼ l�1kDrk. If we consider only
q = 2, then we have the following relations:

S2ðDrÞ ¼ h½f ð�rÞ � f ðDr þ�rÞ

2i ¼ 2½Rð0Þ � RðDrÞ


ð7:79Þ

where RðDrÞ ¼ hf ð0Þf ðDrÞi is the autocorrelation
function and we have assumed translational invari-
ance, i.e. S2(Dr) is independent of �r and set �r = 0. We
therefore have:

S2ðDrÞ ¼ 2

ð

dk
0

�

1� eik
0
�Dr

�

Pðk
0

Þ ð7:80Þ

(see Eqn. (2.72) with h ef ð�kÞ
ef ð�k

0Þi ¼ Pð�kÞdð�kþ �k
0Þ,

see Eqn. (2.104)). We now introduce eTl ¼ l
eG , which

is the dual Fourier-space scaling operator and the dual

generator G̃ that corresponds to Tl and G. It is defined

such that ifDr0 ¼ TlDr and k
0
¼ eTl�k, the scalar prod-

uct �k�Dr ¼ k
0
�Dr0 is invariant under scale changes.

This implies that the Fourier-space generatorG̃ is:

G̃ ¼ GT ð7:81Þ

and with the help of Eqns. (7.77) and (7.78) one can
rewrite Eqn. (7.80):

S2ðDr Þ ¼ lxð2ÞS2ðTlDrÞ

¼ 2lxð2ÞlDel

ð

d�k 1� ei
˜Tl�k�TlDr

	

PðT̃l�kÞ; k
0

¼ T̃l�k
�

ð7:82Þ

where we have used the fact that:

dk
0

¼ ðdet T̃lÞd�k ¼ lTr
˜G
T

d�k ¼ lDeld�k ð7:83Þ

Comparing the right-hand side of Eqn. (7.82) with
Eqn. (7.80), and using T̃l�k�TlDr ¼ �k�Dr, we see that:

lxð2ÞþDel

ð

d�k
�

1� ei�k�Dr
	

PðT̃l�kÞ

¼

ð

dk
0
�

1� ei
0

�k �Dr
	

Pðk
0

Þ ð7:84Þ

since the k0 on the right is simply a variable of inte-
gration, we can drop the primes and obtain:
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Fig. 7.17 (a) A cloud radiance field in the thermal IR from the NOAA AVHRR satellite off the coast of Florida (512 � 512 pixels, 1.1 km
resolution). Various cloud morphologies are visible, although there is a dominant southwest/northeast alignment of large-scale structures. (b)
The power spectrum P(k) of Fig. 7.17a, showing Fourier-space structures roughly perpendicular to the real-space ones in Fig. 7.17a. Reproduced
from Schertzer and Lovejoy (1996). (c) The isotropic power spectrum of the radiances displayed in Fig. 7.17a (the spctral density field, Fig. 7.17b,
integrated around circular annuli, cf. Eqn. (6.58)). The spectral slope determined by linear regression is given by b = 1.77. (d) A multifractal FIF
model simulation with c = –0.1, f = –0.15, e = 0.15, d = 1. Compare this with Fig. 7.17a and notice that much of the NE/SW texture/
morophology is reproduced, but that there are clearly regions of Fig. 7.17a where the morphology is different and where the simulation
(which assumes the type of anisotropy is constant across the region) does a poor job. All reproduced from Schertzer and Lovejoy (1996).
See colour plate section.

7.2 GSI data analysis

257



PðT̃l�k Þ ¼ l�sPð�kÞ; s ¼ xð2Þ þ Del ð7:85Þ

The solution of this functional equation is:

Pð�kÞ / k�kk
�s ð7:86Þ

The precise relation between the Fourier scale func-
tion (Eqn. (7.86)) and the real-space scale function
(Eqn. (7.78)) is thus:

kDrk
xð2Þ
R ¼ 2

ð

d�k
�

1� ei�k�Dr
�

k�kk
�s
F ð7:87Þ

where we have temporarily added the subscripts R
and F for real space and Fourier space respectively,
to underline the fact that the Fourier and real-space
scale functions are generally different.

7.2.2* Estimating G with the scale
invariant generator technique
We now present a technique to test the hypothesis of
generalized scale invariance and determine the param-
eters of the scale-invariant generator and the balls that
best describe the scaling field. This technique is an
improvement on those described in Pflug et al. (1993),
but it is more complex to implement than the more
geometric one discussed in Beaulieu et al. (2007). It is
important to remember that the scaling will not hold
exactly on any individual realization, but only when
averaged over an ensemble of realizations with the same
generator and family of balls; there will be random
variability about the theoretical ensemble mean spectral
density P(k) (Fig. 7.17b). Also, the anisotropy will
change from place to place and from time to time, and
thus G itself presumably varies stochastically from real-
ization to realization (e.g. scene to scene, for satellite
imagery). An attempt to empirically estimate the
ensemble average by averaging many arbitrary realiza-
tions would therefore result in a smearing of the par-
ameters (since each realization would have a different
generator, see Ch. 8, 9 for analysis of the ensemble
statistics). Therefore, we only analyze one realization
at a time, and fluctuations about the ensemble average
contours of the spectral energy density are taken into
account by using statistical regression techniques.

This statistical regression is nonlinear and
involves fitting the theoretical spectral density, Pt(k)
(the ensemble average spectral energy density gener-
ated from the GSI parameters), to the N data points,
P(ki) (the spectral energy density of the real-space
data estimated at N discrete wavenumbers, ki). Here,

Ptð�kÞ ¼ P1k�kk
�s, where P1 is the value of the spectral

energy density on the unit ball. Usual statistical pro-
cedures involve the method of least squares, where the
parameter estimates are determined by minimizing
an error function E2 (not to be mistaken with the
energy spectrum E(k)), which we take here as:

E2ðG, B1, P1, sÞ

¼
1

N

X

i

½logPð�kiÞ � logPtð�ki,G, B1, P1, sÞ

2 ð7:88Þ

where the full functional dependence of P has been
included. This common quadratic error function is
somewhat arbitrary, and others may be defined. After
some experimentation, we chose the above definition
based on the difference of logarithms since for power
laws this uniformly weights the different octaves of
scale. G is a function of c, f and e (since by convention
we can take d = 1) and B1 is a function of the unit ball
parameters. The parameter space therefore involves c,
f, e, s, P1, as well as the parameters determining B1.
Searching for the absolute minimum of E2 in such a
large space is computationally prohibitive. Therefore,
it is necessary to make some approximation to the
error function. The Monte Carlo differential rotation
method (Pflug et al., 1993) attempted to do this by
estimating the ball parameters before searching the
parameter space of G (c, f, e). However, this is not an
ideal solution since the statistical scatter of P led to
errors in the estimates of B1, which introduced
important biases in the estimates of G.

The scale-invariant generator technique (SIG:
Lewis et al., 1999) has the significant advantage of
being able to estimate the more fundamental G with-
out prior knowledge of B1. It reduces the parameter
space to four dimensions (c, f, e, s) without introdu-
cing errors due to the prior estimation of other par-
ameters. If the anisotropy is not extreme, it is possible
to obtain a good prior estimate of s from the isotropic
energy spectrum (s = b + 1; see Pflug et al., 1993) and
thus reduce the dimension of the parameter space
only to (c, f, e). This method was used in the analysis
below, but in general the full four-dimensional par-
ameter space c, f, e, s must be considered.

To see how SIG eliminates any reference to B1,
denote by k1(y) a unit vector parametrized by y (the
polar angle is convenient). Then we can parametrize
all vectors, k, using l1 and y instead of the usual
Cartesian coordinates. This can be seen by
writing �kðl1, yÞ ¼ Tl�k1ðyÞ and noting that all the
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k lie on one and only one trajectory which
originates from a single unit vector (y parametrizes
the trajectory and l1 the points along the
trajectory). Further dilations by a factor l2 (i.e.

�kðl2l1, yÞ ¼ eTl2�k1ðl1, yÞ ¼ lGe2 �k1ðl1, yÞ) obey:

P
�

l2
Ge
�kðl1, yÞ

	

¼ l2
�sP
�

�kðl1, yÞ
	

ð7:89Þ

(from Eqn. (7.85)). Since l2 and k(l1, y) are arbitrary,
this equation shows (with taking logarithms) that for
all l and k

log PðlGe�kÞ þ s log l� log Pð�kÞ ¼ 0 ð7:90Þ

must be satisfied, i.e. all pairs of points along trajec-
tories will (on average) satisfy Eqn. (7.90). The basic
approximation we make is simply to replace ensem-
ble averages by averages over trajectories. That is, we
find Ge such that the quantity in Eqn. (7.90) averaged
over trajectories is as close to zero as possible. The
SIG error function used in the analysis is thus defined
as:

E2ðGe, sÞ ¼
1

n

X

i, j

½log Pðli
Ge
�kjÞ þ s logli � log Pð�kjÞ


2

ð7:91Þ

The sum is over all the data points, P(kj), and all the
possible (discrete) scale ratios, li, which form the n
unique pairs ½PðliGe�kjÞ, ð�kjÞ
, i.e. E

2 compares all pos-
sible pairs of data points which lie along common
trajectories. The power of the SIG error function can
be seen in two ways. First, since there is no reference
to the unit ball in Eqn. (7.91), no information
concerning it is necessary to compute Ge. Second,
since it is expected that we will not need all the
pairs to obtain adequate statistics, we can simply
choose li and kj, from which l2

Ge
�kj can be easily

computed, and thus a transcendental equation
need not be solved.

Since it is not possible to analytically solve for the
minimum of E2, it is necessary to consider E2 as a
continuous function of the four parameters that
describes a four-dimensional hypersurface. The par-
ameter space must be searched for the appropriate
minimum (i.e. E2 must be found numerically at inter-
vals in parameter space to trace out the behaviour of
the hypersurface). In general, E2 can be a complicated
function with multiple extrema. Therefore, if the
absolute minimum is to be found, the intervals
must be fine enough such that the estimate of

the hypersurface exhibits the same extrema. The
hypersurface, however, is expected to be continuous
only when an infinite number of independent pairs is
used. Since this would require knowledge of P over an
infinite range of scales, the actual explicit values of E2

are expected to be statistically scattered around
the theoretical continuous hypersurface. Due to
these high-frequency fluctuations, a function is fit to
the explicit values of E2 in an attempt to estimate the
continuous hypersurface. The estimated minimum of
E2 can then be found by calculating the minimum of
the fitted function.

It is important to note that Pðl2Ge�kjÞ and Pð�kjÞ are
data points (i.e. random variables) and therefore both
will fluctuate about their average values. This will
cause the minimum variance (the minimum value of
E2) to be larger than the case when only one data
point is involved. However, it should be possible to
compensate for this by use of the greater number of
pairs that is available. There is a complication in that
the fluctuations of the data points will be more vari-
able than those described by multivariate Gaussian
distributions. Therefore, there is no rigorous theoret-
ical justification for using the method of least squares.
However, it is still plausible to assume that the behav-
iour of the hypersurface near the minimum will not
be substantially altered if the fluctuations are not too
violent. Logarithms of P were used in E2 since numer-
ical tests showed that taking the logarithm has the
effect of decreasing the variability. The results shown
below justify the use of the method of least squares
and indicate that the bias due to taking the logarithm
was small.

Ge can then be estimated by searching a three-
dimensional parameter space without introducing
errors due to the prior estimation of other parameters
(with the exception of s, which can usually be accur-
ately estimated using b). The minimization of the
error function is still challenging because the param-
eter space is still large (even if only for c, e, f), and
each evaluation of the error function is numerically
costly. Lewis (1993) and Lewis et al. (1999) give tech-
nical details

7.2.3 Estimationof theGSIball parameters
The next step in the scale-invariant generator tech-
nique is the estimation of a family of balls that
corresponds to a generalized scale compatible with
the generalized dilation/contraction defined by the
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estimated generator. As already mentioned, unique-
ness of such a family is not expected. Since the gener-
ator has already been determined, it suffices for any
one member of the family of balls to be found, after
which the whole family can be generated. Thus, the
estimation procedure consists of finding the param-
eters that describe a unit ball. For simplicity, the balls
will be approximated by the second- or fourth-order
bivariate polynomials, respectively. (Actually this
parametrization seems adequate for clouds, but other
(perhaps singular) parametrizations may be needed
for other fields such as ice or earthquakes which are
characterized by straight-line-like structures.) The
relevant parameter space will therefore be three- or
five-dimensional.

Unlike the generator parameters, the ball param-
eters may be found using an analytic method. The ball
parameters may be found by fitting a curve of the
appropriate form to a level-set of the spectral energy
density. It was stated that the large fluctuations about
the ensemble average contours cause undesirable
errors in the parameter estimates. Ideally, the spectral
power density, P, could be smoothed before the fitting
procedure. However, conventional smoothing (e.g.
averaging adjacent data points) causes nonuniform
spreading of the contours of P, and consequently the
smoothed field will not be described by the same GSI
parameters as the actual P.

Assuming that the estimates of the generator
parameters, found using the error function E2, are
reasonably accurate, they can be used to “enhance”
the contours of P without affecting the scaling of
the field. Regardless of this assumption, fitting a curve
to a level-set of the enhanced P will find the best
estimate of a unit ball given the estimated generator
parameters.

The enhancing technique consists of applying a
running average to the data points that lie on the
same trajectory. The same principle that was used
for E2 is implemented again, i.e. the fact that the
amplitude of any two data points on the same trajec-
tory will be on average related by the scaling:

P
�

lGe
�kðyÞ

	

¼ l�sP
�

�kðyÞ
	

ð7:92Þ

As before, an approximation is made such
that only M data points are used in the running
average. That is, to generate the enhanced P,
Pen(kj), the amplitude of each data point, P(kj), is
replaced by

Penð�kjÞ ¼
1

M

X

M

i¼1

lsi Pðli
Ge
�kjÞ ð7:93Þ

where li are a series of dilation factors. It can be seen
from the results that the enhancing technique has a
substantial smoothing effect (see bottom left of Figs.
7.18, 7.19). The parameters of a unit ball, B1, at some
chosen P1, were found by fitting the appropriate poly-
nomial to a levelset of Pen(kj).

Here, the parameters of a unit ball, B1, at some
chosen P1, were found by fitting a quadratic or
quartic polynomial curve to a level-set of P(kj). If
increased statistics are required, the parameters of
several such balls (by choosing several Pi) can be
estimated and transformed (with the known
generator parameters) to some arbitrary scale, where
they can be averaged. Fig. 7.18 shows the result on a
simulation with known parameters, and Fig. 7.19
shows the result on an AVHRR cloud picture (see
Lewis et al., 1999, for more examples).

7.2.4 GSI, cloud texture, morphology
and type
The multifractal nature of clouds has implications
for cloud formation, the earth’s radiation budget, cli-
mate and weather. From a meteorological perspective,
the possibility of classifying cloud types from within a
quantitative framework such as that provided by GSI,
rather than by visual observation and phenomenology,
is seductive. Accordingly, a set of GSI analyses were
performed on a series of visible-light AVHRR satellite
cloud images. These images were taken by the NOAA-
9 satellite off the coast of Florida, longitude 70� Wand
latitude 27.5� N, during February 1986. The images
analyzed were 512 � 512 pixel AVHRR channel 1,
visible-light images with wavelength 0.5–0.7 mm. The
range of scales was 1.1–560 km.

These images were previously analyzed (Tessier
et al., 1993) and were shown to have good isotropic
spectral scaling. An example of the scaling of one of
these images is given in Fig. 7.17c. We reduced these
images to sixteen 256 � 256 pixel images with fairly
homogeneous cloud types (according to a profes-
sional meteorologist) and analyzed their GSI param-
eters. The results are shown in Table 7.1 (see Pecknold
et al., 1996, for more details).

Some amount of clustering of the parameters by
cloud type may be noted, with cumulus having a2 < 0
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Fig. 7.18 Real-space (top left), spectral
energy density (top right), enhanced
spectral energy density (bottom left)
and spectral energy density with
estimated GSI contours (bottom right).
This is for a simulation with parameters
s = 2.64, c = 0.1, f = 0.1, e = 0.5; the
measured parameters are s = 2.63,
c = 0.05, f = 0.08, e = 0.51. Reproduced
from Lewis (1993). See colour plate
section.

Table 7.1 GSI parameters of different cloud images with dominant cloud type indicated

Cloud type b (slope) c f e a

Cirrus 1.92 0.12 0.0 0.0 0.12

Cirrus 1.77 0.67 0.0 0.0 0.67

Cirrus 1.57 –0.25 0.0 0.0 0.25

Altocumulus 1.88 0.08 0.0 0.0 0.08

Cumulus 1.04 –0.09 0.05 –0.2 0.17i

Cumulus 1.21 0.0 0.0 0.05 0.05i

Cumulus 1.04 –0.15 –0.18 0.33 0.23i

Altostratus 1.91 –0.12 0.0 0.0 0.12

Stratus 1.79 0.04 0.0 –0.05 0.03i

Stratus 1.68 0.05 0.0 0.0 0.05

Stratus 1.65 0.06 0.0 0.0 0.06

Stratus 1.60 –0.15 0.0 0.0 0.15

Stratus 1.84 0.26 0.0 0.0 0.26

Nimbostratus 1.88 0.24 0.0 0.0 0.24

Mesoscale convective complex 1.56 � isotropic

Mesoscale convective complex 1.83 � isotropic
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(rotation dominant) and cirrus and stratus generally
having little rotation, stratification dominant. Never-
theless, it is obvious that the large parameter space
involved in GSI requires that a large number of
images of varying cloud types be analyzed to draw
further conclusions. However, before embarking on a
massive analysis project, as we discuss in the next
section, the extension of linear GSI to nonlinear GSI
is probably necessary, since different types of anisot-
ropy appear to frequently coexist in different regions
of individual cloud radiance fields.

7.3 Spatially varying anisotropies,
morphologies: some elements
of nonlinear GSI

7.3.1 The limitations of linear GSI
Linear GSI allows the anisotropy to vary as a function
of scale; this already opens up rich possibilities for
simulating cloud and other geophysics textures,

morphologies. However, given the great diversity of
morphologies, it seems obvious that a single G cannot
be valid over more than a local region of the earth.
Furthermore, the latter and its atmosphere are not vector
spaces, but only manifolds, i.e. local vector spaces.
A visual confirmation of that can be seen by comparing
Fig. 7.17a with Fig. 7.17d; the simulation made with the
best-fit G and unit ball parameters. While the basic
“texture” and large-scale orientation and elongation of
structures in the NE/SW direction is plausibly repro-
duced (remember that at best they are different realiza-
tions of the same random process with the same G, B1,
a, C1, H), there are nevertheless significant differences
which appear to correspond to other G ’s.

One way to attempt to quantitatively examine the
spatial uniformity of G is to estimate S2(Dr) locally
from the data. In Fig. 7.20a we show a satellite infra-
red image; in Fig. 7.20b we show the corresponding
contours of log S2(Dr) calculated over sub-areas each
with 64 � 64 pixels. It is obvious that the orientations
as functions of scale are not constant (although a fair

Fig. 7.19 In real space (top left),
spectral energy density (top right),
enhanced spectral energy density
(bottom left) and spectral energy
density with estimated GSI contours
(bottom right). From AVHRR cloud
pictures taken at visible wavelengths;
estimated parameters are s = 2.34,
c = –0.05, f = 0.12, e = –0.12.
Reproduced from Lewis (1993).
See colour plate section.
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bit of the variability is statistical, i.e. it is due to the
fact that we have only a single realization, not an
ensemble average). Fig. 7.20c shows an analogous
analysis of a topography from a 1 km resolution
digital elevation model; we come to the same conclu-
sion: the G matrix varies as a function of spatial
location. This conclusion explains why the SIG tech-
nique has not been applied more widely on cloud or
topographic data: while the technique works quite
well for numerical simulations with fixed G, it does
not always give consistent results when applied to the
data because G is not always uniform enough across
the image. If one attempts to avoid the problem by
considering G to be constant only over small section,
then the statistics become too poor to accurately
estimate G. It seems that the spatial variability of G
must be taken into account to understand real-world
morphologies. Presumably, realistic GSI models will
be based on stochastic generators (see Schertzer and
Lovejoy, 1991, 2011, for examples).

7.3.2 The generator of the infinitesimal
scale change g(x) and nonlinear GSI
To go beyond linear GSI whose generator G is a fixed
matrix, one first considers infinitesimal scale
transformations; we will consider reductions of scale
by a finite Dl and then take the small-scale limit.

Consider the vector rl obtained by reducing the
unit vector by a scale ratio l:

�rl ¼ l�G
�r1 ð7:94Þ

In order to change the scale of the vector rl by Dl, we
need to reduce it by a scale ratio 1 + Dl/l:

�rl þ Drl ¼ 1þ
Dl

l

� ��G

�rl ð7:95Þ

Hence dropping the indices and taking the limit Dl
! dl we obtain:

d�r ¼ �
dl

l
G��r ð7:96Þ

The nonlinear generalization of this is obtained by
introducing the infinitesimal (generally nonlinear)
generator

�
gð�rÞ:

d�r ¼ �
dl

l
gð�rÞ ð7:97Þ

Linear GSI is the special case where
�
gð�rÞ is linear and

G is therefore the (fixed) Jacobian matrix of
�
g:

Gij ¼
∂gi

∂xj
ð7:98Þ

where, as usual, r = (x1, x2, x3). To keep closer links to
the linear case, this can be written in terms of the
infinitesimal operator Gop, defined as:

Gop�r ¼ gð�rÞ ð7:99Þ

so that:

d�r ¼ �
dl

l
Gop�r ð7:100Þ

This can (at least formally) be integrated to obtain:

�rl ¼ l�Gop
�r1 ð7:101Þ

(r1 is a unit vector, rl is a unit vector reduced by a
factor l). In this way we can keep the power-law
notation for the scale-change operator Tl:

Tl ¼ l�Gop ð7:102Þ

For any vector, Tl increases scale by a factor l, and
therefore, as usual, the scale function has the basic
property:

kTl�rk ¼ l�1k�rk ð7:103Þ

We can now obtain the basic equation for the scale
function. Consider the scale of a vector reduced from

(a)

Fig. 7.20 (a) An infrared satellite image from a NOAA AVHRR
satellite at 1.1 km resolution, 512 � 512 pixels.
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(c)

(b) Fig. 7.20 (b) Contours of S2(Δr) estimated
for each 64 � 64 pixel box from the image in
Fig. 7.20a. (c) S2(Δr) for each 64 � 64 pixel box of
a 1024 � 1024 digital elevation map of the
topography over part of the continental US at
1 km resolution.
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scale l to scale l + Dl, as above by the reduction
factor (1 + Dl/l). The basic scale function equation
kTl�rk ¼ l�1k�rk becomes:
�

�

�

�

�

1þ
Dl

l

� ��Gop

�r

�

�

�

�

�

¼ 1þ
Dl

l

� ��1

k�rk ð7:104Þ

If we now perform Taylor series expansions and take
the limit Dl ! 0, and using Gop = g(r), we obtain the
basic equation for the scale function:

gi
∂

∂xi
k�rk ¼ k�rk ð7:105Þ

(summing over the indices i), or in vector form:
�

�
gð�rÞ�r

	

k�rk ¼ k�rk ð7:106Þ

In the special case of linear GSI this yields:

�r
T �GT �rk�rk ¼ k�rk ð7:107Þ

As expected, to solve this partial differential equation
for the scale function, we can use the same series
of transformations of variables (e.g. Eqns. (7.55),
(7.57) for a2 > 0 etc.; Section 7.1.3) to reduce
Eqn. (7.107) to:

∂

∂ logRð2Þ
logk�rk ¼ 1 ð7:108Þ

whose general solution is:

k�rk ¼ Rð2ÞY
�

yð2Þ
	

ð7:109Þ

where R(2) is the polar coordinate representation of
(x(2),y(2)) and where Y (an arbitrary function of
angle) here appears as a function of integration.

7.3.3 An example of local scales
in quadratic GSI
In order to obtain the scale function for vectors Dr
centred at a point �rc: D�r = �r��rc, we must solve the
scale function equation for Dr instead of r, as well as
to use gcðDrÞ ¼ �

gðrc þ DrÞ �
�
gðrcÞ instead of

�
gð�rÞ.

Following the procedure in Eqns. (7.94)–(7.106), the
equation corresponding to Eqn. (7.106) but for the
“local” vectors Dr is:
�

g
c
ðDrÞ�r

	

kDrk ¼ kDrk;

Dr ¼ �r��rc;�
g
c
ðDrÞ ¼

�
gð�rþ DrÞ �

�
gð�rcÞ ð7:110Þ

A quasi-linear study would correspond to using a
second-order Taylor expansion of gc about the point
rc = (xc, yc):

gc, iðDrÞ ¼
�

Gðrc�Þ�Dr
	

i
þ DrT �AðiÞ�Dr þ OðDrÞ3

ð7:111Þ

where:

GðrcÞi, a ¼
∂gi

∂xa

�

�

�

�

�

r¼rc

; A
ðiÞ
ab ¼

1

2

∂
2gi

∂xa∂xb

�

�

�

�

�

r¼rc

ð7:112Þ

The basic behaviour of the local scale functions
(near the point rc) for small enough scales is thus
given by linear GSI with GðrcÞ (Eqn. (7.112)) com-
bined with quadratic and higher-order corrections as
indicated.

It turns out, however, that thanks to a theorem by
Poincaré we can do somewhat better than this. If g is a
nonlinear polynomial of order r, then, around a fixed
point, a nonlinear polynomial generator of degree r
can be reduced (to within errors of degree > r) to a
linear generator by a (nonlinear) transformation of
variables:

r0 ¼ �rþ �Hð�rÞ ð7:113Þ

where H is a polynomial function of degree r satisfy-
ing a “homological” equation. Given a nonlinear GSI
system, we can thus effectively reduce it to a linear
system by the above nonlinear transformation of
variables; we need only determine the function H by
solving the “homological equation”:

∂Hi

∂xj
Gjkxk � GikHk ¼ gi ð7:114Þ

(this is the Poisson bracket for the fields H, Gx).
Except in certain special cases (“resonances”) this
equation has a unique solution.

As an example of how this works, consider the
nonlinear function:

gxðx, yÞ ¼ x þ ay2

gyðx, yÞ ¼ y þ ax2
ð7:115Þ

chosen because it has separate regions where
the linearization has real and complex values;
we obtain:

GðrcÞ ¼
1 2ayc

2axc 1

� �

ð7:116Þ
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where GðrcÞi, a ¼ ∂gi=∂xaj
�r ¼�rc

and with the critical
parameter a ¼ 2a

ffiffiffiffiffiffiffiffi

ycxc
p

which is real in the positive
and negative quadrants (stratification dominance),
but is imaginary in the other two (rotation
dominance).

Fig. 7.21a shows the result of numerically inte-
grating Eqn. (7.115) for five unit balls symmetrically
placed on the corners of a square centred at the
origin, with an additional ball centred at the origin,

and Fig. 7.21b shows the corresponding linear GSI
approximation. While the smaller balls are well
approximated by linear GSI, the larger ones are quite
nonlinear. Fig. 7.21c now shows the result of apply-
ing Poincaré’s theorem to the scale function around
the point (16,0): linear GSI combined with a quad-
ratic change in variables; the result is valid to third
order. Note that at large scales the balls “cross” so
that the scale function is no longer unique; the
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Fig. 7.21 (a) Unit circles are blown up by a factor of 32 in
10 uniform logarithmically placed intervals. The balls are centred
at the origin and at the corners of a square 32 on a side, with the
parameter a = 0.02. (b) Linearization of Fig. 7.21a. Due to special
symmetry, no rotation occurs for xy < 0. (c) The application of
Poincaré’s theorem for local scale functions about the point (16,0):
the paler (rounded at bottom) is the exact series of scale function
contours where the darker (more pointed at bottom) is the
approximation using linear GSI with a quadratic transformation
of variables, errors are of cubic order.
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(c)(a)

(b)

Fig. 7.22 (a) The (spiral-shaped) scale
scalar h function used to obtain g

(Eqn. (7.120)). The false colours indicate
the relative values (as does the height).
(b) The set of local scale functions
displayed according to their relative
positions obtained from the spiral-
shaped scalar h function in Fig. 7.22a
using a combination of linear GSI with
a quadratic transformation of variables
to obtain functions accurate to cubic
order in scale. (c) A nonlinear GSI
multifractal simulation based on the
spiral scale function indicated in Figs.
7.22a, 7.22b. The sphero-scale was held
constant at 8 pixels, C1 = 0.1, a = 1.8,
H = 0. It can be seen that the spiral
modulates the texture (determined
primarily by the linear G
approximation).
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generator is only a valid GSI generator for a limited
range of scales (and the range can depend on location).

We can use the idea of combining linear GSI with
a quadratic transformation of variables to obtain scale
functions accurate to third order in systems with
more complicated g functions (presumably, even
random g functions: see Schertzer and Lovejoy,
2011). Fig. 7.22 gives an example where the scalar
function h (from which g is derived, see Eqn.
(7.103)) varies in a spiral pattern (Fig. 7.22a); Fig.
7.22b gives the corresponding spatial variation of
the local scale functions calculated with this approxi-
mation, and Fig. 7.22c shows the corresponding mul-
tifractal simulation.

7.3.4 Multifractal simulations
in nonlinear GSI
In order to make mulitfractal simulations, we can
consider the case in 2D where there is no overall
stratification so that TrG = 2 everywhere; then:

TrG ¼ r�
�
g ¼ 2 ð7:117Þ

and we can express the vector g through the scalar h,
which expresses the deviation from isotropy:

gx
gy

� �

¼

x � 2
∂h

∂y

y þ 2
∂h

∂x

0

B

B

B

@

1

C

C

C

A

ð7:118Þ

(the factor 2 is added for convenience). Now that we
have considered linear GSI, we can turn to the next
level of complication, quadratic GSI:

gið�xÞ ¼ Ai
jkxjxk ð7:119Þ

where we sum over coordinate indices j, k (the sum-
mation convention); quadratic g thus corresponds to
linearly varying G and to cubic h:

G ¼
1 0
0 1

� �

þ 2

�
∂2h

∂x∂y
�
∂2h

∂y2

∂
2h

∂x2
∂
2h

∂x∂y

0

B

B

B

B

@

1

C

C

C

C

A

ð7:120Þ

Equivalently with G ¼
1� c f � e
f þ e 1þ c

� �

, we have:

c ¼ 2
∂
2h

∂x∂y
; e ¼ r2h; f ¼

∂
2h

∂x2
�

∂
2h

∂y2
ð7:121Þ

To illustrate how this works, we can consider the
example:

hðx, yÞ ¼
x3

6
þ
xy2

2
ð7:122Þ

(Fig. 7.23). This yields:

G ¼
1 0
0 1

� �

þ 2
�y �x
x y

� �

ð7:123Þ

This is an interesting example since a (the eigenvalue
of the traceless part of G) is:

a2 ¼ 4ðy2 � x2Þ ð7:124Þ

which has both regions of real and imaginary values
corresponding to stratification and rotational domin-
ance. Figs. 7.24a, 7.24b, 7.24c show examples of mul-
tifractal simulations using canonical scale functions
(but with different sphero-scales). One can see that
the effect of the spatially varying G is quite subtle; it is
certainly not trivial to deduce the underlying
generator of the scale-changing group from the
observed fields.

Fig. 7.23 The contours of the field h(x, y) (Eqn. (7.122)) with
arrows indicating the corresponding quadratic vector field g

(Eqn. (7.118)).
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7.4 Summary of emergent
laws in Chapter 7
General scale functions kDr

�
k are linear with respect

to the contraction parameter l�1:

kTlDr k ¼ l�1kDrk; Tl ¼ l�G ð7:125Þ

Linear GSI

G is a matrix; the self-affine case is when the matrix
G is diagonal.

The qth-order structure functions Sq(Dr) and
spectral densities P(k) are related by:

S2ðDrÞ ¼ 2

ð

ð1� ei�k:DrÞPð�kÞd�k ð7:126Þ

(a) (b)

(c)

Fig. 7.24 (a) A multifractal simulation of quadratic GSI (with g given
by the cubic h, Eqn. (7.122)) with a = 1.8, C1 = 0.1, H = 0.33 and
sphero-scale = 256 pixels (the simulation is 512 � 512 pixels).
The effect of the varying G is quite subtle. (b) Same as Fig. 7.24a
but for ls = 1, H = 0. (c) Same as Fig. 7.24a but for ls = 1. See colour
plate section.
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For scaling processes they satisfy:

SqðDr Þ ¼ kDr k
xðqÞ
R ; kl�GDrkR ¼ l�1kDrkR

Pð�k Þ ¼ k�kk
�s
F ; kl�

eG
�kkF ¼ l�1k�kkF ð7:127Þ

where the subscript R and F for “real” and “Fourier”
have been used to underscore the fact that the corres-
ponding scale functions are not the same, and the
Fourier and real-space generators are related by:

eG ¼ GT
; s ¼ Del þ xð2Þ; Del ¼ Trace ðGÞ

ð7:128Þ

Some simple properties of linear GSI can be under-
stood with the help of the pseudo-quaternion
decomposition:

G ¼
d þ c f � e
f þ e d � c

� �

ð7:129Þ

(Eqns. (7.23), (7.24)). The eigenvalues are d � a,
where a2 = c2 + f 2 – e2, so are real or complex
depending on the sign of a2. When they are real,
structures rotate by less than p/2 as the scale changes

from l = 1 to l!1, when they are complex, they
rotate once with every factor e2pjaj of l. The overall
change of volumes of structures (areas in 2D) with
scale is:

Volume / detðlGÞ ¼ lDel ; Del ¼ TraceðGÞ

ð7:130Þ

where Del is the elliptical dimension = 2d in a two-
dimensional system, where d is the parameter in
Eqn. (7.128).

Nonlinear GSI

The basic equation for the scale function is:

�
gð�rÞ�rk�rk ¼ k�rk ð7:131Þ

g is the infinitesimal generator. Locally, near the point
rc, we have:

G rc
� �

ia
¼

∂gi

∂xa
jr¼rc

ð7:132Þ

for the matrix with elements Gia which defines the
local linear GSI approximation.
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Appendix 7A: The normalization constant

in anisotropic continuous-in-scale

multifractal simulations

7A.1 In two dimensions

We saw in Section 7.1.5 that in order to produce
multifractal simulations respecting anisotropic GSI,
the basic change required with respect to isotropic
GSI was to replace the usual norm by the scale
function and the usual dimension of space by the
elliptical dimension. Beyond that, there was the
problem that the simulation region does not gener-
ally coincide with contours of constant scale, so that
some special methods are required to model the
scales that are not totally contained within the simu-
lation region (a “nested” model). The main add-
itional technical point is the determination of the
normalization constant:

NDel
¼ ODel

¼

ð

k�r k¼1

dx dy ; �r ¼ ðx, yÞ ð7:133Þ

(Section 6.1.7). In this appendix, we show
how NDel can be calculated for scale functions
obtained via the sequence of transformations of
variables outlined in Section 7.1.3. The key is to
systematically transform the area element dxdy.
To see how this works, consider first the case
where the eigenvalues are real (a2 > 0), and use
the notation x = x(0), y = y(0) and with successive
transformations as indicated in Section 7.1.3
(Eqns. (7.55), (7.57)):

dxð0Þdyð0Þ ¼ det Odxð1Þdyð1Þ ¼
1

2a
dxð1Þdyð1Þ ð7:134Þ

for the second transformation:

dxð1Þdyð1Þ ¼ ð1� a2Þ
yð2Þ

xð2Þ

�

�

�

�

�

�

�

�

a

dxð2Þdyð2Þ ð7:135Þ

so that:

dxð0Þdyð0Þ ¼
ð1� a2Þ

2a

yð2Þ

xð2Þ

�

�

�

�

�

�

�

�

a

dxð2Þdyð2Þ ð7:136Þ

converting to polar coordinates (R, y), we have:

dxð0Þdyð0Þ ¼
ð1� a2Þ

2a
tanyð2Þ
�

�

�

�

�

�

a

Rð2ÞdRð2Þdyð2Þ

We now take:

Rð3Þ ¼ Rð2ÞY
�

yð2Þ
	

yð3Þ ¼ yð2Þ
ð7:137Þ

where Y > 0 is the function specifying the unit ball.
With this transformation of variables we obtain:

dxð0Þdyð0Þ ¼
ð1� a2Þ

2a
tanyð3Þ
�

�

�

�

�

�

a Rð3Þ

Y
�

yð3Þ
	2 dR

ð3Þdyð3Þ

ð7:138Þ

Finally, since dxð3Þ dyð3Þ ¼ adxð4Þdyð4Þ, and
k�rk ¼ j�r

ð4Þj we have:

Rð3ÞdRð3Þdyð3Þ ¼ 2ak�rkdk�rkdj ð7:139Þ

where we have written:

dxð4Þdyð4Þ ¼ k�rkdk�rkdj ð7:140Þ

where dj¼ y(4) is the “generalized polar angle”which –
along with the scale function (a “generalized” polar
coordinate) – parameterizes the points on
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the plane. The final transformation to GSI angle and
scale is:

dxð0Þdyð0Þ ¼ oðjÞdjk�r kdk�rk;

oðjÞ ¼
ð1� a2Þjtanyð3Þja

Y
�

yð3Þ
	2 ð7:141Þ

The normalization constant is thus:

NDel
¼ ODel

¼

ð

2p

0

oðjÞdj ð7:142Þ

In order to evaluate this, we can use the relation
between j and y(3):

tanj ¼

ffiffiffiffiffiffiffiffiffiffi

r þ e

r � e

r

tanyð3Þ þ 1

tanyð3Þ � 1

 !

ð7:143Þ

which implies:

dj

dyð3Þ
¼

a

r þ e sin 2yð3Þ
ð7:144Þ

(this is always > 0 since for a2 > 0, r > e and r > 0).
As j varies between 0 and 2p, y(3) varies between 0
and 2p so that we finally obtain:

NDel
¼ ODel

¼ að1� a2Þ

ð

2p

0

jtan yð3Þja
�

Y
�

yð3Þ
		2

dyð3Þ

r þ e sin2yð3Þ

ð7:145Þ

This integral is straightforward to evaluate
numerically.

The case of complex eigenvalues (a2 < 0) follows
the same series of steps; we simply give the final
result as:

NDel
¼ ODel

¼ jaj

ð

2p

0

dyð3Þ

je� r cos2yð3Þj
�

Y
�

yð3Þ
		2

ð7:146Þ

which takes into account both positive and negative
values of e. Note that when Y = 1, we have
NDel

¼ ODel
¼ 2p

7A.2 In three dimensions

Following the two-dimensional approach, we need
to calculate the transformation of the volume elem-
ent dxdydz given by the Jacobian of the corres-
ponding transformation of variables. Following
the transformations given in Section 7.1.5, and
considering first real eigenvalues (a2 > 0), we
obtain:

d�r
ð0Þ ¼ ð2aÞ�1

d�r
ð1Þ

d�r
ð1Þ ¼ Hzð1� a2Þjtanyð2ÞjajcosfjHz�1

�

Rð2Þ
	Hz�1

d�r
ð2Þ

ð7:147Þ

(cf. transformations Eqns. (7.71), (7.72)) using
spherical polar coordinates, we have

d�r
ð2Þ ¼

�

Rð2Þ
	2
dRð2Þd cosfð2Þdyð2Þ, which yields:

d�r
ð0Þ ¼

ð1� a2Þ

2a
Hzjtany

ð2Þjajcosfð2ÞjHz�1

�

Rð2Þ
	Hzþ1

dRð2Þdcosfð2Þdyð2Þ ð7:148Þ

Now, using the transformation Eqn. (7.73) we
obtain:

dRð2Þdcosfð2Þdyð2Þ ¼
dRð3Þdcosfð3Þdyð3Þ

Y
ð7:149Þ

and hence:

d�r
ð0Þ ¼

ð1� a2Þ

2a
Hz

�

Rð3Þ
	1þHz

jtanyð3Þjajcosfð3ÞjHz�1

Y
�

fð3Þ, yð3Þ
	2þHz

dRð3Þdcosfð3Þdyð3Þ ð7:150Þ

Finally, to get the scale function k�rk ¼ Rð4Þ, we take

�r
ð4Þ ¼ O�r

ð3Þ, expressing r(4) in spherical polar coord-
inates, writing:

d�r
ð0Þ ¼ dok�rk

1þHzdk�rk ð7:151Þ

(o is the solid angle in the r(4) space) and
using change of variable m = cosf we eventually
obtain:

do ¼ Hzjaj
Hz

jmð3ÞjHz�1

Y
�

mð3Þ, yð3Þ
	2þHz

�

jaj2
�

mð3Þ
	2

þ
�

e� rcos2yð3Þ
	�

1�
�

mð3Þ
	2		ð1þHzÞ=2

dmð3Þdyð3Þ ð7:152Þ

We can check that in the case whereY is independent
of m, we can integrate out the m variable and as
expected obtain double the 2D result (the total angle
= 4p in 3D, not 2p). As usual, the normalization
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constant is the total solid angle in the r(4) coordinate
system:

NDel
¼ ODel

¼

ð

1

�1

ð

2p

0

do
�

mð3Þ, yð3Þ
	

ð7:153Þ

A technical point is that for Hz < 1, there is a
singularity jmð3ÞjHz�1 in Eqn. (7.147); it can be
removed with the change of variables m

0
¼ mHz ; this

is advantageous in numerical integrations.
The analogous formula for a2 < 0 is:

do ¼ Hzjaj
Hz

jmð3ÞjHz�1

Y
�

mð3Þ, yð3Þ
	2þHz

�

jaj2
�

mð3Þ
	2

þ
�

e� rcos2yð3Þ
	�

1�
�

mð3Þ
	2		ð1þHzÞ=2

dmð3Þdyð3Þ ð7:154Þ

followed by the integration Eqn. (7.151).
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Chapter

8
Space-time cascades and the emergent
laws of the weather

8.1 Basic considerations and
empirical evidence

8.1.1 Spatial versus temporal scaling
In atmospheric science – as in physics – it is usual to
specify the dynamics with prognostic (partial) differ-
ential equations where the time differentiation
operator plays the crucial role in specifying the evolu-
tion of the system. Consequently, the usual textbook
practice is to derive the dynamical laws early on. In our
scale-symmetry-based approach, time could be pre-
sented in an analogous way; however, for technical
reasons discussed in the next chapter, this is not the
simplest method of exposition.We therefore introduce
time in a different manner, exploring first the conse-
quences of scale symmetries for emergent turbulent
laws. In this framework, the scaling is in space-time
and such scaling is in many respects a straightforward
generalization of spatial scaling. It is therefore simpler
to start with space and only later to consider time.

In fluid systems, the key physical process relating
time and space is advection. When there is a scale
separation, this may justify the common practice of
transforming time series measurements into spatial
measurements using a constant (non random) advec-
tion velocity. This hypothesis of “frozen turbulence”
(Taylor, 1938) is justified if small-scale turbulent
structures are literally “blown past” an observer at
speed V so that the spatial coordinate x is the same
as the rescaled time coordinate Vt; the transformation
is deterministic. Unsurprisingly, this idea was initially
made to interpret the results of laboratory wind
tunnel experiments. In our scaling case, it does not
strictly apply because there is no scale separation.
However, even if the turbulence is not frozen, the
statistics in space and time may nevertheless be
related by a parameter with the dimensions of vel-
ocity. Indeed, in Chapter 2 we saw that mathematic-
ally, if the velocity field is spatially scaling, then the

advection operator D/Dt can also be scaling, allowing
the whole system to be scaling in space-time. Since the
boundary conditions cannot be scaling at space-time
scales larger than the size of the planet, any such
relationship must eventually break down; this turns
out to provide the natural distinction between
weather and macroweather that we discuss at length
in Chapter 10. The slight complication is that the
ocean is also a fluid with similar behaviour, although
with lower velocities and hence longer critical time
scales (Section 8.1.4).

In any case, the existence of space-time relations
in fluid mechanics is well known in a different guise:
the relatively well-defined lifetime of structures, their
“eddy turnover times.” These statistical size/duration
relations are the basic physics behind the “space-time”
or “Stommel” diagrams presented in meteorology
textbooks as conceptual tools, but which are in prac-
tice rarely empirically calculated (see e.g. Fig. 8.9b).
Likewise, although space-time relations are in fact
used all the time in meteorological measurements,
they are usually implicit rather than explicit, in the
form of “rules of thumb.” For example, many auto-
matic digital weather stations average measurements
at the fairly arbitrary period of 15 minutes. If a scale
separation existed, this might have had some justifi-
cation, but if there is no separation, how long should
the averaging be made? Alternatively, how often
should a weather radar scan if the spatial resolution
is 1 km? If it is 4 km? Conversely, if only “climate”
time-scale (say monthly) estimates are needed, what
should be the spatial scale of the corresponding maps?
In the same vein, in-situ measurements are often
considered to be “point measurements,” i.e. with
infinite (or very high) resolutions, but this is mislead-
ing since even if they are at points in space, they are
never also instantaneous, i.e. they are not points in
space-time, and it is their space-time resolutions that
are important for their statistics.
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This is the first of four chapters dealing with the
space-time structure of the atmosphere. We first focus
on the basic empirical evidence and theoretical basis
of space-time scaling from dissipation (millisecond)
to the beginning of macroweather (106 second) scales,
considering only the turbulent aspects. In Chapter 9,
we consider the important issue of causality and
space-time delocalization: i.e. turbulence-driven
waves as an emergent scaling phenomenon. Also in
Chapter 9 we consider predictability and stochastic
forecasting of cascades, multifractal processes. In
Chapter 10 we turn to the transition from weather
to macroweather, and then in Chapter 11 to scaling in
the even lower-frequency climate regime.

8.1.2 A survey of temporal spectral scaling
in the weather regime
Before developing the theory, let us first consider
evidence for the ubiquity of temporal scaling. As with
the discussion of spatial scaling, we’ll start with
straightforward and familiar spectral analyses which
are particularly sensitive to breaks in the scaling. One
of the earliest, and certainly the most influential,
temporal spectrum was published by Van der Hoven
(1957; see also Panofsky and Van der Hoven, 1955).
Fig. 8.1a reproduces the graph at the origin of the
famous “meso-scale gap,” the supposedly energy-poor
spectral region between roughly 10–20 minutes and
(excluding the diurnal cycle) the spectral “bump” at
4–5 day periods. Even until fairly recently, textbooks
regularly reproduced the spectrum (often redrawing it
on different axes or introducing other adaptations),
citing it as convincing empirical justification for the
neat separation between low-frequency isotropic 2D
turbulence – identified with the weather – and high-
frequency isotropic 3D “turbulence.” If the gap were
real, it would certainly be convenient, since turbu-
lence would be no more than an annoying source of
perturbation to the (2D) weather processes.

Retrospectively, it seems clear that the success of
this meso-scale gap was indeed more due to wishful
thinking than to hard science.Within barely 10 years it
had been subjected to strong criticism by Goldman
(1968), Pinus (1968), Vinnichenko (1969), Vinni-
chenko and Dutton (1969), Robinson (1971) and
indirectly by Hwang (1970). For instance, on the basis
of much more extensive measurements, Vinnichenko
(1969) commented that even if there were occassion-
ally mesoscale gaps they would only be for less than 5%

of the time. This may be seen in Fig. 8.1b, which shows
how the meso-scale gap might arise under “severe”
turbulence with energy fluxes 200 times the large-scale
mean. He then went on to note that Van der Hoven’s
spectrum was actually the superposition of four spec-
tra (roughly indicated by the ellipses which we have
added to Fig. 8.1a; the original figure has tiny symbols
which are very hard to decipher). Indeed, he noted that
the extreme set of high-frequency measurements was
taken during a single one-hour period during an epi-
sode of “near-hurricane” conditions and that these
were entirely responsible for the high-frequency
“bump.” Ironically, in spite of the gap’s prediction of
a barren, uninteresting (energy-poor) meso-scale,
belief in the gap persisted well after the birth of
meso-scale meteorology in the 1970s and 1980s.

The extensive spatial spectra and cascade analyses
discussed in Chapters 1 and 4 include the key dynam-
ical velocity field; thus they already give indirect evi-
dence of temporal scaling. We now briefly present
more direct evidence using modern temporal spectra.
Anticipating the discussion in Chapter 10, we can
divide the frequency range into a high-frequency
weather regime ω > ωf where ωf � (5 days)�1

–

(20 days)�1, denoted with w, a low-frequency
macroweather regime ωc < ω < ωf (when needed,
denoted mw) where ωc � (10 years)�1

– (30 years)�1,
and finally a climate regime ω < ωc, denoted c. We
discuss the physical origin of ωf in Section 8.1.3 and of
ωc in Chapter 10. Fig. 8.2a shows spectra of the
horizontal wind from scales ranging from near dissi-
pation scales (5 � 10�4 seconds up to about 1
minute), while Fig. 8.2b covers the range 1 minute
to nearly a day and Fig. 8.2c shows daily station data
analyzed up to 60 years. In all cases, reference lines
with absolute slopes βw ¼ 1.6 are indicated. This is
roughly the value of β if the horizontal exponents H¼
1/3, C1 � 0.046 and a � 2 are used (see Table 4.4, and
recall that β ¼ 1 þ 2H – K(2)); applying these param-
eters in time, it corresponds to an isotropic (x, y, t)
space, a hypothesis to which we return below.
According to these spectra, it is plausible that the
scaling in the wind holds from dissipation scales out
to scales of ~5 days, where we see a transition (Fig.
8.2c). This transition is essentially the same as the low-
frequency “bump” in Fig. 8.1a; its appearance only
differs because in the latter ωE(ω) rather than logE
(ω) is plotted; we return to this transition momentar-
ily, although notice that the same feature is well repro-
duced in the older wind data shown in Fig. 8.1b.
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We could mention that here and in the following
we do not discuss the difficult question of boundary-
layer effects which arise when data are taken close to
the surface and which can display scaling breaks
and other complications due to their proximity to
the “wall.” Section 8.2 and Appendix 8A give some
indications of the complexities of temporal spectra
when compared to spatial spectra; at larger scales,
things are simpler because of the dominance of the
horizontal wind.

The corresponding spectra for the temperature are
shown in Fig. 8.3a (from scales of 0.4 second to ~1
hour), Fig. 8.3b (from 6 minutes to 24 hours),
Fig. 8.3c (hourly surface temperatures), Fig. 8.3d
(from daily series over 10 years); and in Fig. 8.6d
from daily series 6 years long. In all cases multiple
series were averaged to reduce the noise. The refer-
ence lines have slopes corresponding (roughly) to the
horizontally predicted values, (from Table 4.4, with
H � 0.50, C1 � 0.052, a ¼ 1.78, we obtain βw � 1.9).
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Fig. 8.1 (a) The “meso-scale gap”
between the right-most bump and
the “synoptic maximum” (left-most
bump), adapted from Van der Hoven
(1957). The ellipses show the rough
ranges of the four experiments which
were combined to give the
composite spectrum (the actual data
points were already replotted from
the original); the vertical line which
bounds the right-most bump
corresponds to about 6 minutes and
was often superposed to indicate the
limit of 3D isotropic turbulence.
(b) A composite spectrum of
horizontal wind (both zonal and
meridional components) with bold
arrows, reference line and text added
(adapted from Vinnichenko and
Dutton, 1969). The shading is an
attempt to represent the variability,
the reference lines labelled in the
middle of the graph 1000, 100, 30 are
ε in units of cm2s�3 and represent
light, moderate and severe
turbulence (the mean was given as
5 cm2s�3 (¼ 5 � 10�4 m2s�3), which
is very close to the mean from the
reanalyses in Section 8.1.3, which is
about twice as much). The mean
scaling seems to continue up to
about 5 days, corresponding to about
5000 km. The meso-scale gap is
indicated by the arrow; the top line
thus appears only under conditions
of severe turbulence with ε about 200
times the mean. Notice the fairly flat
spectral “plateau” for frequencies
below about (10 days)–1 and also the
annual spike.
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Again, the horizontal values are seen to work well
over the entire range up to the low-frequency transi-
tion, which in this case starts at around a 7–20-day
scale (Figs. 8.3c, 8.3d; see also Fig. 8.6d). Note that the
in-situ measurements generally agree that the value of
the temporal β for the temperature is about 0.2–0.3
larger than for the wind and that the temporal H
values are roughly equal to the horizontal H values

of 1/3, 0.50 for wind and temperature respectively
(the temperature is thus not a good passive scalar;
see also Schmitt et al., 1996; Finn et al., 2001, for the
estimates H � 0.38, 0.44 respectively).

The use of hourly surface data such as in Fig. 8.3c
raises practical questions about scaling analyses, since,
as can be seen, the diurnal variation and its harmonics
are extremely strong (the spike corresponding to
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(a) Fig. 8.2 (a) The wind spectrum from 2 kHz data (a sample of which
was shown in Fig. 2.4 and which was already partially analyzed in
Section 5.5: see Fig. 5.37), from Montreal, Quebec. The lowest
frequency represented is about (1 minute)–1; the spectra of many
samples were averaged to reduce the noise. The reference line
has an absolute slope 1.6, which is the Kolmogorov value (β¼ 5/3¼
1 þ 2H; H ¼ 1/3) minus the (horizontally determined) intermittency
corrections (K(2) � 0.07, Table 4.4). Reproduced from Schmitt et al.
(1993). (b) Spectra of the zonal (top) and meridional (bottom)
components of the wind from two French stations: Hayange (left),
and St. Menard d’Aunis (right), at 1-minute resolutions (offset in the
vertical for clarity), adapted from Tchiguirinskaia et al. (2006). The
spectra are compensated by ω5/3 so that a flat curve corresponds to
E(ω)�ω�5/3. There is no sign of themeso-scale gap (which in the units
of the figure would be between log10ω � –1 and log10ω � –2). (c)
Wind spectra from 36 near-complete 60-year series of daily data from
the continental USA taken from the stations lying nearest to 2� � 2�

degree grid points from 30–50� N, 105–71� W. The curve that is lower
at left is the daily maximum wind speed and the other curve is daily
average (normalized so that the annual peaks coincide). The spectra
have been also averaged in the frequency domain; in bins
logarithmically spaced, 10 per order of magnitude (except for the
lowest factor of 10, where no spectral averaging was performed). As
discussed in Appendix 5E, this is an unbiased averaging procedure and
leads to much smoother spectra. The reference lines have absolute
slopes β¼ 1 (low frequencies), β¼ 0.2 (the “spectral plateau” which is
not totally flat) and β ¼ 1.6 (high frequencies).
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Fig. 8.3 (a) Temperature spectrum from a series of 214 points of 5 Hz data (� 1 hour), from Montreal, Québec. Reference line has slope –1.8.
Adapted from Schmitt et al. (1992). (b) Temperature spectrum from the average of 36 spectra, each 24 hours at 3-minute resolution, from
France. Note the diurnal low-frequency peak. Reference lines correspond to βw ¼ 1.6, 1.8 (closest fit), 2. Reproduced from Lovejoy and
Schertzer (1986). (c) The spectra of hourly surface temperature data from four nearly colinear stations running northwest/southeast in the
USA (Lander WY, Harrison NE, Whitman NE, Lincoln NE), from the US Climate Reference Network, 2005–2008. See Fig. 8.7h for the
corresponding cascade analysis. The thick line is the spectrum of the periodically (diurnally) detrended spectrum, averaged over logarithmically
spaced bins as in Fig. 8.2c. Reproduced from Lovejoy and Schertzer (2012). (d) The temperature spectrum from the average of 370 continental
daily temperature series from the National Climatic Data Center (NCDC) as a function of frequency (in year�1), adapted from Pelletier and
Turcotte (1997), having thick reference lines with absolute slopes β ¼ 0.3, 1.8; the regression values given in the original paper had
β ¼ 0.37 (the thin line, left) and 1.37 (right) but depend somewhat on the exact frequency range chosen.
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24 hours is about 104 times stronger than the back-
ground, the 12-hour spike is several thousand times
stronger, etc.). Since diurnal effects are essentially
periodic, Fourier analysis is very convenient, and
shows that except for the spikes the scaling is not
much perturbed. However, if instead we want to
perform real-space analyses (including trace
moment/cascade analyses), the periodicities must be
removed as much as possible. In Fig. 8.3c we show the
effect of removing the diurnal cycle by calculating the
average temperature at each hour of the day and
removing it. The curve in the figure shows the spec-
trum of the periodically detrended temperatures
averaged over logarithmically spaced frequency bins,
10 per order of magnitude (except for the lowest 10
frequencies, which are all shown). It can be seen that
the detrending is not perfect, but does restore the
spectrum to a reasonably power-law form. Cascade
analyses of this detrended data are discussed in
Section 8.1.5. Note that diurnal cycles are mostly
important for surface and stratospheric fields,
although cloud convection also displays it and there
are tidal as well as specific chemical processes which
have prominent diurnal cycles.

Excluding the annual cycle, roughly (but not com-
pletely) flat low-frequency spectra are qualitatively
reproduced in all the standard meteorological fields,
and the transition scale is relatively constant at typic-
ally 5–10 days. Using the same database as in
Fig. 8.2c, this may be seen in the instrumental spectra
of 60-year-long series from daily US station data
spectra for precipitation and pressure (Fig. 8.4a), for
temperature, dew-point temperature, humidity
(Fig. 8.4b) and for wind speed, “gusts” and inverse
visibility (an “effective” extinction coefficient)
(Fig. 8.4c). Fig. 8.4d shows very similar spectra of
precipitation rates from the 20CR, CPC and
ECMWF interim reanalyses (all discussed earlier). In
Chapter 10, where we focus on the lower frequencies,
we show further relevant spectra including 20CR
spectra for T, u, n, h (Figs. 10.5a, 10.5b) and discuss
the direct extension of the FIF weather model into the
macroweather domain. We see that it predicts βmw �
0.2–0.4 for essentially all the fields (at least those over
land; over the ocean it can yield βmw � 0.6 for ω <

ωeff
�1); hence we also systematically show this theor-

etically predicted reference line.
In order to obtain systematic estimates of the

weather regime exponents, we used the temporal
spectra of the ECMWF 700 mb daily reanalysis

dataset for 2006 for T, u, n, hs, w and z (the same that
was analyzed spatially in Chapters 4 and 6). These are
shown in Fig. 8.5a, with a blow-up of the high-fre-
quency part in Fig. 8.5b. The overall shape and the
transition scales are about the same as for the instru-
mental series, although the exponents are not neces-
sarily the same; a detailed comparison is given in
Table 8.1. Focusing on the high-frequency weather
regime in Fig. 8.5a,we see that it is extremely narrow;
Fig. 8.5b shows a blow-up of the high-frequency
decade. From this we see that regression estimates of
the spectral exponent β will depend somewhat on the
regime used for the fit; it was therefore decided to use
theoretically motivated reference lines rather than
regressions – the only exception being the vertical
velocity, where a regression over ω > (5 days)�1 was
used. The basic motivating theory was for the values
5/3 for u, n and T (as discussed for u, n and as
predicted if T is a passive scalar), and for z, using
the isobaric value (3.35) as an estimate of the hori-
zontal exponent followed by space-time isotropy. The
5/3 values work very well for u, n, T (the isobaric
exponent 2.40 shown in the figure is clearly very
poor), but the isobaric value works well for z. In
contrast, the exponents β � 0.4 (hs) and � 1.10 (w)
have no clear theoretical explanation, although the
value 0.4 for hs is very close to the isobaric w value.
A statistical link between the specific humidity and the
vertical wind could be a consequence of both being
sensitive to horizontal convergence or temperature
fluctuations. In Chapter 10 we discuss the transition
and the lower (climate) frequencies in more detail.

All these spectra showed qualitatively similar
behaviour, and we have used the ECMWF interim
reanalysis to obtain systematic estimates of βw. What
about tw, the weather/macroweather transition scale?
In this case, it is important to get accurate estimates of
the spectra, so we chose the 20CR dataset, which was
long enough to yield 280 segments each 180 days long
for each 2� � 2� grid point. By averaging the spectra
of the daily resolution data over the 280 segments
we obtain quite smooth spectra over the range
(180 days)�1 to (2 days)�1. These were good enough
to allow for estimates of tw, βw, βmw by using non-
linear regressions on logE(ω) with a bilinear function
with transition at ωw ¼ tw

�1. For the 700 mb tem-
perature and the surface precipitation rate, we found
tw ¼ 8.5 � 1.9, 4.5 � 1.5 days respectively. Since
there were systematic latitudinal variations, we calcu-
lated the mean tw and the longitude-to-longitude
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spread every 10�. The result is shown in Fig. 8.5c. It
can be seen that there is a minimum at around � 45�

with a significant increase near the equator and a
smaller increase towards the poles. There was also a
tendency for the largest tw (60, 12 days for T, R

respectively) to occur over the tropical Pacific and
for the minimum tw to occur of the mid-latitude
oceans (4, 2 days respectively). Also shown is the
theoretically predicted tw discussed in the next
section.
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Fig. 8.4 (a) Mean spectrum of daily dew-point
temperature (Td), temperature (T ), and relative
humidity (h), for 36, 33 and 7 stations respectively
(numbers vary due to missing data, only near-
complete series were used), from stations with
long (60 year; 22 200 days) records, from a 2� grid
over the continental USA (the same database as
Fig. 8.2c). The low-frequency (climate) and the
“plateau” (macroweather) reference lines have
slopes –1 and –0.2 respectively. The spectra were
averaged over 1dBω bins (i.e. 10 per order of
magnitude in frequency), every 2� from 30� to
50� latitude, from –105� to –71� longitude. The
high-frequency reference line has absolute slope
β ¼ 1.8, close to the horizontal β value for
humidity and temperature, which are each about
1.8–1.9 (see Table 4.4), and the plateau value is
very close to the theory value 0.2. Adapted from
Lovejoy and Schertzer (2010). (b) Same as Fig.
8.4a but for variables with slightly shallower
“plateau.” Mean spectrum of daily pressure (P)
and rain amount (R) from 24 stations with long
(60 year; 22 200 days) records, from a 2� grid. The
reference slopes have absolute slope β ¼ 1
(low frequency), 0.2 (plateau). At high-frequency,
β � 3 close to the horizontal geopotential value
(see Table 4.1). Adapted from Lovejoy and
Schertzer (2010).
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8.1.3 Estimating the weather:
macroweather transition scale
t
w
from “first principles”

We have shown evidence that temporal scaling holds
from small scales to a transition scale tw (w for
“weather”) of around 5–20 days. Let us now consider
the physical origin of this scale. In Fig. 8.1 (the ωE(ω)

versus logω plot), it appears as a low-frequency spectral
“bump” at around 4–5 days; its origin was argued to be
due to “migratory pressure systems of synopticweather-
map scale” (Van der Hoven, 1957). The corresponding
features at around 4–20 days, notably for temperature
and pressure spectra, were termed “synoptic maxima”
by Kolesnikov and Monin (1965) and Panofsky (1969),
in reference to the similar idea that it was associated
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Fig. 8.4 (c) Spectra for the wind speed (ν),
the maximum wind (“gusts,” vmax) and the
inverse visibility (the effective extinction
coefficient, k) for the same database as in
Figs. 8.4a, 8.4b. The reference lines have
absolute slopes β ¼ 1, 0.2, 5/3 (left to right;
the middle plateau value is theory, the latter is
close to the value in Table 4.4). Adapted from
Lovejoy and Schertzer (2010). (d) A comparison
of the temporal spectra of the CPC data (thin
background, noisy curve) and the ECMWF 3-
hourly dataset (thick, dashed). The thick grey
curve is the CPC spectrum averaged over
logarithmically spaced frequency bins (10 per
order of magnitude). The long thick curve is
from the 20CR at 45� N, from the full 3-hour-
resolution data (from 1871–2008). The transition
scale from the high-frequency weather regime
and low-frequency macroweather regime is
indicated by the dashed line at periods of 5
days. The axis is in units such that ω ¼ 1 is (29
years)�1; i.e. the full length of the CPC series.
There are three reference lines with absolute
slopes indicated; the value 0.08 is from the Haar
structure function analysis (Fig. 10.14) from 3
months to 29 years. Reproduced from Lovejoy
et al. (2012).
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with synoptic scale weather dynamics (see Monin and
Yaglom, 1975, for some other early references).

More recently, Vallis (2010) suggested that this scale is
the basic lifetime of baroclinic instabilities, which he
estimated using tw¼ tEadywhere tEady is the inverse Eady
growth rate: tEady � Ld=U ; U is the typical horizontal
wind speed (taken as � 10m/s) and the deformation
rate is Ld ¼ NH=f0 , where f0 is the Coriolis param-
eter, H is the thickness of the troposphere and N is the
mean Brunt–Vaisalla frequency across the tropo-
sphere. The Eady growth rate is obtained by lineariz-
ing the equations about a hypothetical state with
uniform shear and stratification across the tropo-
sphere. By taking H � 104 m, f0 � 10�4 s�1, and
N � 10�2s�1, one obtains Vallis’s estimate Ld �
1000 km. Using the maximum Eady growth rate then

introduces a numerical factor 3.3 so that the actual
predicted inverse growth rate is: 3.3tEady � 4 days.
Vallis similarly argues that this also applies to the
oceans but with U � 10 cm/s and Ld � 100 km,
yielding 3.3tEady � 40 days. The obvious theoretical
problem with using tEady to estimate tw, is that the
former is expected to be valid in quasi-linear systems
whereas we have given evidence for the existence of
highly heterogeneous vertical and horizontal struc-
tures (including strongly nonlinear cascade struc-
tures) extending throughout the troposphere to
scales substantially larger than Ld. Another difficulty
is that although the observed transition scale tw is well
behaved at the equator (Fig. 8.5c), f0 vanishes, imply-
ing that Ld and tEady diverge: using tEady as an esti-
mate of tw is at best a mid-latitude approximation.

Table 8.1 Temporal scaling exponents from the ECMWF interim reanalysis and from various in-situ estimates. The latter were taken from the
literaturewhen noother sourcewas available, and fromdaily station data that had been selected for a climate study; see the footnotes for details.
The bottom rows show the isobaric H values estimated as discussed in the text; they are the zonal values (the only exception being the
meridional wind, where the meridional value is given). The C1, α estimates are from the flux analyses presented earlier, the H are estimated
from the spectra (Fig. 8.5b). Note that the ECMWF estimates were made at the (hyper)viscous dissipation scale whereas the in-situ data were
estimated in the scaling regime. Recalling the discussion in Chapter 4 (Eqn. 4.14), the difference is a factor� 2.07 for the velocity with possibly
similar factors for the other variables. This factor has been applied to increase the in-situ values so as to make them comparable with the
reanalyses. Due to the narrow range of frequencies (the Nyquist frequency (2 days)–1 to about (5 days)–1 before the spectra begin to flatten due
to the transition to climate), direct estimates are not accurate and depend on the exact frequency range used. Instead, the spectral exponents
were taken from the reference lines in Figs. 8.5a, 8.5b: for T, u, n they are seen to be compatible with the Kolmogorov value 5/3 (ignoring the
intermittency corrections of K(2)� 0.16); for hs the value β¼ 0.4 is close to the data and is the same as the spatialw value. Finally the β value for z
was close to the spatial value (see Figs. 8.5a, 8.5b), and was used.

Exponent Source hs T u n w z

β ECMWF 0.40 5/3 5/3 5/3 1.10 3.35

In-situ 2.20d 1.67 � 0.04a 1.68 � 0.05b,e 1.68 � 0.05b,e __ 3.00c

C1 ECMWF 0.10 0.075 0.083 0.086 0.115 0.085

In-situ 0.09d 0.087 � 0.015a 0.088 � 0.01b,e 0.088 � 0.01b,e __ 0.085c

a ECMWF 1.77 1.90 1.85 1.85 1.92 1.90

In-situ 1.8d 1.61a 1.5b,e 1.5b,e 1.7c

H (time) ECMWF –0.21 1/3 1/3 1/3 0.17 1.26

In-situ 0.68d 0.41 � 0.03a 0.33 � 0.03b,e 0.33 � 0.03b,e __ 1.07c

H (space) ECMWF (space) 0.54 0.77 0.77 0.78 –0.14 1.26

aircraft 0.51 0.50 1/3e 1/3e __ __

a The mean and standard deviations were calculated from the three published studies: Finn et al. (2001), Schmitt et al. (1996),
Wang (1995); these are of high-frequency measurements near the surface.

b These numbers were calculated from estimates in Schmitt et al. (1993; see also Schmitt et al., 1996) and are from high-frequency (hot-wire)
data near the surface. We used the estimate C1ε � 0.25 � 0.05, α ¼ 1.5 � 0.1. To find C1n, we used the fact that in Schmitt et al. (1993),
ε was estimated from ε ¼ Δn3/l and the spatial scale l was estimated from l ¼ nΔt where n was the measured speed (i.e. the “Taylor’s
hypothesis”); therefore we used Eqn. 4.14: C1v ¼ ηa C1ε with η ¼ 1/3, α ¼ 1.5. Note that although the C1 estimate seems robust, the α
estimate is lower than that of the spatial estimates, and is therefore probably underestimated; a value α � 1.8 is probably more realistic.

c These are estimates of surface pressure (not geopotential) statistics from 23 daily in-situ series over (near-complete) 60 years in the
continental USA (stations were taken every 2 degrees from 30� to 50� NS, –105� to –71� EW; only the longest, near-complete series
were used: Fig. 8.4b); the statistics are over the narrow range (2 days)–1 (Nyquist frequency) to (5 days)–1 (to avoid spectral flattening due to
the weather/climate transition).

d Same study as c, except only 7 stations were both near complete and 60 years long.
e No distinction was made between the zonal and meridional wind components; the same values were used for u, n.
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Fig. 8.5 (a) The temporal spectra of the daily 700 mb ECMWF
interim reanalysis fields that were analyzed spatially in Chapter 4 (i.e.
between � 45� latitude). The dashed slopes are 5/3, the frequency
spectrum is shown estimated using ensemble and spectral
averaging (into 10 bins per order of magnitude for all ω > 36.5
cycles/year). The dashed lines have slopes –5/3, the solid lines have
slopes –3.35, –0.4, –2.4, –1.1 (top to bottom); they are drawn for ω >

(11 days)–1; for a blow-up of the high-frequency (weather) regime,
see Fig. 8.5b. These correspond to the spatial z exponent, the spatial
w exponent (which accurately fits hs), the spatial u, n, T exponent and
the regression w slope, respectively. The curves top (on left) to
bottom are z, hs (multiplied by 10 from spatial analysis, i.e. the
spectra are multiplied by 100), n, T, u and w respectively. Note that
the low-frequency rise is due to only two frequencies (1 year)–1,
(6 months)–1, i.e. periodic components at low resolution, not a break
in the scaling. Reproduced from Lovejoy and Schertzer (2011).
(b) Same as Fig. 8.5a, showing a blow-up of the high-frequency
decade ((20 days)–1 to (2 days)–1) using ensemble but not spectral
averaging, units of ω: cycles/year. As in Fig. 8.5a, the dashed lines
have slopes –5/3, the solid lines have slopes –3.35, –0.4, –2.4, –1.1
(top to bottom). Reproduced from Lovejoy and Schertzer (2011).
(c) The variation of tw as a function of latitude as estimated from the
138-year-long 20CR reanalyses. The estimates were made by
performing bilinear regressions on spectra from 180-day-long series
averaged over 280 segments per grid point. The top wide and thick
curve shows the mean over all the longitudes, the dashed lines a bit
above and below are the corresponding one-standard-deviation
spreads. The bottom wide curves are the corresponding results for
the surface precipitation rates. Also shown (thick line between �
45�) is the similarly averaged theoretically predicted eddy turnover
times estimated from the tropospherically averaged zonal wind
from the year 2006 using the ECMWF reanalysis data (Fig. 8.6a).
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Finally, there is no evidence for any special behaviour
at length scales near Ld � 1000 km.

In our space-time scaling framework, it is more
natural to divide the whole dynamical range (from
millions of years to milliseconds) into various wide
scaling ranges (Lovejoy and Schertzer, 1986): see Chap-
ter 10. On log-log plots this synopticmaximum appears
instead as a smooth transition, identified in the new
framework with the transition between the weather
and macroweather, described as the “spectral plateau”
(Lovejoy and Schertzer, 1986). Later the term “weather–
climate” regimewas used but this suggests that there is a
transition zone between weather and climate (Lovejoy
and Schertzer, 2010). Since we already saw in Fig. 1.9d
that it was reproduced by the FIF and GCM control
runs (both essentially weather models), the description
“low-frequency weather” is more accurate, but the
name “macroweather” is less cumbersome (Lovejoy
and Schertzer, 2012a) and is used here.

Although the original term “plateau” is somewhat
of a misnomer, since the corresponding spectrum
isn’t perfectly flat, its logarithmic slope is small, and
it is essentially independent of C1, H and is only
weakly dependent on a, so that the term is at least
qualitatively correct. Surprisingly, it is weakly
dependent on the overall range of scale in the
plateau (its low-frequency limit). In Appendix 10A
we find numerically that for a range of � 102–103 (i.e.
~10 days to 3–30 years), β � 0.2 – 0.4; in addition, it
can be larger (β � 0.6) for a maritime climate: see
Appendix 10D. A similar basic framework involving
broad scaling regimes was also adopted by Pelletier
(1998), Koscielny-Bunde et al. (1998), Talkner and
Weber (2000), Ashkenazy et al. (2003), Huybers and
Curry (2006) and others. We will return to both a
transition model and a more detailed analysis of the
climate regime in Chapter 10, concentrating below on
an explanation for the transition and a justification
for terming tw a “weather/macroweather” transition.

If there is a statistically well-defined relation
between spatial scales and lifetime “eddy turnover
times” (Chapter 2), then the lifetime of planetary-scale
structures teddy is of fundamental importance, i.e. we
expect tw ¼ teddy. If we evaluate this at planetary
scales Le ¼ 2 � 107 m (i.e. we assume that the outer
weather scale Lw � Le) then we obtain a large-scale
velocity Vw � εw

1/3Le
1/3, which is the typical velocity

across a structure of size Le. The corresponding eddy
turnover time/lifetime of planetary structures is there-
fore tw ¼ teddy ¼ Le/Vw ¼ εw

�1/3 Le
2/3.

If the eddy turnover time is fundamental, this
implies that the mean energy flux density εw plays a
fundamental role in determining the horizontal struc-
tures – and hence in characterizing atmospheric
complexity. It is therefore interesting to note that one
of the prominent strands in complexity theory holds
precisely that the “energy rate density” – essentially the
same thing as the energy flux density ε – plays a funda-
mental role in determining the basic level of complexity
in the universe from its astrophysical origins to the
development of biology and human society (see Chia-
son, 2010, for a interesting argument for this).

But what determines the globally averaged funda-
mental flux εw? We can estimate the mean εw by using
the fact that the mean solar flux absorbed by the earth is
~200 W/m2 (e.g. Monin, 1972; a more modern value is
240 W/m2). If we distribute this over the troposphere
(thickness � 104 m), with mean air density � 0.75 kg/
m3, and we assume a 2% conversion of energy into
kinetic energy (Palmén, 1959; Monin, 1972), then we
obtain a value εw � 5�10�4 m2/s3, which is indeed
typical of the values measured in small-scale turbulence
(Brunt, 1939; Monin, 1972). If we now assume that the
horizontal dynamics are indeed dominated by the
energy flux, then we can use Kolmogov’s formula to
extrapolate these first-principle estimates up to planetary
scales to estimate the large-scale velocity difference
across a hemisphere, and we obtain Vw � 21 m/s. The
corresponding eddy turnover time, lifetime, is therefore
tw ¼ 9.5 � 105 s � 11 days, i.e. roughly the time
associatedwith synoptic/global-scale phenomena, as dis-
cussed in the previous subsection.

Although this “first principles” calculation of the
weather velocity Vw and time scales tw from the solar
energy input is seductive, as far as we can tell it was not
proposed until recently (Lovejoy and Schertzer, 2010),
presumably because the Kolmogorov law was believed
to only hold in its isotropic form so that the relation t

� ε-1/3L2/3 could not possibly apply to such large scales.
To obtain a modern estimate of εw we can use the

ECMWF interim reanalysis at small scales using east–
west, north–south and “isotropic” estimates with the
help of the formula ε � Dn3/Dx, using Dx ¼ 3� (i.e. in
the scaling range, not too affected by the hyperviscosity).
Fig. 8.6a shows the resulting εw averaged over the tropo-
sphere (p > 200 mb) as a function of latitude; since the
theory assumes that the fluid density is constant, when
averaging over different levels we have weighted the εw
estimates from the different pressure levels by the cor-
responding air density. More detailed analyses (Lovejoy
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and Schertzer, 2010) show that the mid-latitudes have
mean εw up to 10 times those of the equator and that the
highest values aremostly in the upper troposphere (near
the 300 mb level) where it is about 5–6 times that of the
lower atmosphere. Also indicated in Fig. 8.6a is the
overall (isotropic, density-weighted) mean 9.25 � 10�4

m2/s3 which is within a factor of 2 of the first-principles
“back-of-the envelope” estimate above (the comparable
figures for the east–west and north–south gradients are
7.50 � 10�4 m2/s3 and 1.40 � 10�3 m2/s3).

If we compare these estimates with the observed
mean “hemispheric antipode” velocity differences (i.e.
the opposite side of the earth in the same hemisphere)
we find that they follow the same pattern of variation
with latitude as the variations of ε (it turns out that
this is very close to the true antipode difference).
Alternatively we can use the εw estimated at 3�

(Fig. 8.6a) to infer the 180� difference using the Kol-
molgorov law. This extrapolated velocity difference is
the cube root of the mean cube; it is shown in
Fig. 8.6b. We see that the agreement between the
predicted hemispheric antipodes difference and the
observed difference is overall to within � 19%. It is
especially close between 30� N and 10� S, where the
agreement is to within� 7%. This is remarkable given
the simplicity of the assumptions and the theory. We
may also compare the overall means to the “first
principles” estimate (21 m/s): the mean of the cubic
estimate is 17.33 � 5.7 m/s and the mean

“extrapolated” large-scale velocity difference is 20.7
� 7.4 m/s (the “�” represent the spread in the values
for different latitudes). We conclude that the solar
energy flux does a very good job of explaining the
horizontal wind fluctuations up to planetary scales.

We can now use this estimate of εw to determine
the lifetime (“eddy turnover time”) teddy ¼ εw

�1/3

Le
2/3 ¼ Le/Vw of the largest (planetary-scale) eddies.

Using the isotropic εw estimate, we obtain teddy¼ 8.7�
105s ¼ 10.0 days which is quite close to the “first
principles” estimate (11 days) and to those of Radke-
vitch et al. (2008), who used analyses at a scale 6000 km
to determine the statistical distribution of eddy turn-
over times, finding a mean of tw � 9.5 � 105 s with
only a narrow dispersion. We see that teddy is indeed a
reasonable estimate of the weather/macroweather
transition scale tw as displayed in the spectra of the
previous section; to make this more convincing, we
can now use these zonal estimates of εw to estimate
teddy(y) as a function of latitude y and compare the
result with the direct empirical estimates of tw(y) in
Fig. 8.5c. Over the latitude band covered by the
ECMWF interim reanalyses study (� 45�), we see that
the agreement between tw,T(y) (for the 700 mb T field)
and teddy(y) is to within � 15%, which is excellent
given that the former estimate is for the 20CR 700
mb temperature field from 1871–2008 while the latter
is from the zonal wind over all tropospheric pressure
levels during 2006 as estimated from the ECMWF

Fig. 8.6 (a) Estimates of ε using gradients of the vector wind at resolution 3� (330 km at equator), all averages over the troposphere
(i.e. p > 200 mb), as functions of latitude starting at 45� N, the contribution from the different pressure levels have been weighted by the air
density. The straight lines are the corresponding latitude averages (isotropic: ε¼ 0.00093 m2/s3. EW: ε¼ 0.00075 m2/s3, NS: ε¼ 0.0014 m2/s3 and
the lowest line is the back-of-the-envelope calculation discussed in the text yielding εw � 0.00093 m2/s3). Adapted from Lovejoy and Schertzer
(2010). (b) The predicted hemispheric antipode large-scale velocity difference obtained from the isotropic estimate of ε (20.7 � 7.37 m/s) and
Kolmogorov’s law (solid line), and the actual hemispheric difference (dashed line: the cube root of themean cube hemispheric difference, 17.3�
5.7 m/s). Adapted from Lovejoy and Schertzer (2010). (c) The distribution of the fluctuation ocean currents at 15 m depth as estimated by drifters
at 3� � 2� resolution, 5-day average (remapped here on a 6� � 2� grid), reproduced from Niiler (2001). The mean seems to be about 20 cm/s,
although near equator it may be closer to 40cm/s. (d) Ocean and atmospheric plateaus superposed, showing their great similarity. Left:
A comparison of the monthly sea surface temperature (SST) spectrum and monthly atmospheric temperatures over land for monthly
temperature series from 1911 to 2010 on a 5� � 5� grid (the NOAA NCDC data: see Table 8.2 for details). Only near-complete series (missing less
than 20 months out of 1200) were considered: 465 for the SST, 319 for the land series; the missing data were filled using interpolation. The
reference slopes correspond to β¼ 0.2 (top), 0.6 (bottom left) and 1.8 (bottom right). A transition at 1 year corresponds to amean ocean εo� 1�
10-8 m2s-3. The dashed lines are Ornstein–Uhlenbeck processes (of the form E ωð Þ / ω2 þ ω2

0

� ��1
: see Appendix 10B; ω0 is a characteristic

transition frequency) used as the basis for stochastic linear forcing models. Right: The average of five spectra from 6 year-long sections of a 30-
year series from daily temperatures at a station in France (taken from Lovejoy and Schertzer, 1986). The reference line has a slope 1.8 (there is
also a faint slope β ¼ 0 reference line). The relative up/down placement of this daily spectrum with respect to the monthly spectra
(corresponding to a constant factor) was determined by aligning the atmospheric spectral plateaus. Reproduced from Lovejoy and Schertzer
(2012). (e) Comparison of the cascade analysis of the monthly SST (left column, HadCRUT data) and monthly land series (right column,
CRUTEM3 data) for space (zonal), top row (l ¼ 1 corresponds to 20000 km), and time, bottom row (l ¼ 1 corresponds to 100 years) for the
data discussed in Fig. 8.6d. The parameters and sampling details are given in Table 8.2. It is particularly noteworthy that although the land
and ocean cascade structures are nearly identical, the corresponding spectra (Fig. 8.6d) are very different, indicating that the intermittency
of the land temperatures is controlled by the ocean “weather” variability. The longest “pure” land scale accessible was � 165� at mid-latitudes,
hence the smallest accessible scale ratio was l� 100.2 in the upper right graph. Since the cascade ranges are not so large, we have superposed
(thick lines) the “universal” quasi-Gaussian curve for the envelope of the curves for moments of order q � 2 (Appendix 4A). It may be seen
that in all cases the empirical variability is much stronger than would be possible for quasi-Gaussian processes.
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interim reanalysis. Note that the agreement is still
excellent near the equator where tEady diverges. The
comparison between teddy(y) and tw,R(y) is not as
good, although the latter is nevertheless within a factor
of 2 of the former (the mean ratio tw,T (y)/ tw,R(y) over
the latitudes is quite constant: 2.08�0.51). Finally we
can note that Fig. 8.8c shows that teddy(y) follows very
closely the latitudinal dependence of the cascade exter-
nal scale teff(y) for the ECMWF 700 mb temperatures
while being about a factor 2 too small.

8.1.4 “Ocean weather,” low-frequency
ocean “macroweather” and the transition
Although the ocean and the atmosphere have several
distinguishing dynamical features, they also have
many similarities. In particular, both are large-Rey-
nolds-number turbulent systems and both are highly
stratified – albeit due to somewhat different mechan-
isms. Because of the overarching similarities, it is not
surprising that there are debates about the nature of
the horizontal ocean velocity (current) spectrum
which are analogous to the atmospheric debates dis-
cussed at length in Chapter 2. Certainly, starting at
the smaller scales with the classical ocean velocity
spectra (e.g. Grant et al., 1962; see also Nakajima
and Hayakawa, 1982), there is no question that
horizontal ocean currents are dominated by the
energy flux εo and hence follow roughly E(ω) � ω

�5/3

(and presumably in the horizontal they follow E(k) �
k�5/3). However, as in the atmosphere, the low wave-
number limits of these Kolmogorov spectra are
strongly debated, and the possibility of a quasi-
geostrophic (QG) turbulent regime with k�3 spec-
trum has been proposed (see Smith and Vallis, 2001,
for an application of QG theory to the ocean).
Although surprisingly few current spectra have been
published, of late the use of satellite altimeter data to
estimate sea surface height (a pressure proxy) has
provided relevant empirical evidence and has some-
what revived the debate. At scales where approximate
geostrophic equilibrium may pertain, the pressure
gradient is proportional to the current so that the
surface height (h) and current (v) spectral exponents
are related by βh ¼ 2 þ βv. However, according to Le
Traon et al. (2008), at least over the scale range
accurately covered by the altimeter (� 10–300 km),
βh � 11/3, not the QG prediction βh � 5, implying
that βv � 5/3. However, the debate is far from over,
since the value βv � 5/3 is compatible not only with

wide-range horizontal/vertical ocean scaling with 2 <
Del < 3 (i.e. with scaling vertical ocean stratification),
but also with a variant of QG called surface quasi-
geostrophic turbulence (Blumen, 1978; Held et al.,
1995) with Del ¼ 2. For our present purposes, and
in the absence of a clear understanding of vertical
ocean stratification, the main point is that the existing
data are compatible with k�5/3 horizontal current
spectra out to planetary scales, hence with the rele-
vance of the ocean energy flux εo.

Although empirically the current spectra (or their
proxies) at scales larger than several hundred kilometres
are apparently not well known, other spectra –

especially those of sea surface temperatures (SST) –

are better known and are relevant due to their strong
nonlinear coupling with the current. There are many
reports of wide-range spatial SST scaling. These include
in-situ results such as those ofMcLeish (1970; Eulerian,
βT� 5/3), Seuront et al. (1996; Lagrangian, βT�2) and
Lovejoy et al. (2000; towed instruments, βT� 1.63,H¼
0.31, C1 ¼ 0.031, a ¼ 1.8). Remote sensing using
thermal IR images first from aircraft (Saunders, 1972),
and then from satellites (Deschamps et al., 1981, 1984;
Park and Chung, 1999) yields respectively βT � 5/3, �
2.2,� 1.9,� 2,� 1.87� 0.25 out to distances of~100
km. At larger scales (out to at least~500 km), Burgert
and Hsieh (1989) found βT � 2.1 from “cloud-free”
satellite data. The satellite data – even if nominally
cloud-free – are somewhat smoothed by atmospheric
effects, hence their βT values are probably a little bit too
high. Therefore, the monthly averaged in-situ SST data
(see Table 8.1 and Fig. 8.6d, discussed below), which
yield βT � 1.8 are evidence that this scaling really does
continue up to scales of 5000 km or more, a conclusion
that is bolstered by the corresponding spectral and
cascade analyses (Figs. 8.6d, 8.6e). This conclusion is
all the more plausible since the corresponding H value
(� 0.50) is almost identical to that of the atmosphere
(0.50, 0.41 in space and time; Table 8.1).

Just as for the wind, Kolmogorov spectra for the
current may thus be presumed to hold (at least roughly)
over wide ranges, indicating the presence of oceanic
energy cascades in the horizontal. Just as in the atmos-
phere, where the stratification is scaling, so it may well
also be in the ocean, leading to the likelihood that – as in
the atmosphere – the energy flux will dominate the
horizontal ocean dynamics. If this is correct, then we
can use the same methodology as in the previous sub-
section – basic turbulence theory combined with the
mean ocean energy flux εo – to predict that the outer
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scale to of the ocean regime is equal to the largest ocean
eddy lifetime to,eddy. Thus, for ocean gyres and eddies of
size l, we expect there to be a characteristic eddy turn-
over time (lifetime) t¼ εo

�1/3l2/3with a critical “ocean-
weather”/“ocean-macroweather” transition time scale
to ¼ to,eddy ¼ εo

�1/3Lo
2/3 (Lo is the outer spatial scale

of the oceans; presumably Lo � Lw � Le ¼ 2 � 107m).
Again, we expect a fundamental difference in the statis-
tics for fluctuations of duration Dt < to – the ocean
equivalent of “weather” with a turbulent spectrum with
roughly βo � 5/3 (at least for the current) – and for
durations t > to, the low-frequency ocean “macro-
weather” with a corresponding shallow ocean spectral
plateau with β � <1.

As a first step in testing the idea, let us attempt to
estimate εo, the globally averaged ocean current
energy flux. As expected, εo is highly intermittent,
and as far as we know no one has yet attempted to
estimate its global average. Early work resulted in
statements such as “ε � 3 � 10�7 m2s�3 is typical of
moderately intense turbulence” (Crawford, 1976).
The difficulties with such single-site characterizations
were underscored in studies such as Clayson and
Kantha (1999), who used turbulence closure models
combined with data from the Tropical Heat 1984 and
Tropical Heat 1987 experiments to estimate εo at
depths down to 150 m and at hourly resolutions.
When averaged over columns of depth 10–110 m,
their 7-day time series fluctuated in the range
3 � 10�7 to 3 � 10�8 m2s�3 in 1984, but in 1987, in
the same location and over the same duration, it
fluctuated over the range 3 � 10�8 to 3 � 10�9

m2s�3, i.e. a difference of factor � 10. Beyond this
strong intermittency, this experiment underscores
another important aspect of the ocean: the strong
depth dependence of εo. The Clayson and Kantha
(1999) profiles showed εo decreasing by a factor of
10–100 over the first ~100 m. Similar findings were
made by Moum et al. (1995), who determined two
εo profiles about 11 km apart near the equator and
140� W. Starting at a 15 m depth, and averaging over
5 m sections and over 3.5 days, they found that εo
decreased from � 5 � 10�6 m2s�3 to � 10�9 m2s�3 at
175 m and to � 10�11 m2s�3 at 1 km, and that the
agreement between measurements in both locations
was generally to within a factor of 2. The strong depth
dependence of εo contrasts with the situation in the
atmosphere, which has only relatively small vertical
variations in εw (a factor of 5–6 from the surface to
the maximum at 300 mb) (Lovejoy and Schertzer,

2010). This depth dependency means that the value
of εo representative of the surface layer dynamics and
structures, and the value relevant for deep ocean
structures with larger vertical extents, are not trivially
the same, a point to which return in Section 8.2.1.

For reference, we could mention that other expli-
cit direct estimates of εo have largely been associated
with developing new measurement techniques; for
example Lien and D’Asaro (2006) compared two
different measurement methods, sonar and float
accelerometers in Puget sound, finding that εo varied
over range from 10�3 to 10�8 m2s�3 and was typically
about 10�7 m2s�3 (for 80 s resolution and with a
lower measurement bound on εo � 10�8 m2s�3).
A final example includes Matsuno et al. (2006), who
found εo was typically � 10�8 m2s�3 in the China Sea,
but highly variable.

Although there is a clear tendency for near-surface
experimental values to be in the vicinity of 10�8

m2s�3, more systematic estimates are needed for
global averages. Fortunately, ocean drifters have been
used to map turbulent “eddy kinetic energy” (EKE,
the mean square fluctuation velocity) � Dv2 over
much of the globe over boxes 3� � 2� (Fig. 8.6c;
Niiler, 2001). Although this is not quite an estimate
of εo, from these fluctuation data, it is a simple matter
to estimate εo using εo ¼ Dn3/l and taking the box
scale l � 250 km. From Fig. 8.6c we see that typical
root mean square current fluctuations Dn at this scale
are 10–20 cm/s, corresponding to εo � 4� 10�9

– 3�
10�8 m2s�3 (although some values exceed 50 cm/s,
corresponding to 5 � 10�7 m2s�3). These values are
quite consistent with the typical in-situ estimates cited
above. More recently, satellite altimeters working in
pairs have been used to estimate EKE at a resolution l
� 100 km. Again using εo ¼ Dn3/l and using the mean
South China Sea basin estimate of Dn2 ¼ 360 cm2/s2

(Cheng and Qi, 2010), we obtain εo � 7 � 10�8 m2s�3

(ranging between a minimum of 3 � 10�9 m2s�3 up
to a maximum of 4 � 10�7 m2s�3). The mean value is
right in the middle of preceding drifter estimates.
Using the formula to ¼ to,eddy ¼ εo

�1/3Lo
2/3 we find

that a range of εo between 1 � 10�8 and 8 � 10�8

m2s�3 corresponds closely to the range of to � 1–2
years; as expected, this is somewhat larger than the
corresponding value for the atmosphere: in the previ-
ous section we found εw � 10�3 m2s�3, tw � 10 days.

A way to test the model is to filter out the
high-frequency weather variability due to the weather
cascade; this is at least partially done by temporal
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averaging over scales> tw; the effect of such averaging
is discussed in detail in Section 10.1. A one-month
resolution allows us to use many convenient surface
temperature datasets; the three we chose are the NOAA
NCDC merged land air and sea surface temperature
dataset (abbreviated NOAA NCDC, from 1880 on a
5� � 5� grid), the NASA GISS dataset (from 1880 on a
2� � 2� grid) and the HadCRUT3 dataset (from 1850 to
2010 on a 5� � 5� grid). More details on these datasets
including references and statistical characterizations of
their similarities and differences, and a comparison
with the 20CR reanalysis dataset, can be found in
Appendix 10C. The NOAA NCDC and NASA GISS
series are both heavily based on the Global Historical
Climatology Network (Peterson and Vose, 1997), and
have many similarities including the use of sophisti-
cated statisticalmethods to smooth and reduce noise. In
contrast, the HadCRUT3 data are less processed, with
corresponding advantages and disadvantages. We
therefore primarily used the qualitatively more distinct
NOAA NCDC and HadCRUT3, although for limited
global studies we also used the globally averaged NASA
GISS set.

For all datasets and for virtually any given pixel,
the series had many missing months, and these were
often successive so that interpolation could easily lead
to serious biases in the spectra and trace moments.
(Indeed, the data were generally only available on
sparse fractal sets in time and in space: see Section
3.2.2.) To minimize this problem, we restricted our
separate land and SST analyses to the most recent 100
years and selected only those pixels with less than a
total of 20 missing months (see Table 8.2 for details).
The mean spectra are shown in Fig. 8.6d. While the
land spectrum is – as expected – essentially a pure
spectral plateau (with β � 0.2, the value cited earlier;
the high-frequency air data in the figure are from
daily data), we see that the SST spectrum is quite
different, displaying a clear transition between two
power laws at to � 1 year (with β � 0.6, 1.8 for scales
> to and < to respectively). Note also the rough
convergence of the spectra at about a 100-year scale,
implying that the land and ocean variability become
equal and the hint that there is a low-frequency rise in
the land spectrum for periods > ~30 years. Since
above we predicted to � 1 year from estimates of εo,
we see that the break in the empirical spectrum is very
close to that predicted, although compared to the land
temperature spectral plateau (representing more
closely the free atmosphere), the low-frequency

ocean plateau β is a little larger, a point to which we
return in Chapter 10.

Using twodifferent SSTdatasets and theDFAanalysis
method, Monetti et al. (2003) obtained very similar
results. Translating the DFA exponents to spectral expo-
nents, they found β� 1.76� 0.08 and β� 0.06� 0.16 for
high- and low-frequency spectral exponents respectively,
with “crossover” at 10months (� to), although theymade
no attempt to give physical interpretations to any of these
values and did not present analyses for scales longer than
~35 years. Similar spectra with “crossovers” in the range
2–7 years (even accompanied by a broad peak) are also
routinely found in SST and corresponding surface air
temperatures averaged over the wide equatorial regions
important in the El Niño phenomenon (see e.g. the spec-
tra in AchutaRao and Sperber, 2006). The fact that one
commonly has a transition from a high-frequency β near
the value 2 to a low-frequency β near the value 0 means
that the spectra are not too far fromOrnstein–Uhlenbeck
(OU)processes of the formE ωð Þ / ω

2 þ ω
2
0

� ��1
, where

ω0 is a characteristic transition frequency. Such pro-
cesses are essentially the results of integrated Gaussian
white noise and they are used as the basis for stochas-
tic linear forcing models discussed in Appendix 10B,
and for SST (and other) forecasts over scales of
months to about a year. In Fig. 8.6d, we see that the
approximation is fairly rough, especially for the SST
spectrum. If we consider the spectrum of the first
principal compment of the Pacific SST (called the
Pacific Decadal Oscillation, PDO, see Figs. 10.8, 10.14,
for spectra and structure functions), then the compari-
son toOUprocesses ismuch less favourable. This is also
true when compared to the Southern Oscillation
Index (SOI), which is a proxy for the El Niño Southern
Oscillation phenomena (ENSO; see Fig. 10.8). Also
relevant are cascade analyses (Fig. 8.6e), which include
for comparison the q ¼ 2 envelope of the “universal”
quasi-Gaussian trace moment analyses (Appendix 4A),
which lies significantly below the data, supporting
the cascade hypothesis.

The fact that both oceanic and atmospheric tem-
peratures have high frequency β’s with the turbulent
value� 1.8 supports this interpretation. It also allows us
to directly estimate the ratio of atmospheric to oceanic
energy fluxes, εw/εo. This can be estimated from the left/
right separation of the parallel ω�1.8 lines, which cor-
respond to a factor of~30 in critical time scales, i.e. to/
tw� 30. If we assume that the spatial outer scale for the
atmosphere and oceans is the same (Lo¼ Lw� Le), then
we can infer that εw/εo ¼ (to/tw)

3 � 3 � 104. Using the
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atmospheric value εw � 10�3 m2s�3, we find εo � 5 �
10�8 m2s�3 which is close to the estimates discussed
above. If this interpretation is correct, then, since ocean
eddies and gyres obey roughly the same turbulent phe-
nomenology as the atmosphere, the time scales < to
indeed correspond to ocean “weather,” with the impli-
cation that the limits to forecasting the ocean are � to
� 1 year (see Section 9.3).

Although we deliberately put off an in-depth dis-
cussion of the climate scales to Chapter 10, a final
piece of evidence supporting our picture is worth
giving here: the trace moment–cascade analysis.

Using the same SST and land datasets used for the
spectral analysis above, we can determine the cascade
structures (Fig. 8.6e). This not only shows that the
spatial temperature scaling continues to near planet-
ary scales (see Table 8.2 for parameter estimates), but
also that the temporal cascades are almost identical
for land and sea temperatures, with accurate scaling
up to about 1 year and with outer cascade scales of
about 3.5 years, i.e. fully consistent with our estimate
of to above. To put this in perspective, recall that the
spectra (Fig. 8.6d) showed qualitatively and quantita-
tively different SST and air-over-land spectra. Since in

Table 8.2 A comparison of various cascade parameter estimates for land (NOAA NCDC and CRUTEM3, 5� � 5�), ocean (NOAA NCDC
and HadSST2, 5� � 5�), whole-planet (NOAA NCDC and HadCRUT3, 5� � 5�), and the 20CR reanalysis (700 mb, averaged over a 8� � 10�

grid). All the datasets are monthly averages; the whole-planet entries are also global averages. Due to the large numbers of missing
data points (except for the 20CR reanalysis) the data were sampled as indicated in the columns on the right. The β (and derived H) estimates
are for the whole range except for the ocean in time, where up to ~1 year we find β � 1.8 (Fig. 8.6d), and up to ~5000 km in space.
Uncertainties indicated by “�” are estimates based on comparing NOAA NCDC HadSST2 and CRUTEM3 estimates. See Fig. 8.6e for
some cascade analyses. Note that all the surface series assumed that the sea surface temperature and the air temperature immediately
above it are the same.

C1 a β H Outer

scalea
Data used

(dates)

Latitudes Longitudes

Space land 0.14

� 0.01

2.0

� 0.1

1.75

� 0.1

0.51

� 0.03

11 400 km 1911–2010g

1722

transects i

27.5N to

57.5N

12.5W to

147.5E

ocean 0.12

� 0.01

1.9

� 0.1

1.8

� 0.1b
0.50b 16 000 km 1911–2010h

5614

transects

52.5E to

82.5W

(230�)

12.5S to

12.5N

Time land 0.12

� 0.01

1.7

� 0.1

0.25

� 0.05

–0.27

� 0.02

4.1 yr 1911–2010f

319 series

Most

sampled

Most

sampled

ocean 0.12

� 0.01

1.8

� 0.2

1.8b,e 0.52b 2.1 yr 1911–2010f

465 series

Most

sampled

Most

sampled

HadCRUT3j 0.15 1.9 0.3 –0.21 16 yr 1911–2010f

408 series

Most

sampled

Most

sampled

Whole,

planet,

(global

average,

time)c

20CR

(8�10�)

0.12 1.7 0.64 –0.13 0.8 yr 1880–2008,

all

All All

NCDC,

NASA,

HadCRUT3d

0.11 1.8 0.64 –0.13 1.6 yr 1880–2008,

all

All All

a The outer scales are geometric means of the NOAA NCDC and HadCRUT3 cascade estimates.
b These estimates are from the NOAA NCDC data; the spectra (hence β, H ) of the ocean data were too noisy and were not used.
c These are reproduced from Table 10.C.2, which has further global-scale estimates. The C1, a parameters are based on regressions
< 1 year in scale, the β, H estimates are from the range of scales of months to ~(10 year)–1, after which there is a lower-frequency rise.

d These are the statistics obtained from treating the surface in-situ data (NASA GISS, NOAA NCDC, HadCRUT3) as members of an ensemble;
these are the resulting ensemble statistics.

e This estimate (see Fig. 8.6d) is for the high frequencies (> (1 year)–1); at lower frequencies, β � 0.6.
f These were all the near-complete series, i.e. those missing fewer than 20 values out of 1200. These missing values were filled by interpolation.
g These were the 33-pixel-long transects over land in the geographical area indicated.
h These were the complete 46-pixel-long transects over ocean in the geographical area indicated.
i The space and time figures here are for the NOAA NCDC data; the corresponding other numbers are: CRUTEM3 transects: 1062 (near
complete); HadSST2 transects: 1381 complete; CRUTEM3 series: 161 near complete; HadSST2: 232 series near complete.

j These were estimated on the 408 grid points at 5� � 5� spatial resolution with near-complete series. In Table 10.C.2, there is a different
set of HadCRUT3 parameters based on the series obtained by first globally averaging the available data.
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Chapter 10 we shall see that the weather variability
for t > tw has very low intermittency, the strong
intermittency of these monthly averages is presum-
ably almost entirely due to ocean turbulence. This
scaling intermittency thus leads – even in the land
statistics – to small statistical deviations from perfect
power-law scaling for periods less than a year. This
was recently noted by Lanfredi et al. (2009), who
treated the deviations as a (scale-bound) Markov
process rather than a scaling one.

8.1.5 The temporal cascade structure
The extrapolation of the small-scale velocity differ-
ences to planetary scales was based on the assumption
that the energy flux was indeed independent of scale.
We can substantiate this by considering the fluxes and
their scale-by-scale cascade structures (their statistical
moments; see also the analyses in Lovejoy and Schert-
zer, 2010). Fig. 8.7a shows the first of these: the
analysis of the ECMWF fluxes, the analogues of the
spatial analyses presented in Fig. 4.1 but in the tem-
poral domain (resolution 1 day up to 1 year). Fig. 8.7b
shows the temporal analysis of the 20CR reanalysis
corresponding to the spatial analyses in Fig. 4.2c, in
this case spanning 6 hours to 138 years. Figs. 8.7c and
8.7d show some results for the temporal analysis of
GEM and GFS forecast models spanning 6 hours to
200 days, and 6 hours to 1 year, respectively (see
Section 4.2.3 for the corresponding spatial analyses).
Fig. 8.7e shows the temporal analyses of the various
precipitation products analysed spatially in Figs 4.8a,
b (for the TRMM satellite radar at 4 days- 1 year, the
ECMWF stratiform rain product, 3 hours to 3
months, and the CPC network, 1 hour to 29 years).
Fig. 8.7f shows the temporal cascade structure for the
MTSAT at resolutions 1 hour to 2 months and ana-
lyzed spatially in Fig. 4.10, and Fig. 8.7g compares the
spatial and temporal exponents K(q), showing that
they are indeed very close. The fluxes for the ECMWF
interim and 20CR reanalysis were taken from fluxes
estimated from absolute spatial Laplacians, the others
were from second time differences (a detailed discus-
sion and comparison is in Stolle et al., 2012). In all
cases, we see the same basic features: a cascade struc-
ture which is reasonably well respected up to scales of
5–10 days, with outer cascade scales typically in the
range 20–60 days, followed by a flattening at longer
time scales. Note that the outer cascade scale teff is a
bit larger than tw, which roughly corresponds to the

time scale at which the scaling breaks down, i.e. where
the empirical curves diverge from the regression lines.

These cascades use (roughly) daily data that avoid
the problems of strong diurnal cycles mentioned in
Section 8.1.2. The exception is the hourly MTSAT
images, but this is of IR cloud temperatures, which
are only moderately affected by the diurnal cycle (in
the corresponding spectrum shown in Fig. 8.12a there
is only a small diurnal peak). In order to extend the
temporal cascade analysis to smaller time scales, we
must grapple with the periodic detrending problem
indicated in Fig. 8.3c. In fact, to properly demonstrate
the cascade structure of these hourly in-situ tempera-
tures, we need to first periodically detrend them, and
then estimate the corresponding turbulent flux. The
problem is that hourly averaged station measure-
ments are essentially points in space, so there is a
large mismatch between the (tiny) spatial and hourly
temporal resolutions. In order to estimate fluxes
which have a closer match between space and time
scales, the simplest method is to use absolute spatial
temperature differences between stations. The four sta-
tions analyzed in Fig. 8.3c were roughly collinear
arranged in the order Lander Wy, Harrison Ne, Whit-
manNe, LincolnNe. Fig. 8.7h shows the tracemoments
calculated for the Harrison–Whitman difference
(� 170 km, left) and the mean of the Lander–
Harrison and Whitman–Lincoln differences (� 400,
450 km respectively, right). We see that the cascade
structure is well respected from scales of 5, 7 days
respectively down to inner scales of~3, 8 hours respect-
ively. These inner scales imply velocities of respectively
170/3 � 57 km/h and 425/8 � 53 km/h (both � 1300
km/day or � 15 m/s), which is comparable to
other space-time transformation velocities found
below: it is comparable to typical wind speeds. At scales
shorter than these in time, the spatial resolution is
simply too low; hence the small-scale (large l) devi-
ations from scaling in Fig. 8.7h. These results show
that in order to justify taking data at hourly resolutions,
the ground network should have stations roughly every
55 km.

In Table 8.1 we have already considered the basic
exponents from the ECMWF interim analysis and
compared them with estimates from various in-situ
data sources. Tables 8.3a, 8.3b, 8.3c and 8.3d compare
the exponents and outer scales of the u, T, h fields at
700 mb, with all parameters estimated from the
Laplacian fluxes. The main systematic variations are:
(a) the a for h is systematically lower than for u, T; (b)
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Fig. 8.7 (a) The trace moments of the
ECMWF interim reanalyses from daily
data for 2006: the same as Figs. 4.1a and
4.1b but for the temporal analyses. λ ¼ 1
corresponds to 1 year. The effective outer
temporal cascade scales (τeff) are
indicated with arrows. Also shown
(superposed in a thick line) are the q ¼ 2
envelopes for the universal quasi-
Gaussian processes; even the u, ν fields
are significantly more variable. Adapted
from Lovejoy and Schertzer (2011).
(b) The trace moments of the spatial
Laplacians of Twentieth Century
Reanalysis (20CR) products for the band
44–46� N for the zonal wind (upper left),
meridional wind (upper right), the
temperature (lower left) and specific
humidity (lower right) from series at
6-hour resolution. This is the temporal
analysis corresponding to the zonal
analysis in Fig. 4.2c; the largest scale,
λ ¼ 1, corresponds to 138 years; the
parameters of the fits are given in
Tables 8.3a, 8.3b, 8.3c, 8.3d. Notice the
“bulge” in the hs moments up to scales
of ~1 year, possibly a reflection of the
ocean cascade. Also shown (superposed
in thick lines) are the q ¼ 2 envelopes for
the universal quasi-Gaussian processes;
all the fields are significantly more
variable.
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Fig. 8.7 (c) The temporal cascades
estimated from the GEM data, every
6 hours, temporal (second derivative)
flux estimates. Also shown (superposed
in solid lines) are the q ¼ 2.9 envelopes
for the universal quasi-Gaussian
processes; all the fields are significantly
more variable. Reproduced from Stolle
et al. (2012). (d) Analysis of the t ¼ 0 GFS
meteorological model output: zonal
wind at 1000 mb, (top left), and 700 mb
(bottom left), and the corresponding
plots for the temperature 1000 mb
(top right) and 700 mb (bottom right).
λ ¼ 1 corresponds to 1 year. Also shown
(superposed in solid lines) are the
q ¼ 2.9 envelopes for the universal
quasi-Gaussian processes; all the fields
are significantly more variable.
Reproduced from Stolle et al. (2012).
(e) Temporal analyses of precipitation
products. The second time flux for the
100� 100 km gridded (4-day resolution)
TRMM radar satellite rain rate estimates
(upper left), for the 3 months of the
3-hourly ECMWF interim stratiform rain
product (upper right) and 29 years of
NOAA’s CPC hourly gridded surface
raingauge network (lower left). We have
included (lower right) the unique very
long 20CR product analyzed at 45� N at
2� resolution in space and 6 hours in
time from 1871 to 2008; in it, there is a
hint of a second lower intermittency
cascade from about 10 days to 1 year.
The regressions were performed over
the range of scales 8 days to 1 year
(TRRM), 6 hours to 10 days (ECMWF),
1 hour to 10 days (CPC) and 6 hours to
4 days (20CR). These are the temporal
analyses corresponding to the spatial
analyses presented in Figs. 4.8a and 4.8b.
Reproduced from Lovejoy et al. (2012).
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the basic intermittency parameter (C1) is about the
same (and low) for the ECMWF interim, 20CR and
GEM products, and the about the same (and high) for
the GFS and ERA40 products; (c) using the same
groupings we find that the low C1 models display
high teff, and conversely for the high C1 models; (d)
there is a variation in Veff (¼ Leff/teff) corresponding
to the variation in teff, with ERA40 and GFS about
double the 20CR and GEM and about four times the
ECMWF interim values. As expected, from one field
to another, a given model has fairly constant Veff (the
main exception being h for GFS, which is

anomalously low). As noted earlier, C1 determines
the rate at which the intermittency builds up from
one scale to another, whereas teff determines the
starting scale of the build up. Thus, a low teff partially
offsets a high C1 and vice versa, so that at a given time
scale all the model results are actually quite close.

The temporal parameters for the precipitation
fields were already shown in Table 4.6. In spite of
the fact that the temporal C1 estimates are quite close
to each other (0.33 � 0.03), the external scales vary
considerably, with the TRMM external scale (teff � 3
years) being about 20 times larger than that of the
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Fig. 8.7 (f) Analysis of MTSAT hourly resolution thermal IR imagery over the Pacific. The temporal analysis of the spatial Laplacian (at 30 km
resolution) geostationary MTSAT thermal IR imagery over the Pacific for 2 months. This is the temporal counterpart of Fig. 4.10. The
external scale is 48 days. Reproduced from Pinel et al. (2012). (g) MTSAT estimates of K(q), showing the near-perfect superposition of horizontal
space and time (hence isotropy). Lower line at right is time (C1 ¼ 0.073), upper line is NS/EW (C1 ¼ 0.074). Reproduced from Pinel et al. (2012).
(h) The fluxes using the diurnally detrended hourly surface temperature series whose spectra are shown in Fig. 8.3c. On the left is the analysis
of the absolute Whitman–Harrison temperature difference (� 170 km), and on the right is the mean of the two fluxes defined as the Lander–
Harrison and Whitman–Lincoln absolute differences (� 400, 450 km respectively). The cascade outer scales are indicated as well as the
scales where the scaling becomes poor due to the somewhat excessive smoothing introduced by the overly large spatial scales. The regression
lines correspond to C1 ¼ 0.069, α ¼ 1.95, C1 ¼ 0.072, α ¼ 2.00 (left, right). Also shown (superposed in thick lines) are the q ¼ 2 envelopes for
the universal quasi-Gaussian processes; both fields are significantly more variable.
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CPC and ECMWF reanalysis products; indeed, it is
much larger than any other measured atmospheric
external time scale. The obvious explanation is that
the TRMM external scale is determined by the ocean
variability, and hence teff � to rather than tw. This
could be a reflection of the fact that the TRMM data
are between � 40� latitude, i.e. predominantly over
ocean (Fig. 8.8a) whereas the CRC data are only over
land, explaining the fact that it has teff � tw. This is
consistent with teff � 70 days for the ECMWF interim
product, which is more of a land–ocean average with
an external scale between the two.

Although there are still anomalies, it seems that
cascade exponents in horizontal space and in time are
compatible with the hypothesis that they have the
same values. Since the a estimates are not too precise
(due to the zero rain-rate problem, which tends to
seriously bias them towards low a values), we can
attempt to substantiate this by comparing spatial
and temporal C1 estimates (see Table 4.6). Some of
these are shown in Tables 8.4a and 8.4b. We first
consider the data. The most reliable are those meas-
urements in both space and time: in Table 8.4a we
therefore show some MTSAT, TRMM satellite

Table 8.3a Estimates of the temporal C1 parameters from (spatial) Laplacian estimates of the fluxes all at 700 mb and between � 45�

(with the exception of the 20CR reanalysis, which was estimated over 44–46� N only). The forecast models GEM, GFS are for the t ¼ 0
field. The ERA40, GEM, GFS results are from Stolle et al. (2012); the ECMWF interim results are from Lovejoy and Schertzer (2011).
Compare these to the corresponding spatial analyses in Table 4.2a.

ECMWF interim ERA40 20CR GEM GFS

u 0.083 0.14 0.083 0.084 0.11

T 0.075 0.12 0.090 0.084 0.13

h 0.10 0.12 0.083 0.14 0.12

Table 8.3b The corresponding estimates of a.

ECMWF interim ERA40 20CR GEM GFS

u 1.85 1.7 1.81 1.8 1.8

T 1.90 1.9 1.82 2.0 1.8

h 1.77 1.7 1.74 1.6 1.7

Table 8.3c The corresponding estimates of the outer time scale Teff (in days).

ECMWF interim ERA40 20CR GEM GFS

u 30 7 16 13 5

T 60 9 13 28 6

h 36 9 40 12 30

Table 8.3d The corresponding estimates of the effective velocity Veff ¼ Leff/teff, with Veff given by Table 4.2a and teff from Table 8.3c
(in km/day).

ECMWF interim ERA40 20CR GEM GFS

u 420 1700 700 850 1800

T 330 1600 850 300 1400

h 350 1200 870 1000 300

8.1 Basic considerations and empirical evidence
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radiance estimates, although for the latter the time
resolution was poor (about 2 days for VIRS5, TMI8, 4
days for the radar R estimates). These are probably
the most reliable simultaneous space and time empir-
ical estimates, and they give C1 estimates which are
sufficiently close that their C1 values are probably in
fact the same. The CPC and ECMWF R estimates are
less reliable and give less similar estimates. For the
state variables, we can consider the models and the
reanalyses (Table 8.4b). We see that while the
ECMWF interim has virtually identical space and
time C1 estimates (this was already noted in Chapter 4,
and this is also true of the 20CR reanalysis) the space
and time C1’s for ERA40, GEM and GFS are a little
different. These small differences are more likely to
reflect limitations of the models rather than true
space-time differences.

8.1.6 The latitudinal dependence of
the cascade structure from ECMWF interim
reanalyses
Up until now, we have taken statistics from � 45�

latitude in order to concentrate on the basic variation
with direction (zonal, meridional, temporal). How-
ever, a basic aspect of atmospheric dynamics is its

latitudinal dependence, due not only to the Coriolis
force and strong north–south temperature gradients,
but also to varying fractions of ocean and land
(Fig. 8.8a). Paradoxically, the fairly limited analysis
of latitudinal dependence in Stolle et al. (2009) found
that latitudinal variations were small; this is presum-
ably because the cascade structure is mostly dependent
on the nonlinear interactions whereas the most
important north–south effects involve linear terms
and boundary conditions. Similarly, we have seen that
there are differences in the spectra over land and ocean
(Fig. 8.6d) but that the cascade parameters (a, C1) are
essentially unaffected (Fig. 8.6e, Table 8.2). Hence the
latitudinal variations in land/ocean distribution will
mostly affect H (hence β) rather than a, C1. For refer-
ence, Fig. 8.8a shows how the fraction of land and
ocean varies with latitude at a resolution of 5�. Let us
now investigate this more systematically here.

In order to study the latitudinal dependence, we
broke up the earth into 15� bands and calculated the
cascade structure (trace moments) and estimated the
corresponding parameters. Fig. 8.8b shows the evolu-
tion of the exponents C1, a, and Fig. 8.8c the external
spatial and temporal scales. The main difference vis-
ible is a small but systematic change in the outer
scales; there is also generally a good degree of
north–south symmetry.

Table 8.4a Comparison of the C1 estimates of various satellite thermal IR (MTSAT IR, TRMM VIRS5), passive microwave (TMI8), satellite radar
rain rates (TRMM, R), in-situ rain rates (CPC R) and ECMWF interim stratiform rain.

MTSAT (IR) TRMM VIRS5 (IR) TRMM TMI8 TRMM R CPC R ECMWF R

time 0.073 0.05 0.06 0.30 0.37 0.34

zonal 0.074 0.05 0.05 0.27 0.49 0.41

meridional 0.074 0.05 0.05 0.32 0.51 0.45

Table 8.4b Comparison of the C1 estimates of various models, reanalyses and in-situ measurements. The Twentieth-Century Reanalysis
(20CR) was at 45� N; all others (except the in-situ estimates) were � 45� latitude; all were spatial Laplacian flux estimates (except in-situ).
The in-situ “zonal data” are in fact from aircraft and are not zonal but simply horizontal. They were multiplied by 2.07 to attempt to
correct for the fact that they were scaling, not dissipation range estimates of fluxes (Eqn. 4.15; for details of the in-situ temporal estimates,
see the notes to Table 8.1).

ECMWF interim ERA40 20CR GEM GFS In-situ

u time 0.083 0.14 0.083 0.084 0.11 0.053

zonal 0.081 0.096 0.089 0.104 0.082 0.088

T time 0.075 0.12 0.090 0.084 0.13 0.087

zonal 0.074 0.094 0.088 0.077 0.080 0.107

h time 0.10 0.12 0.083 0.14 0.12 0.09

zonal 0.095 0.094 0.077 0.100 0.091 0.083
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Fig. 8.8 (a) The percentage of ocean, land and
“coastal” pixels as functions of latitude at 5� � 5�

resolution. The land and ocean were defined as
pixels with > 90% land and ocean respectively; the
remainder were classified as “coastal.” This clearly
shows the preponderance of ocean in the
southern hemisphere, with land only dominating
around 45� N. Since the land is a (fractal)
topographic exceedance set, the above will clearly
depend on the resolution; the 5� resolution values
are given for reference purposes. (b) The cascade
exponents C1, α: the top row is from the spatial
(zonal) analysis, the bottom row is from the
temporal analysis. From bottom to top in the
upper left graph we have the zonal wind (u), the
meridional wind (n), the temperature (T ), the
geopotential height (z), the vertical velocity (w),
the specific humidity (hs) (same lines used
throughout the four graphs). The extreme latitude
bands (� 75–90�) were not used since the mean
map factor is very large and the results were
considered unreliable. Reproduced from Lovejoy
and Schertzer (2011). (c) The external scales as
functions of latitude: upper left is the outer space
scale (in units of km) from the zonal cascade
analyses; upper right is from the time analysis
(in units of days); lower left is their ratio, the
effective speed of space-time transformations
(in units of km/day). The thin dashed horizontal
lines are convenient reference lines; note that
500 km/day ¼ 5.8 m/s. The thick dashed dark
and light grey lines are zonal and meridional
components of the wind; in the teff, Veff plots we
also show a short thick dashed line (between �
45� only) representing the theoretical predictions
based on the latitude dependence of the
tropospheric averaged ε estimates from Fig. 8.6a
(using the EW gradient estimates appropriate to
these zonal analyses). As can be seen, the
latitudinal variation is nearly exactly reproduced
but the values are shifted by a factor � 100.2 � 1.6.
Reproduced from Lovejoy and Schertzer (2011).
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First, for a given field we can compare the spatial
and temporal exponents; we find the differences are
generally less than 0.02 for C1 and less than 0.1 for a,
which is probably less than the statistically significant
level, especially since the sample size of each 15�

band is 1/6 of the previously analysed (90�) band,
and the range of scaling in the time domain was quite
limited (2–8 days; the 1-day value was not used since,
as can be see from the plot, it suffers from significant
“finite size effects”). In addition, we see that for some
of the fields (essentially the geopotential and specific
humidity near the equator), the a values are a bit
larger than the theoretical maximum (¼ 2) so that
the curvature (a) estimates (which were made here
using a ¼ K00(1)/Kʹ(1)) are not too accurate; their
deviations from a ¼ 2 are probably not statistically
significant. We notice a slight tendency for the
intermittency to increase away from the equator,
especially in the southern hemisphere; it is sufficiently
systematic that it is probably a real change in C1,
probably associated with the greater influence of the
ocean, itself intermittent.

Even though the exponents show remarkably little
latitudinal variation, that does not imply that the
cascade structure is completely independent of lati-
tude. Fig. 8.8c shows the variation of the external
space and time scales as well as their ratios: the effect-
ive speed Veff needed for space-time transformations.
The main noteworthy features are: (a) the latitudinal
variations in external scales are relatively small
(except perhaps the geopotential height) – in space
they are almost all between 10 000 and 20 000 km, in
time between 20 and 40 days, in speed between 400
and 1000 km/day; (b) the external scales have signifi-
cant north–south asymmetry, especially the time
scales, with the northern hemisphere having signifi-
cantly larger teff; but this is somewhat mirrored in
larger Leff values so that their ratio (Veff) drops in the
northern hemisphere. The reason for the asymmetry
is presumably due to the differences in data density
and in land cover between the two hemispheres
(Fig. 8.8a). The figure also shows that the latitudinal
variations are well explained by the corresponding ε

estimates from Fig. 8.6a.

Box 8.1 World record wind singularities

Until recently, in the gift shop at the summit of Mt. Washington (White Mountains, New Hampshire, USA), one could

find on prominent display a brochure describing the legendary summit measurement of the “world record wind” –

an average wind of 231 miles per hour. This was recorded on two occasions over a distance of 0.3 miles and

translates into ¼ 103 m/s over 4.7 s (Pagliuca, 1934). We are also told that this short gust was embedded in a

particularly windy hour whose mean was 69.3 m/s. During this hour, an extreme 5-minute average of 84.0 m/s was

obtained as well as extreme 1-minute averages of 85.8 m/s and a 17-second average of 93.9 m/s.

It seems that the 103 m/s record stood until January 22, 2010, when a World Meteorological Organization

panel of experts officially announced that on April 10, 1996, on Barrow Island, Australia, Tropical Storm Olivia had

“gusts” that surpassed the Mt. Washington record, reaching 113.2 m/s (see www.wmo.int/pages/mediacentre/

infonotes/info_58_en.html; the record had been overlooked for over a decade: for the story, see blog.ametsoc.

org/uncategorized/mt-washingtons-world-record-wind-toppled). The new record gust occurred within a 5-minute

interval whose average wind speed was 48.8 m/s. The high value of this longer average supported the credibility of

the higher gusts, and underlines the problem of attempting to define the record speed without reference to

resolution. Obviously, the shorter the interval, the easier it is to obtain a large value; from the point of view of

multifractals, the true measure of intensity is not the mean at a subjective resolution, but rather the value of the

corresponding singularity. It turns out that the term “gust” officially refers to a 3-second average value. So, from a

multifractal perspective, what is the true world record?

Aside from its curiosity value, the world record wind gives us an opportunity to test our theory and the

parameter estimates for n. Certainly the story of valiant Mt. Washington observers toiling under extreme conditions

is far more appealing than that of an anonymous automated recording station whose extreme measurements took

over 10 years to be even noticed (on a recent visit to the gift shop, we noted that the 1934 record is still acclaimed

as the highest wind measured by man!). Let us therefore start with the Mt. Washington record; the following

calculations are mostly for illustrative purposes.

Pagliuca (1934) details the heroic efforts that were made to calibrate and record the extreme winds that

occurred on April 12, 1934. The 4.7 s average of of vmax ¼ 103 m/s was recorded using a heated anemometer

and “hummer” (note that the corresponding speed of sound at this 2 km altitude at near freezing temperature is

about 300 m/s). A gust of 103 m/s lasting 4.7 s seems large; but is it really unexpected? From 1870 (when the
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Box 8.1 (cont.)

observatory was opened) to 2010 there are 4.4 � 109 seconds, so there have been~9.5 � 108 such periods, and the

rarest event that would have been detected has a probability of about pobs � 1/(9.5 � 108) � 1.1 � 10�9. Let us

compare this rough detection limit with the theoretical probability of finding such a large gust; we can easily do this

using the codimension function and Eqn. (5.16).

The first step is to estimate the overall range of scales; l ¼ tw/Dt where tw is the outer weather scale. From

Fig. 8.6b we see that at 45� N, the mean Dn is 27 m/s; this corresponds to tw � Le/Dn� 7.4� 105 s, so with Dt ¼ 4.7 s

we have l ¼ 1.57 � 105. We can use:

Dvl=Dv1 ¼ φv, ll
�H ð8:1Þ

where φn,l is the normalized flux corresponding to the wind (i.e. ε1/3) Eqn. (8.1) yields gφ ¼ gv þ H. According to

Table 8.1 for the temporal statistics we have C1n � 0.048, with a � 1.5–1.9 (see Table 8.1 note b) and H � 1/3. Since

the wind was highly “gusting” we can estimate the small-scale 4.7 s record fluctuation as Dnl � 103 m/s, taking Dn1
� 27 m/s; we have Dnl/ Dn1 � 3.8 and gn,max ¼ Log(3.8)/Log(1.57 � 105) ¼ 0.111, so that gφ�max ¼ 0.445.

In comparison, we have noted the most extreme event for the record has a probability of occurrence of pobs �
1.1 � 10�9, so that cmax ¼ c(gφ,max) ¼ –Log(1.1 � 10�9)/Log(1.57 � 105) ¼ 1.72.

Proceeding in this way for the maxima at the other resolutions, and estimating the probabilities by assuming

that the events were indeed the extremes at the given resolution over the entire period, we obtain the circles in
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Fig. 8.9 (a) The empirical singularities and codimensions
calculated for the Mt. Washington data (circles: 4.7 seconds,
17 seconds, 1 minute, 5 minutes, 1 hour; left to right) and the
Tropical Storm Olivia data (triangles, 3 seconds, 5 minutes,
left to right). The curves are for C1 ¼ 0.048 and α ¼ 1.4, 1.6, 1.8
(left to right). To calculate the singularities, the outer scale τw
is taken as 7.4 � 105 s, corresponding to Δv ¼ 27 m/s,
ε � 10�3 m2/s3. To calculate the codimensions, the events are
all assumed to be the extremes over the entire period of
operation of the stations (from 1870 at Mt. Washington, from
1932 on Barrow Island, to 2010). The straight (solid)
asymptotes indicate the dressed codimensions with qD ¼ 7.
(b) A (Langrangian, co-moving) Stommel diagram showing
the length and time scales associated with typical
atmospheric and oceanic dynamics, adapted from Steele
(1995). This graph has been slightly modified from the
adaptation in Lovejoy et al. (2000) by the placement of the
global scale at 20 000 km. The centre of each triplet of lines
corresponds to the mean behaviour, the other two to various
degrees of intermittency as discussed in the text. The left
group corresponds to the mean atmospheric value ε ¼ 10�3

m2s�3, (τw � 10 days) the central (dashed) to the mean ocean
surface value εo ¼ 10�8 m2s�3 (τo � 1 year), and the right to
value 10�12 m2s�3 (τo � 20 years) representative of deeper
waters. Periods of 100, 1000 years correspond to ε � 10�14,
10�17 m2s�3 and may be appropriate for the very deep
structures such as the thermohaline “conveyor belt.”
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8.2 Anisotropic space-time
turbulence

8.2.1 Space-time scale functions
Wehave argued that atmospheric variables – including
the wind – have wide-range (anisotropic) scaling stat-
istics and that the spatial scaling of the horizontal wind
leads to the temporal scaling of all the fields. Unfortu-
nately, space-time scaling is somewhat more compli-
cated than pure spatial scaling. At meteorological time
scales this is because we must take into account the
advection of structures and the Galilean invariance of
the dynamics. At longer (climate) time scales, this is
because we consider the statistics of many lifetimes
(“eddy turnover times”) of structures. We first

consider the shorter time scales; the longer time scales
are discussed in Chapter 10. This is a summary of
the more detailed discussions in Lovejoy et al. (2008),
Lovejoy and Schertzer (2010), Pinel et al. (2012).

In order to illustrate the formalism, consider the
horizontal wind n. In the 23/9D model (Chapter 6),
the energy flux ε dominates the horizontal and the
buoyancy variance flux j dominates the vertical so
that horizontal wind differences follow:

ΔvðΔxÞ ¼ ε1=3ΔxHh ; Hh ¼ 1=3 a
ΔvðΔyÞ ¼ ε1=3ΔyHh ; Hh ¼ 1=3 b

ΔvðΔzÞ ¼ ϕ1=5ΔzHv ; Hv ¼ 3=5 c
ΔvðΔtÞ ¼ ε1=2ΔtHτ ; Hτ ¼ 1=2 d

ð8:2Þ

where Dx, Dy, Dz, Dt are the increments in the
horizontal, in the vertical and in time respectively.

Box 8.1 (cont.)

Fig. 8.9a. Interestingly, as measured by the value of the singularity, the 103 m/s result had the lowest, whereas the

1 hour result had the highest order of singularity (0.501 rather than 0.445)! We can now compare this with the

theoretical probability pth � l�c(gφ ) using the theoretical c. The figure shows this for the multifractal parameters

indicated above both “bare” and “dressed” codimensions (Eqn. (5.49)) for a ¼ 1.4, 1.6, 1.8 with the empirical qD � 7

(see Table 5.1). The sensitivity of pth on a is expected since we are interested in singularities far from the mean

(values near the mean do however suffice to give accurate estimates of C1). We can see that if a � 1.6 then the

record values are roughly as expected.

But what about Tropical Storm Olivia? Let us again convert the speeds and resolutions into singularities, noting

that the observatory on Barrow Island that measured the new record has only been in operation since 1932. The

results for the 5-minute and 3-second gusts are also shown in Fig. 8.9a. We find for the 3-second gust g ¼ 0.449,

which is very slightly above the Mt. Washington value (0.445), but for the 5-minute Olivia average we find the

disappointing value of 0.409, substantially below the Mt. Washington 5-minute value of 0.479. Presumably, going

through the Barrow Island record back to 1932 one would find a higher 5-minute average than this. On this basis,

although Olivia (barely) succeeded in toppling the Mt. Washington record at high resolution, Mt. Washington still

holds the title at 5-minute resolution! Note that we have used the same 45� N mean value Dv ¼ 27 m/s for both Mt.

Washington and Barrow. According to Fig. 8.6b, at 20� S, a value of 12 m/s is more accurate (corresponding to tw �
1.7 � 106 s), and in this case the new singularity values are 0.503, 0.496 (3 s, 300 s, respectively), so that Olivia also

wins the 5-minute title. However, this is equivalent to giving the title on the basis of the varying local climatology,

and seems hardly fair. Ultimately we should use the planetary mean ε which is not so well estimated, but which is

closer to the value used for Mt. Washington: ε � 10�3 m2/s3.

We can now turn this around and use the above to obtain a rough estimate of the parameter a (i.e. assuming

qD � 7, C1 ¼ 0.048). Using the maximum Mt. Washington at 4.7 s, we find a � 1.70, whereas using the Barrow 3 s

maximum, we find a ¼ 1.76 (mean: a ¼ 1.73). We can then use this to calculate the record winds that would have

been recorded at other resolutions; for example at 1 second, we find l ¼ 7.4 � 105, cmax ¼ –Log(4.41 � 109)–1/

Log(7.4 � 105) ¼ 1.643. With a ¼ 1.73, the new gφ,max satisfying c(gφ,max) ¼ 1.643 is gφ,max � 0.4412, corresponding

to gv,max ¼ 0.1079, so that Dn � 116 m/s. The analogous calculation near the dissipation scale (taking the

resolution ¼ 1 mm) yields Dn � 130 m/s. We therefore see that even these rare extreme events are not so close

to the speed of sound; taking into account the Mt. Washington altitude and low temperature, we find the extreme

Mach number Ma � 130/300 � 0.43, so that compressibility effects (which depend on Ma2) are still small.

A particularity of this example is that a > 1, so that the singularities are unbounded. In cases where a < 1, there

is a theoretical maximum order of singularity. For the corresponding theory and applications to temporal record rain

rates, see Hubert et al. (1993).
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Eqns. (8.2a–b) describe the real-space horizontal Kol-
mogorov scaling and (8.2c) the vertical Bolgiano–
Obukhov (BO) scaling for the velocity. As usual, the
equality signs should be understood in the sense that
each side of the equation has the same scaling prop-
erties (recall that the FIF model (Section 5.4.4) inter-
prets this more precisely as a fractional space
integration). The anisotropic Corrsin–Obukov law
for passive scalar advection is obtained by the replace-
ments v ! r; ε ! w3=2ε�1=2 where r is the passive
scalar density, w is the passive scalar variance flux.

We have included Eqn. (8.2d), which is the result
for the pure time evolution in the absence of an
overall advection velocity; this is the classical
Lagrangian version of the Kolmogorov law (Inoue,
1951; Landau and Lifschitz, 1959), it is essentially
the result of dimensional analysis using ε and Dt
rather than ε and Dx. Although Lagrangian statistics
are notoriously difficult to obtain empirically (see
however Seuront et al., 1996), they are roughly known
from experience and are used as the basis for the
space-time or “Stommel” diagrams that adorn intro-
ductory meteorology textbooks. Fig. 8.9b gives an
example adapted from Steele (1995); another, very
similar one with corresponding added reference lines
may be found in Schertzer et al. (1997a). In the figure,
we have added triplets of reference lines, one for the
weather, two others for the ocean.

Although the original interpretation was in terms of
separate dynamical processes at each scale range (the
ellipses), the straight reference lines show that a scaling
interpretation works very well using the Lagrangian
relation between space and time (Eqn. (8.2d); l ¼
t3/2ε�1/3). In each triplet of lines the central one (slope
Ht ¼ (1/2)/(1/3)¼ 3/2) is a line of constant energy flux
showing that the basic Kolmogorov (nonintermittent)
scaling model holds remarkably well for both the
atmosphere and the ocean. While the atmosphere lines
correspond to the measured value εw¼ 10�3m2s�3, the
far-right ocean lines correspond to ε ¼ 1 � 10�12

m2s�3, which is considerably less than that estimated
for the ocean surface in Section 8.1.4 (εo � 1 � 10�8

m2s�3: the central dashed lines). The lines converge at
20 000 km and ~10 days (weather), and at 20 000 km,
~1 year (ocean surface), and the third at~20 years. For
the oceans, the value 1� 10�12 m2s�3 is reasonable for
depths of ~1 km or more (see Section 8.1.4). The
additional lines to the left and right of the central ones
give an idea of the fluctuations expected due to multi-
fractal intermittency. Their slopes are 3/(2 þ g) with

singularities g taken to be � C1 (C1 is actually the
standard deviation of g, not ε, when a ¼ 2). When
g ¼ þC1 (the left-most thin lines, taken here ¼ 0.25 in
accord with atmospheric measurements; e.g. Schmitt
et al., 1992) the line indicates the effect of the sparse
intermittent structures which give the dominant contri-
bution to the mean. When g ¼ –C1, these lines give
roughly the space-time relationships for the weaker
structures, which at any scale are the most probable
(when a ¼ 2, i.e. for log-normal multifractals, this
statement is exact). As expected, at each scale the weaker
structures live longer, and the stronger ones less long.

Following the developments in Chapter 6, we
can express the scaling Eqns. (8.2a–d) in a single
expression valid for any space-time vector displace-
ment DR ¼ Dr,Dtð Þ ¼ Dx,Dy,Dz,Dtð Þ by introdu-
cing a scalar function of space-time vectors called
the “space-time scale function”, denoted ½½DR

, which
satisfies the fundamental (functional) scale equation:

½½l�GstDR

 ¼ l�1½½DR

; Gst ¼
Gs 0

0 Ht

� �

;

Ht ¼ 1=3ð Þ= 1=2ð Þ ¼ 2=3 ð8:3Þ

where Gs is the 3 � 3 matrix spatial generator:

Gs ¼
1 0 0
0 1 0
0 0 Hz

0

@

1

A ð8:4Þ

(with rows and columns corresponding to (x, y, z); cf.
Eqn. (6.16)) and the 4� 4matrixGst is the extension to
space-time. We have introduced the notation “½½ 

” for
the space-time scale function in order to distinguish
from the purely spatial scale function denoted “kk”.
This distinction will be particularly useful in Chapter 9.
(Note on notation: we use Hh/Hv ¼ Hz (horizontal/
vertical) and Hh/Ht ¼ Ht (horizontal/time).)

Using the space-time scale function, we may now
write the space-time generalization of the Kolmo-
gorov law (Eqn. (8.2)) as:

Dv DRð Þ ¼ ε
1=3
½½DR

½½DR



1=3 ð8:5Þ

where the subscripts on the flux indicate the space-
time scale over which it is averaged. This anisotropic
intermittent (multifractal) generalization of the Kol-
mogorov law is thus one of the key emergent laws of
atmospheric dynamics and serves as a prototype for
the emergent laws governing the other fields.
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The result analogous to that of Section 6.1.4, the
corresponding simple (“canonical”) space-time scale
function, is:

½½DR

can ¼ ls
kDrk

ls

� �2

þ
jDtj

ts

� �2=Ht

 !1=2

ð8:6Þ

where ts ¼ f�1=2ε1=2 is the “sphero-time” analogous
to the sphero-scale ls ¼ f�3=4ε5=4 (see also
Marsan et al., 1996). With scale function
(Eqn.(8.6)), the fluctuations (Eqn. (8.5)) respect
Eqns.(8.2a–d).

8.2.2 Advection, Galilean invariance and
Eulerian statistics
Using the Lagrangian temporal scaling (Eqn. (8.2d))
implies Ht 6¼ 1, apparently predicting different hori-
zontal and temporal scaling. This is in contradiction
with the empirical analyses of the previous section,
which showed that horizontal and temporal expo-
nents were very close to each other. However, we
are interested in the temporal scaling in the Eulerian
frame, and for this we are missing a key ingredient:
advection. When studying laboratory turbulence
generated by an imposed flow of velocity n and with
superposed turbulent fluctuations, Taylor (1938)
proposed that the turbulence is “frozen” such that
the pattern of turbulence blows past the measuring
point sufficiently fast that it does not have time to
evolve; i.e. he proposed that the spatial statistics
could be obtained from time series by the
deterministic transformation nDt ! Dx where n is
a constant: in the lab n is determined by the fan and
by the wind-tunnel geometry. While this transform-
ation has frequently been used in interpreting
meteorological series, it can only be properly justi-
fied by assuming the existence of a scale separation
between small and large scales so that the large scales
really do blow the small-scale (nearly “frozen”) struc-
tures past the observing point. Since we have argued
that there is no scale separation in the atmosphere,
this is inappropirate.

However, if we are only interested in the statis-
tical relation between time and space, and if the
system is scaling, then advection can be taken
into account using the Gallilean transformation

�r ! �r��vt, t ! t, which corresponds to the following
matrix A:

A ¼

1 0 0 vx
0 1 0 vy
0 0 1 vz
0 0 0 1

0

B

B

@

1

C

C

A

ð8:7Þ

where the mean wind vector has components n ¼
(vx,vy,vz) (Schertzer et al., 1997b), and the columns
and rows correspond to x, y, z, t. The new “advected”
generator is Gst, advec ¼ A�1GstA and the scale func-
tion ½½DR

advec which is symmetric with respect to
Gst, advec is: ½½DR

advec ¼ ½½A�1DR

. The canonical
advected scale function is therefore:

½½DR

advec,can ¼ ½½A�1DR

can ¼ ls
Dx � vxDt

ls

0

@

1

A

20

@

þ
Dy � vyDt

ls

0

@

1

A

2

þ
Dz � vzDt

ls

0

@

1

A

2=Hz

þ
Dt

ts

0

@

1

A

2=Ht!1=2

ð8:8Þ

Note that since Dst, advec ¼ TrGst,advec ¼
Tr A�1GstAð Þ ¼ TrGst ¼ Dst , such constant advection
does not affect the elliptical dimension (see however
the next section for the “effective” Geff, Deff).

It will be useful to study the statistics in Fourier space.
For this purpose we can recall the result from Chapter 6
that the Fourier generator eG ¼ GT so that:

eGst, advec ¼ ATGT
st A�1
� �T

ð8:9Þ

The corresponding canonical dimensional Fourier-
space scale function is therefore:

½½�K 

advec, can ¼ ½½AT
�K

can ¼ l�1

s kxlsð Þ2 þ kyls
� �2

�

þ kzlsð Þ2=Hz þ ts ωþ �k��vð Þð Þ2=Ht ÞÞ1=2

ð8:10Þ

In agreement with the fact that the physical space
Gallilean transformation �r ! �r��vt; t ! t corres-
ponds to the Fourier-space transformation

�k ! �k;ω ! ωþ �k��v.

8.2.3 Advection in the horizontal
Eqn. (8.8) is valid because of the Gallilean invariance
of the equations and boundary conditions; it assumes
that the advection velocity is essentially constant over
the region and independent of scale. We now consider
this in more detail. We will only consider horizontal
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advection (put w ¼ 0; the interesting but nontrivial
effects of the vertical velocity on the temporal scaling
are discussed in Appendix 8A). If we apply the formula
over a finite region with relatively well-defined mean
horizontal velocity, then it should apply as discussed in
Lovejoy et al. (2008). But what about applying it to very
large-scale, e.g. global-scale, regions where the mean
velocity is small (if only because of rough north–south
symmetry)? However, even if we consider a flow with
zero imposed mean horizontal velocity (as argued by
Tennekes, 1975) in a scaling turbulent regime with Dvl
� ε

1/3l1/3, the typical largest eddy, the “weather-scale”
Lw�Le, will have ameanvelocityVw�Dvw� εw

1/3Lw
1/3

and will survive for the corresponding eddy turnover
time teddy ¼ tw ¼ Lw/Vw¼ εw

�1/3Lw
2/3 estimated as �

10 days above. In other words, if there is no break in
the scaling then we expect that smaller structures will be
advected by the largest structures in the scaling regime.

With this estimate of the horizontal velocities to
insert in Eqn. (8.8), let us compare them to the
Lagrangian term (Dt/ts)

1/Ht considering only the tem-
poral variations (i.e. take Dx ¼ Dy ¼ Dz ¼ 0) and
taking horizontal axes such that the advection term is
VwDt/ls. By definition, the sphero-time ts satisfies:
ls ¼ ε1/2ts

1/2 and since tw ¼ Vw
2 /εw we see that the

condition that the pure temporal evolution term is
negligible (i.e. that VwDt=ls > Dt=tsð Þ3=2; using Ht ¼
2/3) is Dt < tw so that the term (Dt/tw)

2/Ht ¼ (Dt/tw)
3

only becomes important for Dt > tw � 10 days. How-
ever, since the physical size of the eddies with lifetime
Dt ¼ tw is already the size of the planet (Lw), presum-
ably the term ceases to be valid for scales Dt > tw.
Nevertheless, it is possible that it might play a modest
role in breaking the scaling for Dt comparable to tw,
i.e. for the transition from weather to macroweather.

Neglecting this Dt3 term, we can now use this infor-
mation to rewrite the horizontal scale function (Eqn. (8.8)
withw¼ 0) in terms of Lw, tw andVw instead of ls, ts.We
can also allow for some trivial anisotropy corresponding
to the scale-independent (east–west)/(north–south)
aspect ratio a introduced in Chapter 6. In Table 4.1, this
was found to be � 1.6 � 0.3 for the ECMWF interim
fluxes and roughly the same for the MTSAT radiances,
and about the same for the precipitation fields (Table 4.6)
(more general trivial anisotropy – corresponding for
example to structures elongated in arbitrary horizontal
directions – could easily be introduced if necessary).

First consider overall (nonrandom) advection (vx,
vy): the square of the nondimensional space-time scale
function is:

½½DR

2 ¼
Dx � vxDt

Lw

0

@

1

A

2

þ
Dy � vyDt

Lw=að Þ

0

@

1

A

20

@

1

A

¼
Dx

Lw

0

@

1

A

2

þ
aDy

Lw

0

@

1

A

2

þ
v2x þ a2v2y

Lw2

0

@

1

ADt2

�2 vx
Dx

Lw
þ a2vy

Dy

Lw

0

@

1

A

Dt

Lw

0

@

1

A ð8:11Þ

This is helpful for understanding the effect of aver-
aging over random vx, vy.

The statistics of the intensity gradients of real
fields are influenced by random turbulent velocity
fields and involve powers of such scale functions
but with appropriate “average” velocities. Let us
now average Eqn. (8.11) over a distribution repre-
senting the velocities of various eddies or structures
over a given region. In this case we can non-
dimensionize the variables by the following
transformation:

Dx !
Dx

Lw
; Dy !

Dy

Lw
; Dt !

Dt

tw
;

mx ¼
vx

Vw
; my ¼

vy

Vw

ð8:12Þ

The symbols mx, my are used for the components of the
nondimensional velocity and:

Vw ¼ v2x þ a2v2y

� 	1=2
; tw ¼

Lw

Vw
ð8:13Þ

Note that here Vw is a large-scale turbulent velocity
whereas vx , vy are given by the overall mean advection
in the region of interest and mx < 1, my < 1 (since
v2 > vð Þ2). The use of the averages (indicated by the
overbars) is only totally justified if the second power
of the scale function is averaged; presumably, it is
some other power that is physically more relevant
and there will thus be (presumably small)
intermittency corrections (which we ignore). It is
now convenient to define:

m ¼ mx,my

� 	

; jmj2 ¼ m2x þ m2y ð8:14Þ

which satisfies jmj < 1. In terms of the nondimen-
sional quantities this yields an “effective” nondimen-
sional scale function:
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½½DR 

ef f � DRT BDR
� 	1=2

;

B ¼

1 0 �mx
0 a2 �a2my

�mx �a2my 1

0

@

1

A

;

DR ¼ ðDx , Dy , DtÞ ð8:15Þ

where the rows and columns correspond to x, y, t (left
to right, top to bottom). Using the terminology of
Chapter 6, the scale function in Eqn. (8.15) is only
“trivially anisotropic” since it is scaling with respect to
an “effective” G matrix Geff ¼ the identity; the matrix
B simply determines the trivial space-time anisotropy.

8.3 Global space-time scaling
in Fourier space

8.3.1 Fourier-space scale functions
In order to test out the correctness of the effective
(horizontal-time) global space-time scale function
(Eqn. (8.15)) it is convenient to use Fourier tech-
niques. If we assume that the structure function of a
field I (e.g. an IR radiance fromMTSAT, Chapter 4) is
scaling, then this implies the scaling of the spectral
density (Pst in space-time with dimension Dst ¼ 2 þ
1 ¼ 3), with a (different) Fourier-space (represented
by a tilde) scale function (see Section 7.2.1):




DIðDRÞ2
�

¼ ½½DR

x 2ð Þ
; Pst �Kð Þ /




j Ĩ �Kð Þj2
�

� ½½�K


�sst

; sst ¼ Dst þ x 2ð Þ



DIðDrÞ2
�

¼ kDrkx 2ð Þ
; Ps �kð Þ /




j Ĩ �kð Þj2
�

� k�kk
�ss

; ss ¼ Ds þ x 2ð Þ ð8:16Þ

where hDI2i and 2(1 – P) are Fourier transform pairs
(Eqn. (7.65)), K ¼ (k, ω), k ¼ (kx, ky) and ½½DR

�




satisfies the scaling equation with respect to Gst,
kDrk satisfies it with respect to Gs, ½½�K

 with respect
to GT

st and k�kk with respect to GT
s. Dst, Ds are the

traces of the space-time and space generators Gst, Gs.
The subscripts st are for “space-time,” i.e. x, y, t space;
the subscript s is for horizontal space, i.e. x, y space;
sometimes the subscripts xyt and xy are used instead.
If Eqn. (8.16) is regarded as defining the Fourier scale
functions ½½�K

, k�kk then we must have ½½�K

 � 0, k�kk �
0 (as for real-space scale functions). This is assured
since Ps(k) and Pst(K) are � 0, in addition, they are

related by Ps �kð Þ ¼
Ð

1

�1

Pst �k,ωð Þdω (see below).

We can similarly define the purely spatial Fourier-

space scale function from the spatial (k) subspace of K.
Let us use real-space coordinates nondimensiona-

lized as in Eqn. (8.12) and the corresponding nondi-
mensional Fourier-space vector:

K ¼ ðkx , ky , ωÞ;K ! ðLwkx, Lwky, twωÞ ð8:17Þ

We can now use the mathematical result (a Tauberian
theorem, Box 2.2):

jDR jxð2Þ /

ð

jK j�ðDþxð2ÞÞe
�iK�DR

dDK ð8:18Þ

Now, using the transformation of variables
DR! CDR (where C is an arbitrary nonsingular real
matrix), we obtain the general result:
ð

ðKTB�1K Þ�ðDþxð2ÞÞ=2e
�iK �Dr

dDK / ðdet BÞ�1=2

ðDR TBDR Þx ð2Þ=2; B ¼ CCT ð8:19Þ

since detB ¼ ðdetCÞ2 and C is real, the condition
for the validity of the above is det B > 0. In Chapter
9 we shall see that the scale functions for non (space-
time) localized (wave-like) behaviour det B < 0. In other
words, the real-space and Fourier-space scale function
pairs:

½½DR

 ¼ ðDRTBDRÞ1=2 ;

½½K 

 ¼ ðK
T
B�1 KÞ1=2; detB > 0 ð8:20Þ

satisfy Eqn. (8.16); Eqn. (8.20) is the relation between
their respective “trivial” anisotropies. A relation
useful below is that the inverse of the B matrix is:

B�1 ¼
1

1� m2x � a2m2y

1� a2m2y mymx mx
mymx ð1� m2xÞ=a

2 my
mx my 1

0

@

1

A

ð8:21Þ
If we now introduce:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2x þ a2m2y

� 	

r

ð8:22Þ

we find:

½½K 

2 ¼ ðK
T
B�1 K Þ ¼ ð ω0 þ k �m

�
Þ2s�2 þ k2x þ a�2k2y

ð8:23Þ
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The corresponding spectral density is:

Pðkx, ky,ωÞ ¼ k�Kk
�s ¼ ð�K

TB�1
�KÞ

�s=2

¼ ½ω02 þ k�kk
2
�s=2 ð8:24Þ

where the primed nondimensional frequency and
spatial scale functions are:

ω
0
¼ ðωþ �k ��mÞ=s; k�kk ¼ ðk2x þ a�2k2xÞ

1=2 ð8:25Þ

The transformation ω ! ðωþ �k��mÞ=s has a
simple interpretation: it accounts for both the
mean advection and the statistical variability of
the latter.k�kk is a scale function that accounts for
the squashing by a factor of a in the east-west
direction.

This analysis provides some theoretical justification
for a series of essentially ad hoc techniques starting with
Hubert and Whitney (1971) for measuring “satellite
winds,” now more accurately called “atmospheric
motion vectors” (AMVs). Such techniques using
MTSAT and GOES geostationary IR and visible satellite
imagery are currently used operationally. Although
a number of methods exist, these techniques are
mostly based on cross-correlations of sequences of
satellite images, i.e. on the real-space counterparts of
P (kx,ky, ω); see for example Szantai and Sèze (2008)
for a recent overview and comparison. Pinel et al. (2012)
show that the maximum cross-correlation using
Eqn. (8.15) does indeed yield the vector ðvx , vyÞ,
hence providing a theoretical basis for the AMV
technique.

8.3.2 One- and two-dimensional
subspaces and the analysis of MTSAT
thermal IR data
In order to test the above theory it is best to use data
spanning as wide a range of scales as possible in space
and in the temporal domain below tw. Although
reanalyses are convenient, they are not ideal due to
their somewhat low resolutions. However, a limited
space-time analysis of 20CR 700 mb temperature data
can be found in Figs. 10.15a, 10.15b, 10.15c (i.e.
including spectra in the macroweather and the cli-
mate). In the weather regime, a better choice for
analysis is the hourly (x, y, t) MTSAT dataset (Fig.
8.10); we can easily calculate the three-dimensional
spectral density Pst(kx, ky, ω). However, this full 3D
function is quite unwieldy; it is best to examine vari-
ous 1D and 2D subspaces. The easiest way to do this is
to recall that the correlation function (R) and the
spectral density are Fourier transform pairs:

R Dx,Dy,Dtð Þ ¼ 2pð Þ�3
ð

Pst kx, ky,ω
� �

ei kxDxþkyDyþωDtð Þdkxdkydω

Pst kx , ky,ω
� �

¼

ð

R Dx,Dy,Dtð Þe�i kxDxþkyDyþωDtð ÞdDxdDydDt

ð8:26Þ

(theWiener–Khinchin theorem, Chapter 2) whereR(Dx,
Dy, Dt) is the correlation function (this should not to be
confused with the space-time coordinate whose vector
“lag” DR will occasionally be needed). Recall (Eqn.
(7.79)) that the correlation function is simply related to

Fig. 8.10 One of the 1440 hourly
samples of the MTSAT IR radiances at
5 km resolution from 40� S to 30� N
and 80� E to 200� E. The white areas
are the coldest (generally clouds), the
dark areas are the warmest (generally
land). Australia is clearly seen in the
lower middle (Pinel, et al. 2012).
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the usual (second-order, difference) structure function
by S2 Dx,Dy,Dtð Þ ¼ 2 R 0, 0, 0ð Þ �ð R Dx,Dy,Dtð ÞÞ.

Successively substituting Dt ¼ 0, Dy ¼ 0, Dx ¼ 0
in the above we obtain:

R Dx,Dy, 0ð Þ ¼ 2pð Þ�2
ð

Pxy kx, ky
� �

ei kxDxþky Dyð Þdkxdky;

Pxy kx, ky
� �

¼

ð

Pxyt kx, ky,ω
� �

dω

R Dx, 0,Dtð Þ ¼ 2pð Þ�2
ð

Pxt kx,ωð Þei kxDxþωDtð Þdkxdω;

Pxt kx,ωð Þ ¼

ð

Pxyt kx, ky,ω
� �

dky

R 0,Dy,Dtð Þ ¼ 2pð Þ�2
ð

Pyt ky,ω
� �

ei kyDyþωDtð Þdkydω;

Pyt ky,ω
� �

¼

ð

Pxyt kx, ky,ω
� �

dkx ð8:27Þ

where Pxy(kx, ky)¼ Ps, Pxt(kx,ω), Pyt(ky,ω) are the spectral
densities on the (kx, ky), (kx, ω), (ky, ω) subspaces respect-
ively. Using results analogous to Eqn. (8.16) we obtain:

Pxy kx, ky
� �

¼ k kx, ky
� �

kxy
� sst�1ð Þ

;

Pxt kx,ωð Þ ¼ k kx,ωð Þkxt
� sst�1ð Þ

;

Pyt ky,ω
� �

¼ k ky,ω
� �

kyt
� sst�1ð Þ

where sst ¼ 3 þ x(2). The corresponding spatial,
spectral, nondimensional scale function for the
(kx, ky) subspace is:

kð kx, kyÞkxy ¼ ðk2x þ a�2
k2yÞ

1=2 ð8:28Þ

This equation implies that the purely spatial subspace
(kx, ky) is anisotropic with a squashing by a factor a in
the ky direction, which is the Fourier correspondence
to the real-space squashing by factor a in the x direc-
tion. The two wavenumber/frequency subspaces (kx,
ω), (ky, ω) are obtained by integrating out the third
coordinate and have scale functions which corres-
pond to constant mean advection velocities:

kðkx,ωÞkxt ¼ ðω2
x þ k2xÞ

1=2
;

ωx ¼ ðωþ kxmx
0Þ=sx;

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2x

q

;

mx
0 ¼ mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2x
s2 þ m2y

s

ð8:29Þ

kðky,ωÞkyt ¼ ðω2
y þ a�2k2yÞ

1=2
;

ωy ¼ ðωþ kym
0

yÞ=sy;

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2m2y

q

;

my
0 ¼ my

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2m2y

s2 þ m2x

s

ð8:30Þ

although with slightly different nondimensional vel-
ocities (mx0, my0) than for the corresponding noninte-
grated but zero wavenumber subspaces Pst(kx, 0, ω),
Pst(0, ky, ω) of the full three-dimensional Pst(kx, ky, ω)
(the variances is given by Eqn. (8.22)). In all cases, the
anisotropy of the wavenumber/frequency subspaces
can be approximated by ellipsoids whose characteris-
tics are determined by the magnitude of the dimen-
sionless horizontal wind, and these ellipsoids have the
same shapes at all scales.

We can further reduce the spectra to 1D (denoted
E) using:

R Dx, 0, 0ð Þ ¼ 2pð Þ�1
ð

E kxð ÞeikxDxdkx;

E kxð Þ ¼

ð

Pst kx, ky,ω
� �

dky dω

R 0,Dy, 0ð Þ ¼ 2pð Þ�1
ð

E ky
� �

eikyDydky;

E ky
� �

¼

ð

Pst kx, ky,ω
� �

dkx dω

R 0, 0,Dtð Þ ¼ 2pð Þ�1
ð

E ωð ÞeiωDtdω;

E ωð Þ ¼

ð

Pst kx, ky,ω
� �

dkx dky ð8:31Þ

Using the dimensional (kx, ky, ω) this yields:

Ex kxð Þ / jLwkxj
�β

; Ey ky
� �

/ jLwky=aj
�β

;

Et ωð Þ / jtwωj
�β

; β ¼ s� 2 ¼ 1þ x 2ð Þ ð8:32Þ

We can now use these theoretical 1D and 2D formulae to
test the full (x, y, t) theory (Eqns. (8.15)–(8.19)). This is
done by performing regressions on the various subspaces
that can be used to successively estimate the various
parameters, which greatly simplifies the parameter esti-
mation. Starting with the 1D analyses (Fig. 8.11a), and
following Pinel et al. (2012), we can see that the spectra
are indeed very close to power laws and remarkably
similar to each other if we use the following parameters:

s � 3:4� 0:1; Lw � twLeff ;s � 5000 km;
teff ;s � 5 days; Vw � Leff ;s=teff ;s � 11:4� 1:1m=s;
a � 1:2� 0:1

ð8:33Þ
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the Leff,s is the distance scale where the spectral
scaling starts to break down (hence the subscript
s) and teff,s ¼ Leff,s/Vw is the corresponding time
scale (only Vw is determined directly by the regres-
sion and it is comparable to those estimated from
the fluxes, Table 4.6). The small deviations from
power laws at small and large wavenumbers and
frequencies are unimportant “finite size effects”

which we demonstrate momentarily. Before pro-
ceeding to estimate the mean velocity, we can now
use the estimate of s to find H. Using the MTSAT
trace moment/flux estimate of K(2) ¼ 0.12
(Table 4.6: C1 ¼ 0.07, a ¼ 1.5) we obtain: H ¼
(–3 þ s – K(2))/2 ¼ 0.26, which is near the passive
scalar value (1/3) and the H value of many other
radiances (see Tables 4.7a, 4.7b).
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Fig. 8.11 (a) The 1D spectra calculated from the 3D (P(kx, ky, ω)) spectral density. The slightly shorter curve with the small but noticeable
diurnal peak is E(ω), the curve just below the arrow (1000 km)�1 is E(kx), the other curve is E(ky) and the reference line has absolute slope
β ¼ 1.5. (b) Contours of LogP(kx, ky): the spatial spectral density. (c) Contours of Log P (kx, ω), the zonal wavenumber/frequency subspace. The
orientation is a consequence of the mean zonal wind, –3.4 m/s. (d) Contours of Log P(ky, ω), the meridional wavenumber/frequency subspace:
there is very little if any “tilting” of structures since the mean meridional wind was small: 1.1 m/s. All reproduced from Pinel et al. (2012).
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In order to verify the theory more fully, more
directly and in order to estimate mx, my, we now turn
to the various 2D subspaces/sections (Figs. 8.11b,
8.11c, 8.11d). We again see that the comparison is
excellent with the additional parameters:

mx ¼ �0:3� 0:1; vx ¼ �3:3� 0:1m=s
my ¼ 0:1� 0:07; vy ¼ 1:1� 0:08m=s

ð8:34Þ

Hence s ¼ 0.95 � 0.05.
The relatively small values of the mean winds are

consequences of both the near-equator latitudes and
also the near-north/south symmetry of the region
analysed. We can now return to the issue of low- and
high-frequency and wavenumber curvature in the 1D
spectrum. Recall that the 1D spectra are obtained by
finite sums rather than integrals, and this only over a
finite part of Fourier space. There are therefore non-
scaling “finite size” effects at both low and high wave-
numbers/frequencies. In Figs. 8.12a, 8.12b, 8.12c we
successively compare the discretized, numerically inte-
grated 1D spectra (integrated over the part of Fourier
space actually observed) based on the theoretical
P(kx, ky, ω) with the actual 1D spectra. From these
figures we can see that even much of the nonscaling
curvature is reproduced as finite size effects at both
large and small wavenumbers/frequencies.

However, examination of the 2D spectra shows
that there are still residual differences between the
empirical and theoretical spectral densities and that
it is precisely on these small residual differences
between the spectra and the “turbulence background”
analysed above that the traditional wave analyses have
been made (Wheeler and Kiladis, 1999; Hendon and
Wheeler, 2008). Using the same data, we return to the
issue of turbulence-generated waves in the next chap-
ter, showing quantitatively how they can help explain
the small residuals.

8.4 Space-time relations

8.4.1 Space-time diagrams from the
ECMWF interim reanalysis
In Section 8.2.1 we discussed the Lagrangian (comov-
ing)-based relation for the statistics of the lifetimes of
structures as functions of their spatial scales, pointing
out that they well explained the standard space-time
diagrams (Fig. 8.9b). As was mentioned, it is much
easier to objectively determine Eulerian (fixed frame)
space-time statistics and to produce Eulerian space-
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Fig. 8.12 (a) E(kx) compared with the regression (smooth curve,
theory, parameters Eqn. (8.33)) and the line β ¼ 1.5). The
wavenumber range is (60 km)–1 to (13 000 km)–1. (b) E(ky)
compared with the regression (smooth curve, theory, same
parameters as Fig. 8.12a) and the line β ¼ 1.5. The wavenumber
range is (60 km)–1 to (8000 km)–1. (c) E(ω) compared with the
regression (smooth curve, theory, same parameters as Fig. 8.12a)
and the line β ¼ 1.5. Note the diurnal spike and its subharmonic at
(12 hours)–1. Frequency range: (2 h)–1 to (276 h)–1. All reproduced
from Pinel et al. (2012).

308

Space-time cascades and the emergent laws of the weather



time diagrams; indeed, the basic technique was already
discussed for estimating space-space diagrams (hori-
zontal/vertical) in Chapter 6. Applying the same tech-
nique to space-time, we can use the following implicit
relation between length scales L and time scales t:




φ
q
Lref =L

�

¼




φ
q
t
ref

=t

�

ð8:35Þ

Actually, in principle, Eqn. (8.35) gives a different
L – t relation for each q value. However, in the
simplest GSI case where the C1 and a for the spatial
and temporal analyses are the same (as is roughly the
case here: see Table 8.1), any q will give the same
relationship, although larger values of q will give
more statistically accurate results (as long as the
moments are not so large as to be spuriously depend-
ent on a few extreme values; recall that for q ¼ 1,
<φ> is independent of scale so that it cannot be
used). This was indeed shown to be empirically valid
on ERA40 reanalyses (Stolle et al., 2012). Here we
chose q ¼ 2, which has the advantage that the corres-
ponding K(2) is precisely the intermittency correction
necessary for the spectrum; this is needed below.

Fig. 8.13 shows the results for q ¼ 2 for the three
pairs of directions: NS/EW, EW/time, NS/time. The
space-time diagrams show that a linear (constant-
velocity) relation between space and time works
reasonably well up to 2000–2500 km in space and
up to time scales of ~7–10 days in time. After 7–10
days there is a drastic change in the relationship; this
is the transition to the macroweather regime. While
the space-space diagram shows that structures are
typically elongated in the EW direction by factors
up to a ¼ Leff,EW/Leff,NS � 1.6, comparable to the
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Fig. 8.13 Space-time and space-
space plots using the q ¼ 2 moments
and using λ ¼ tref /Δt and λ ¼ Lref /Δx
for time and space respectively (east–
west and time upper left, north–south
and time, upper right, north–south
and east–west, lower left). Bottom
dashed ¼ hs, middle dashed ¼ T, top
dashed ¼ u, top solid ¼ ν, middle
solid ¼ w, bottom solid ¼ z. In all
cases, the black reference lines have
slopes 1; in the space-time diagrams,
it corresponds to a speed of �225 km/
day; the spread in the lines indicates a
variation over a factor of about 1.6 in
speed. In the space-space diagram, the
bottom reference line corresponds to
isotropy; the top to an aspect ratio of a
�1.6 difference as discussed in the text.
Adapted from Lovejoy and Schertzer
(2011).
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Fig. 8.14 A space-time (vertical/time) diagram obtained from the
first-order structure functions of 3 lidar time series at 1 s (top) and 2 s
(lower two) resolutions. At the largest scales, the statistics are poor,
potentially accounting for the small deviations. We see that the
troposphere thickness (which corresponds roughly to planetary sizes
in the horizontal) has a time scale of several weeks to a month (see
Section 4.1.2). Assuming that ls ¼ 1 m, the top line corresponds to
v ¼ 60 m/s, the bottom line to 5 m/s (slopes Hz¼5/9). If instead ls ¼
10 cm, the top line implies 400 m/s, the bottom one to 30 m/s. This
is estimated using the formula: vΔt=ls ¼ Δz=lsð Þ1=Hz . Reproduced
from Lovejoy and Schertzer (2010b).
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value of the (average) ratio discussed above, the
space-time diagrams indicate effective space-time
transformation speeds Veff ¼ Leff/teff in the range
~200–400 km/day (� 2.5–5 m/s).

8.4.2 Space-time diagrams from lidar
In the previous subsection, we used the turbulent fluxes
to relate space and time to determine a (Eulerian) space-
time diagram for the ECMWF interim reanalyses. This
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Fig. 8.15 (a) A comparison of
log10Mq(Δt) for east–west IR radiance
fluxes (shorter and to the left) and
time (longer and to the right) for
q ¼ 0.4, 1.2, 2, 2.8. λ is defined with
respect to a time scale of 2 months
for the temporal analyses and 20 000
km for the spatial analyses. The
spatial log10Mq(Δx) has been shifted
so as to superpose as closely as
possible on the log10Mq(Δt) curves.
The corresponding speed is ~900
km/day (10 m/s) and the outer
cascade scale is ~40 days in time, �
35 000 km in space. The deviations
from scaling become important at
~5000 km or ~6 days. Compare this
with the nearly perfectly scaling Fig.
4.10, which is the geometric mean of
the east–west above with the north–
south analysis. Reproduced from
Pinel et al. (2012). (b) The horizontal
space-time diagram constructed
from Fig. 8.15a (upper curve and
straight line) and the corresponding
diagram from the north–south Mq

(lower). Reproduced from Pinel et al.
(2012).
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method was particularly pertinent for the reanalyses,
since we found in Chapter 6 that the ECMWF fields
(as opposed to the fluxes) weremore complex, involving
possibly spurious horizontal (scaling, nontrivial) aniso-
tropies. However, space-time relations can be estab-
lished using other statistics: in Section 6.6 we used
spectra to relate the east–west and north–south statistics
and in Section 6.5.2 we used structure functions to
relate the horizontal and vertical for lidar aerosol
backscatter. Using this structure function technique
and the same lidar data (except for (z, t) rather than
(x, z) sections), for a given Dt, let us estimate the
corresponding Dz(Dt) from the solution of the implicit
equation using the first-order structure functions
hjDB Dzð Þji ¼ hjDB Dtð Þji (B is the lidar backscatter
ratio, DB is a flucutation estimated from differences).
For three of the longer (z, t) sections, the results
are shown in Fig. 8.14. We see that the data follow
reasonably accurately the theoretical curve (assuming
horizontal wind dominated temporal statistics and
Hz ¼ 5/9). In addition, if the sphero-scale is assumed
to be 1 m (roughly what was determined for the verti-
cal section data in Fig. 6.21), then we find a horizontal
wind in the range 5–60 m/s, which is quite reasonable.
We also see that the space-time diagram gives direct
evidence that the top of the troposphere (� 10 km)
corresponds to the outer time scale � 2 weeks.

8.4.3 Space-time diagrams from
MTSAT thermal IR
We have considered the MTSAT data in some detail
already, both the spatial (Chapter 4) and temporal
(Section 8.1.5) cascade structures as well as the
space-time spectra (Sections 8.3.1, 8.3.2). Fig. 8.15a
shows the superposition of the spatial (zonal) trace
moments with the temporal trace moments when the
fluxes are determined from the spatial Laplacians and
there is a left–right displacement corresponding to a
horizontal speed of 900 km/day (� 10.4 m/s), which
is very close to the turbulent velocity n � 9.3 m/s
deduced from the spectra (Section 8.3.2). Interest-
ingly, although the zonal scaling is not so good at
the largest scales (the average of the zonal and merid-
ional moments have much better scaling: see
Fig. 4.10), the temporal and zonal scaling have nearly
identical deviations from pure power-law scaling. The
result is that the zonal space-time diagram is nearly
perfectly scaling over the entire range (Fig. 8.15b).

8.4.4 Space-time diagrams from
TRMM thermal IR
Let us now consider the TRMM data at a 12-hour
resolution, averaging over one year (� 5300 orbits) of
the thermal IR data remapped to 100�100 km grids.
The results are shown in Fig. 8.16a. Note that for
resolutions below 2 days, the statistics are poor since
only a small fraction of the 100 � 100 km “pixels” are
visited at such small time intervals. We see that the

(a)

(b)

Fig. 8.16 (a) The normalized moments of the TRMM thermal IR
data averaged over 100 � 100 km pixels at 12-hour resolution from
5300 orbits (1 year corresponding to λ ¼ 1). The long time variability
has been fitted to a cascade with outer scale at 1100 days, which
could be a consequence of the ocean cascade. Adapted from
Lovejoy and Schertzer (2010). (b) The same normalized moments of
the TRMM thermal IR data as Fig. 8.16a but with temporal and spatial
moments superposed, corresponding to a velocity of 400 km/day.
The longer series of dots to the left is the temporal analysis (from Fig.
8.16a), the shorter series of dots to the right is the east–west spatial
analysis (corresponding to Fig. 4.9b except that the analysis is not
along orbit, and is at lower resolution). Reproduced from Lovejoy
and Schertzer (2010).
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plot can be divided into three regions. Up to about 10
days, the moments are relatively linear, as expected
from space-time multiplicative cascade processes. If
we extrapolate the lines to larger scales, they cross at
about 25 days; the variability at less than 10 days is
accurately that which would have resulted from a
multiplicative cascade starting at 25 days. To aid the
interpretation, Fig. 8.16b shows the superposition of
the zonal spatial analysis of the same data. We see that
– although the resolution is much lower and hence
the scaling region much shorter – up to about 10 000
km and 10–15 days the fit is comparable to that of the
MTSAT data (although the velocity is somewhat
smaller, ~400 km/day).

8.5 Summary of emergent laws
in Chapter 8
To treat time, we first make a straightforward exten-
sion from space to space-time, introducing the space-
time scale function:

½½TlDR 

 ¼ l�1½½DR

;Tl ¼ l�Gst ð8:36Þ

where:

DR ¼ Dr,Dtð Þ ð8:37Þ

and Gst is the 4� 4 matrix generator of the space-time
scale transformation matrix Tl and the space-time
scale function is ½½DR

. The space-time fluctuations
in the fields are now related to the turbulent fluxes
φ by:

Df DRð Þ ¼ φ
½½DR

½½DR



H ð8:38Þ

The FIF model interprets this as a fractional integra-
tion of order H, i.e. in Fourier space as a power-law
filter, and in real space as a convolution with a power
law:

ef �Kð Þ ¼ eφ �Kð Þ½½�K 

�H
; f ¼ φ  ½½�R



� Dst�Hð Þ

ð8:39Þ

And the structure function and spectral densities are:




DI DRð Þ2
�

¼ ½½DR

x 2ð Þ
; Pst �Kð Þ ¼




jeI �Kð Þj2
�

� ½½�K


�sst

;

sst ¼ Dst � x 2ð Þ ð8:40Þ

where Dst is the space-time elliptical dimension ¼
Trace(Gst) and x(2) is the structure function exponent
for q ¼ 2 and �K ¼ ðkx, ky,ωÞ:

Although comoving (Lagrangian) horizontal-time
scaling involves an anisotropic (x,y,t) space generator
Gxyt, taking into account horizontal advection and
averaging over random advection velocities leads to
Gxyt as the identity and with trivial anisotropy speci-
fied by a 3 � 3 matrix B which accounts for advection
and trivial zonal/meridional spatial anisotropy. In
Fourier space:

½½DR 

 ¼ ðDRT BDRÞ1=2; ½½K

 ¼ ðKT B�1 KÞ1=2

ð8:41Þ

where:

B ¼

1 0 �mx
0 a2 �a2my

�mx �a2my 1

0

@

1

A

;

B�1 ¼
1

1� m2x � a2m2y

1� a2m2y mymx mx
mymx ð1� m2xÞ=a

2 my
mx my 1

0

@

1

A

ð8:42Þ

where mx, my are horizontal mean advection velocities
nondimensionalized by the RMS (“turbulent”) vel-
ocity (Eqn. (8.12)) and a is the mean zonal-to-merid-
ional aspect ratio. With these, we obtain the following
real-space (horizontal-time) scale functions:

½½DR 

 ¼ ðjDr0j2 þ Dt2 � 2Dr0�
�
mDtÞ1=2;

½½�K

 ¼ ðω
02 þ k�kk

2Þ1=2 ω0 ¼ ðωþ �k��mÞ=s;

k�kk ¼ ðk2x þ a�2k2xÞ
1=2

; Dr0 ¼ ðDx, aDyÞ

ð8:43Þ

where the coordinates, wavenumbers and frequencies
nondimensionalized by the external scales Le, tw
respectively. The (dimensional) structure function
and spectral density are:

hDIðDRÞ2 i / ðjDr0j2 þ Dt2 � 2Dr0�
�
mDtÞxð2Þ=2

PstðKÞ / ðω
02 þ k�kk

2Þ�Sst=2
; sst ¼ 3� xð2Þ

ð8:44Þ
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Appendix 8A: The effect of the vertical wind

on the temporal statistics

Dimensional analysis in a Lagrangian frame (Eqn.
(8.2d)) yields H ¼ 1/2, hence a (nonintermittent)
spectral exponent β ¼ 1 þ 2H ¼ 2, and there have
indeed been several observations of wind spectra
roughly of the predicted form E(ω) � ω

�2 (see the
discussion and references in Radkevitch et al., 2008).
However, according to our analysis, such Lagrangian
scaling should be observed neither for scales < tw
(due to the “sweeping” of small eddies past a fixed
observer as they are advected by large eddies) nor
for scales > tw (due to the weather/macroweather
transition, i.e. the breakdown of the scaling). In this
appendix, we give a summary of an explanation for
the occasional observation of β � 2 scaling developed
in Lovejoy et al. (2008), which potentially accounts
for this. It is based on the vertical stratification
combined with the assumption of Hw < 0 scaling of
the vertical wind (w). The complications discussed
here are important for the smaller temporal scales
and in the boundary layer, since for a given time
lag Dt their will be a critical height zalt ¼ wDt
below which there is a wall-induced change in
behaviour.

According to Section 8.2.3, the largest eddies “sweep”
(Tennekes, 1975) the smaller ones so that for time scales
less than about 2 weeks we can ignore the pure time
development term: Dt=tsð Þ2=Hz (see Eqn. (8.8) with
Dx ¼ Dy ¼ Dz ¼ 0). This just leaves the horizontal
and vertical advection terms (nDt/ls and (wDt/ls)

1/Hz). In
order to compare them we must take into account the
fact that while the mean horizontal wind across a given
part of the earth may be relatively large and well defined
(and insensitive to the resolution, which mostly affects
its fluctuations), the same is not true of the vertical wind.
When w is averaged over time scale Dt (denoted wDt)
since Hw < 0 it tends to zero as the region of interest
increases in size and with increasing temporal averaging

(Dt); in other words, statisticallywDt�DtHwwhereHw is
a small but on average negative exponent (see Chapter
10 for more discussion of H < 0, and see Table 4.1 for
the estimate Hw � –0.14). Lovejoy et al. (2008) argue
that statistically the net effect of this is to replace

Dt=tsð Þ1=Ht with Dt=t
0

s

� �1=H
0
t
where tś and Ht́ are

“effective” parameters, and (putting the “effective ver-
tical velocity” to zero) we may replace Gst with an
“effective generator” and effective advection matrix:

Gst, ef f ¼

1 0 0 0
0 1 0 0
0 0 Hz 0
0 0 0 H

0
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B
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1

C

C
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; Aef f ¼
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A

;

Dst, ef f , advec ¼ Tr A�1
ef f Gst, ef fAef f

� 	

¼ TrGst, ef f ¼ 2þ Hz þ H
0

t ð8:45Þ

with corresponding “effective scale function”:

½½DR

advec, ef f , can ¼ ½½A�1DR

ef f , can ¼ ls
Dx � vxDt

ls

� �2
 

þ
Dy � vyDt
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þ
Dz

ls

� �2=Hz

þ
Dt

t
0

s

� �2=H
0
t
!1=2

ð8:46Þ

The exponent Ht
0 and the value ts

0 depend on the exact
(scaling) statistics of the vertical wind, which are not
known, although Radkevitch et al. (2008) find empiric-
ally using lidar (z, t) sections thatHtʹ� 0.7 and ts0 has a
large variability but is somewhat larger than the sphero-
time ts (which is also highly variable: see the discussion
in Lovejoy et al., 2008). Using meteorological analyses,
Radkevitch et al. (2008) show that nevertheless the pure
temporal development will still dominate at large
enough time scales. In any case the global-scale analyses
presented earlier were for (x,y,t) radiation fields.
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Chapter

9
Causal space-time cascades: the emergent
laws of waves, and predictability and
forecasting

9.1 Causality

9.1.1 Causal and acausal impulse response
functions and fractional derivatives
Up until now, we have treated time as though it were
no different from space, and we have deliberately
avoided discussion of a crucial difference: causality.
Whereas we have typically treated spatial coordinates
as though they were left/right symmetric (often a
good approximation in the atmosphere), we certainly
cannot treat time in this way: the past influences the
future, but not the converse! This motivated the intro-
duction of causal space-time cascades (Marsan et al.,
1996; Schertzer et al., 1997, 1998).

To see this most simply, consider the Hth-order
fractional derivative equation for the impulse response
function g(t) (the “Green’s function”):

dHg

dtH
¼ dðtÞ ð9:1Þ

where d(t) is the usual Dirac delta function. Fourier
transforming both sides of the equation, we obtain:

egðωÞ ¼ ðiωÞ�H ð9:2Þ

where we have used the fact that the Fourier trans-
form of the d function¼ 1, that the Fourier transform
of d/dt is –iω, and have indicated the Fourier transform
by the tilde (~). This g can be used to solve the general
inhomogeneous fractional differential equation:

dHh

dtH
¼ f ðtÞ; h ¼ IH f ð9:3Þ

where h(t) is the response to the forcing f(t). We have
written the equation both in differential and in the
equivalent integral form, where IH is the Hth-order
integral operator, the inverse of dH=dtH . The solution
of Eqn. (9.3) is thus:

eh ¼ geef ¼ ðiωÞ�H
ef $

F:T:
h ¼ g  f ð9:4Þ

where  indicates convolution (we have used the fact
that multiplication in Fourier space corresponds to
convolution in real space). Comparing Eqns. (9.3)
and (9.4) we see that:

h ¼ IH f ¼ g  f ð9:5Þ

where:

eg ðωÞ ¼ ðiωÞ�H $
F:T:

gðtÞ ¼
ΘHeaviðtÞt

1�H

GðHÞ
;

ΘHeaviðtÞ ¼
0 t < 0
1 t � 0

� �

ð9:6Þ

ΘHeavi (t) is the Heaviside function. Writing the final
solution explicitly, we obtain:

hðtÞ ¼ IHL f ðtÞ ¼
1

GðHÞ

ð

t

�1

ðt � t0ÞH�1
f ðt0Þdt0 ð9:7Þ

where we have added the subscript L to indicate that
the fractional integral is of the “Liouville” type and
G(H) is the usual gamma function (not to be confused
with the cascade generator). We can see by inspection
that it is causal in the sense that the value of the
response h(t) depends only on the forcing for times
t0 � t, a consequence of the fact that the Green’s
function g¼ 0 for t< 0. This is indeed a general
feature of the time derivative operator.

We can compare this extreme asymmetric fractional
derivative (i.e. of only nonzero for t> 0) to the symmet-
ric fractional derivative used in the spatial simulation
discussed in Chapter 5, which was based on powers of
the absolute value: jωj�H . The latter corresponds to the
Riemann–Liouville (RL) fractional integration:

IHRL f ðtÞ ¼
1

GðHÞ

ð

1

�1

jt � t0jH�1 f ðt0Þdt0 ð9:8Þ

which is based on the Green’s function:

eg ðωÞ ¼ jωj�H

ffiffiffi

2

π

s

sin
π

2
ð1� HÞ $

F:T:
gðtÞ ¼

jtjH�1

GðHÞ
ð9:9Þ
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As an example, Tessier et al. (1996) proposed that the
relation between rainfall R(t) in small river basins
could be considered as the forcing of the correspond-
ing river flow Q(t) in the fractional differential
equation:

dHQ

dtH
¼ RðtÞ; QðtÞ ¼

1

GðHÞ

ð

t

�1

ðt � t0ÞH�1Rðt0Þdt0

ð9:10Þ

where empirically it was found that H¼ 0.3. In this
hydrology context, the Green’s function g corres-
ponding to the Liouville fractional integral is called
a “transfer function.” Physically this convolution cor-
responds to a specific power-law (scaling) “storage”
model for the runoff and groundwater processes,
which are thus assumed to be scaling over a wide
range. Examples are shown in Figs. 9.1 and 9.2.

9.1.2 Causality in space-time: propagators
If we extend the above discussion to space-time, then
the corresponding Green’s function/impulse response

function is called a “propagator.” Let us consider as
an example the propagator for the classical wave
equation:

r2 �
1

V2

@
2

@t2

� �

gð�r , tÞ ¼ dð�r , tÞ ð9:11Þ

where V is the wave speed. Taking the space-time
Fourier transform of both sides, we find:

egð�k,ωÞ ¼ ðω2
=V2 � j�kj

2Þ�1 ð9:12Þ

Because of the negative sign, the character of this
propagator is totally different from those obtained
with a positive sign (relevant to the discussion in
Chapter 8). Its behaviour is totally dominated by the
waves satisfying the relation ω

2
=V2 ¼ j�kj

2
, which

makes the propagator singular; this is indeed the
significance of this “dispersion” relation. Note that
in terms of the scaling symmetries, egð�k,ωÞ (and
hence gð�r, tÞ) are symmetric with respect to G¼ 1
(the identity matrix): egðl�1ð�k,ωÞÞ ¼ lsegð�k,ωÞ; the
solution to this functional equation is simply
egð�k,ωÞ ¼ ½½ð�k,ωÞ



�s where the space-time scale func-
tion ½½ð�k,ωÞ

 is symmetric with respect to G¼ 1 and
in Eqn. 9.12 s ¼ 2.

We can now use the propagator to solve the
inhomogeneous wave equation:

r2 �
1

V2

@
2

@t2

� �

Ið�r , tÞ ¼ hð�r , tÞ ð9:13Þ

for the wave I due to the forcing h:
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Fig. 9.1 (a) Simultaneous daily rainfall accumulation and river flow
for the Le Gardon St. Jean river. Adapted from Tessier et al. (1996).
(b) The nearby station of Corbes Roc Courbes (France).
Adapted from Tessier et al. (1996).

Q
(t

) 

Time (days)

700

600

500

400

300

200

100

0

800

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 9.2 Comparison of rainfall data (bottom), river-flow data (top)
and rainfall data fractionally integrated with a causal filter (transfer
function) (middle). The fields have been offset for clarity.
Reproduced from Tessier et al. (1996).
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eIð�k,ωÞ ¼
ehð�k,ωÞ

ðω2
=V2 � j�kj

2Þ
ð9:14Þ

The egð�k,ωÞ in Eqn. (9.12) is causal since it was
derived directly from a usual (causal) PDE. However,
for a given egð�k,ωÞ it is useful to be able to directly
determine whether or not it is causal. To see how to
do this, take the inverse Fourier transform with
respect to ω only. We obtain:

egð�k, tÞ ¼

ð

1

�1

e�iωtdω

ðω2
=V2 � j�kj

2 � 2idÞ
ð9:15Þ

where we have added in an extra –2id term that we
will take to zero momentarily. The above integral has
two singularities/poles in the lower half complex ω

plane at:

ω ¼ �id�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jkj2 � d2
q

ð9:16Þ

We can evaluate the integral (Eqn. (9.15)) by contour
integration by first making a branch cut connecting
the two poles by a line (for d> 0, this will be in the
lower half complex ω plane) and completing the con-
tour by enclosing the entire upper complex plane
(which is analytic). If we now consider t< 0, then
closing the integral along the real ω axis by an (infin-
ite) semicircle in the upper half of the complex ω

plane encloses no poles (singularities) so that the
egð�k, tÞ¼ 0 for all t< 0. However, when t> 0, to obtain
a closed path integral with zero contribution from the
infinite semicircular part we must use the lower half ω
plane which on the contrary encloses the poles and is
hence nonzero. This illustrates the general condition
needed for causality: it suffices for the propagator to
be analytic in the upper-half ω plane.

The wave equation propagator is unlocalized in
space-time since the dominant (divergence/singular)
contribution occurs over space-time lines: the disper-
sion relation ω¼�Vk. In contrast, the purely spatial
Green’s function jkj�2 obtained by integrating out ω
is localized, since it is singular only at the point at the
origin so that jkj ¼ 0. Physically, this corresponds to
the fact that wave packets can maintain their spatial
coherence (localization) while being delocalized in
space-time (the packets can propagate). Let us now
consider the propagator corresponding to the turbu-
lent scale functions and spectral densities discussed in
Chapter 8. For example, the usual FIF model for the
observable I is:

Ið�r , tÞ ¼ eð�r , tÞ  gð�r , tÞ; eIð�k,ωÞ ¼ eeð�k,ωÞegð�k,ωÞ

ð9:17Þ

where up until now we have taken g as a pure power
law of a scale function. We can now ask: what is the
(causal) space-time propagator g needed to filter a
turbulent flux such that the spectral density of its
corresponding observable is filtered by a power law
of order H? From Eqn. (9.14) we see that the spectral
energy density of the fractionally integrated field I is:

PIð�k ,ωÞ / hjeIj
2i ¼ jegj2Peð�k,ωÞ; Peð�k,ωÞ / hjee j2i

ð9:18Þ

For space-time localized turbulent fields we therefore
have:

jegð�k ,ωÞj
2 ¼ ½½ð�k,ωÞ



�2H ; ½½ð�k,ωÞ


2 ¼ ω2 þ k�kk

2

ð9:19Þ

(i.e. Eqn. (8.24) with mean velocity m¼ 0, s¼ 0 and
a¼ 1). In order to satisfy both Eqn. (9.19) and respect
causality, it suffices to take:

egð�k,ωÞ ¼ ðiωþ k�kkÞ
�H ð9:20Þ

(since k�kk� 0 for all k). This is clearly localized
in space-time since it is only singular at the point
ω¼ 0, k�kk ¼ 0.

Taking the spatially isotropic case k�kk ¼ j�kj we
see that the turbulent propagator Eqn. (9.19) corres-
ponds to the real-space g(r,t) satisfying:

ð�r2Þ1=2 þ
@

@t

� �H

gð�r , tÞ ¼ dð�r , tÞ ð9:21Þ

where the operator ð�r2Þ1=2 is a (fractional) Laplacian
operator, i.e. the real-space differential operator corres-
ponding to multiplication by j�kj in Fourier space. Note:
the fractional operator on the left-hand side is defined
by the inverse Fourier transform of ðj�kj þ iωÞH . This
can be compared to the fractional wave equation:

r2 �
1

V2

@
2

@t2

� �H=2

gð�r, tÞ ¼ dð�r, tÞ ð9:22Þ

Clearly the fractional wave equation has the same dis-
persion relation as the usual wave equation (obtained
with H¼ 2), so we anticipate that many of the proper-
ties of the solutions will be the same (i.e. they will be
insensitive to the value of H as long as H> 0 and they
will not be localized in space-time; they will propagate).

We can now show that the above propagators
(Eqns. (9.21), (9.22)) are indeed causal; indeed, the
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more general mixed turbulence and fractional wave
propagator:

eg ð�k;ωÞ¼ ðiωþk�kkÞ
�Htur ðω2

=V2�k�kk
2�2idÞ�Hwav=2

ð9:23Þ

is also causal where k�kk is the spatial scale function
(see Chapter 8), and again we will take d! 0 after
evaluating the integral for eg ðk�, tÞ; the cases Hwav¼ 0
corresponds to the localized case just discussed,
whereas Htur¼ 0 corresponds to a fractional wave
equation (wav for “wave” and tur for “turbulence”).
Applying the same analysis as above, we see that the
poles are at:

ω ¼
�ik�kkV

�id�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�kk
2� d2

q

ð9:24Þ

which are all in the lower half ω plane as required for
causality. Note that if we include advection, then
ω!ωþ k.v which just shifts the singularities parallel
to the real axis so that the poles stay in the lower half
complex ω plane. We can again make a branch cut
between the two poles lying near the real ω axis and
another between the third pole on the imaginary axis
and either of the other two. The resulting propagator
will be single-valued as long as HturþHwav< 1.
Again, the entire upper-half ω plane is analytic, so
we conclude that the hybrid turbulent wave propaga-
tor g in Eqn. (9.23) is causal.

9.1.3 The causal space-time fractionally
integrated flux (FIF) model
We have discussed the modifications of the FIF model
needed in the propagator which relates the observable
I to the flux e (Eqn. (9.17)); let us denote it with a
subscript I: gIð�r, tÞ. It only remains to consider the
convolution which relates the subgenerator gα(r, t)
(which is a noise composed of independent identically
distributed extremal Lévy random variables: see
Section 5.5) with the generator G(r, t); this must also
be causal, and let us denote it by a subscript e: geð�r, tÞ:

Gð�r , tÞ ¼ gað�r , tÞ  geð�r, tÞ; eGð�k,ωÞ ¼ egað�k,ωÞeg eð�k,ωÞ

ð9:25Þ

The conserved flux e is then obtained by exponentiation:

eð�r , tÞ ¼ eGð�r , tÞ ð9:26Þ

The observable I is then obtained by a final convolu-
tion with gI:

Ið�r , tÞ ¼ eð�r, tÞ  gIð�r, tÞ; eIð�k,ωÞ ¼ eeð�k,ωÞeg Ið�k,ωÞ

ð9:27Þ

In order to satisfy the scaling symmetries, the prop-
agators geð�r, tÞ, gIð�r, tÞ need not be identical; it suffices
that both satisfy generalized scale equations:

g
�

Tlð�r , tÞ
	

¼ lðDst�HÞgð�r, tÞ; Tl ¼ l�Gst ð9:28Þ

where for ge the order H must be chosen¼Dst(1 – 1/α)
(recall thatDst ¼ Trace(Gst) is the “elliptical dimension”
characterizing the overall stratification of space-time),
whereas for gI any H can be chosen (depending on the
field modelled). The relevant solutions of Eqn. (9.28)
are powers of scale functions with a Heaviside function
(Eqn. (9.6)) Θ(t) needed to ensure that causality is
respected:

gð�r , tÞ ¼ ΘHeaviðtÞ½½ð�r, tÞ


�ðD�HÞ ð9:29Þ

Wenote that for e and formodelling positive fields (such
as the passive scalar fields), this is adequate. However, for
the velocity field, it may be of interest to have symmetric
positive, negative fluctuations; this can be achieved by
multiplying gI by the factor sign(Δx) sign(Δy) sign(Δz)
(a better solution is to use the real part of a complex
cascade (Schertzer and Lovejoy, 1995), see Box 5.6).

We have seen from the previous section that the
propagators can equally well be specified in Fourier
space; according to the discussion in the previous
section, for g to be causal, it suffices that the trans-
form eg ð�k,ωÞ is purely analytic in the upper-half com-
plex ω plane. Physically, we have argued that the
turbulent flux e should be localized in both space
and in space-time in order to reproduce the basic
phenomenology that small turbulent “patches” live
for a power-law duration of their size. Similarly
observables should be spatially localized (otherwise
there would be no physical reality behind eddies or
wave-packets), but they need not be space-time
localized; such a delocalization typically involves
a special set of frequencies and wavenumbers which
render the propagator singular: the dispersion relation.
In this way scaling symmetries can allow for the emer-
gence of waves driven by turbulent fluxes.

For future reference, we can now rewrite the
FIF model in terms of (fractional) partial differential
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equations. For example, with the help of Eqn. (9.21),
in the simple case of horizontal spatial isotropy
(ignoring the vertical direction), we may write the
equation for the FIF generator as:
�

ð�r2Þ1=2 þ
@

@t

�Ha

Gð�r , tÞ ¼ gað�r , tÞ;

Ha ¼ D=a0; 1 ¼
1

a
þ

1

a0 ð9:30Þ

where gα(r, t) is an extremal Lévy noise index a, D¼ 3
(the dimension of horizontal space-time) and aʹ is the
usual auxiliary variable whose definition is recalled
above (for related fractional Lévy equations, see
Schertzer et al., 2001). Similarly, the observable I is
given by:
�

ð�r2Þ1=2 þ
@

@t

�HI

Ið�r , tÞ ¼ eð�r , tÞ; e ¼ eG ð9:31Þ

where HI is the corresponding order of fractional
integration for the observable and where for simpli-
city we have assumed the same space-time localized
propagators for both e and I. More generally, in the
“mixed” turbulence wave model, we have:

�

ð�r2Þ1=2 þ
@

@t

�Htur
�

r2 �
@
2

@t2

�Hwav=2

Ið�r , tÞ ¼ eð�r , tÞ;

e ¼ eG; HI ¼ Htur þ Hwav ð9:32Þ

Where we have kept the previous (localized) propagator
for the turbulent energy flux e. See Section 9.2.4 for
numerical examples.

9.2 The emergent laws of turbulence-
generated waves

9.2.1 Classical quasi-linear waves: gravity
waves and the Taylor–Goldstein equations
Because of the atmosphere’s enormous Reynolds
number it is natural to focus on the strongly non-
linear cascade of conserved turbulent fluxes and to
consider that these are the drivers for the observables.
If both the propagator of the turbulent fluxes them-
selves (ge) and the observables (gI) were identical and
were localized in space-time, the turbulence would
not generate unlocalized (wave-like) structures. In
this section we show how – again constrained by the
scaling symmetries – such turbulence-generated waves

may arise as emergent properties. We first review and
criticize the standard linearization approach to gravity
waves, which are probably the most commonly
observed type of atmospheric waves (although, with
a few exceptions such as in the boundary layer
downstream of topography (lee waves), one typically
sees only three or fewer wave oscillations).

Most gravity wave studies are based around the
Taylor–Goldstein equations (Goldstein, 1931; Taylor,
1931). One starts with the equations for inviscid,
irrotational flow of a vertical atmospheric section in
the Boussinesq approximation:

@u

@t
þ u

@u

@x
þ w

@u

@z
¼ �

1

r

@p

@x

@w

@t
þ u

@w

@x
þ w

@w

@z
¼ �

1

r

@p

@z
� g

@u

@x
þ
@w

@z
¼ 0

@r

@t
þ u

@r

@x
þ w

@r

@z
¼ 0

ð9:33Þ

where only one horizontal coordinate (x) has been
retained, r is the air density, g is the acceleration of
gravity – not a propagator (see e.g. Nappo, 2002, whom
we follow below). From top to bottom, these are the
equations for the horizontal, vertical momentum, mass
conservation, and the last for the thermal energy.

One next introduces a mean and a fluctuating set
of variables:

qðx, z, tÞ ¼ q0ðzÞ þ q1ðx, z, tÞ ð9:34Þ

where q represents u, w, r, p. Substituting the means
and fluctuations into Eqn. (9.33), one then obtains:

@u1

@t
þ u0

@u1

@x
þ w1

@u0

@z
þ u1

@u1

@x
þ w1

@u1

@z
¼ �

1

r0

@p1

@x

@w1

@t
þ u0

@w1

@x
þ u1

@w1

@x
þ w1

@w1

@z
¼ �

1

r0

@p1

@z
� g

r1
r0

@u1

@x
þ
@w1

@z
¼ 0

@r1
@t

þ u0
@r1
@x

þ w1
@r0
@z

þ u1
@r1
@x

þ w1
@r1
@z

¼ 0

ð9:35Þ

In the first, second and fourth rows, the two terms
immediately to the left of the equality sign are of
second order in the perturbations and are ignored in
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Box 9.1 Numerical simulations of causal processes

In Section 5.5 we discussed simulations of continuous-in-scale but acausal multifractal processes, in Appendix 5B we

discussed finite size effects and other practical numerical issues for both acausal and causal simulations, and in

Appendix 5C we gave a simple Mathematica code. Let us consider briefly the changes needed to produce causal

continuous-in-scale cascade processes.

According to the discussion in Section 9.1, all that needs to be modified in order to obtain a causal simulation is

to multiply a noncausal propagator by the appropriate Heaviside function so that g(r,t)¼ 0 for t< 0. Ignoring for the

moment the annoying finite size effects at small and large scales, the only other modification is to the normalization

constant. This can be easily calculated from the formulae in Appendix 5B.2, which were developed for symmetrical

acausal g which effectively satisfy g(x,t)¼ g(x,–t). The causal normalization constant was simply related to the

symmetric acausal constant via NDf,c¼ND,f /2 (Appendix 5B.2). Aside from this straightforward normalization issue,

the correction method and constant are unchanged so that there are very few changes in the numerical implemen-

tation (see Lovejoy and Schertzer, 2010, for the full details).

In Fig. 9.3, we give an example of a realization of a causal process and – to emphasize that the simulation is of

the temporal evolution of a 1D series – we have plotted a sequence of spatial sections. In Appendix 5B.3 we

discussed the scaling finding that the causal processes have fewer “finite size” effects, and that the acausal

corrections work extremely well. We can extend the simulations to two spatial dimensions and time; Fig. 9.4

shows an example on a 2563 grid using Ht¼ 2/3; i.e. in a Lagrangian frame. We see that the small structures “live”

for far less time than the larger ones. In Section 9.3 we explore how this “memory” can be used to forecast the

future state.

In Appendix 5B.3 we evaluated the accuracy of the spectral scaling for 2D causal and acausal processes and

concluded that the correction method works well independently of the dimension of the space, and that for the

causal extensions the temporal statistics have significantly smaller deviations. This is presumably because of the

sharp discontinuity introduced by the Heaviside function, which roughens the simulations along the time axis; this

thereby somewhat compensates for its otherwise overly smooth behaviour.
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Fig. 9.3 Evolution of (left/
right symmetric) 1D spatial
sections, series of a causal
simulation with α¼ 2, C1¼ 0.2.
Every second time interval is
shown, displaced by two units
in the time axis with respect to
the previous section.
Reproduced from Lovejoy and
Schertzer (2010).
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order to yield a linear system. This system is then
Fourier transformed with respect to both time and the
horizontal coordinate to yield:

d2ŵ

dz2
þ

�

k2xN
2

ω2
� k2x

�

ŵ ¼ 0; ŵ ¼ e�z=ð2HsÞ
ew;

N2 ¼ g

�

@logθ0
@z

�

ð9:36Þ

whereN is the Brunt–Vaisaila frequency, θ the potential
temperature, ewðz, kx,ωÞ is the horizontal, temporal
Fourier transform of the vertical velocity (we have

assumed w0¼ 0 and so dropped the subscripts:
w¼w1), and kx, ω are the corresponding Fourier
variables conjugate to x and t. We have used the fact
that in the Bousinesq approximation, N2 is equal to:

N2 ¼ g
@logr0
@z

� �

ð9:37Þ

Other assumptions include an exponentially decreas-
ing density (with scale height Hs), the hydrostatic
equilibrium of the density fluctuations, and finally
the absence of a background horizontal wind field
(i.e. u0¼ 0: see Nappo, 2002, for more details).

Box 9.1 (cont.)

Fig. 9.4 A sequence (from left to right, from top to bottom) simulated on a 2563 grid showing every fourth time step from step
1 to step 119 (because of the periodicity, the second half, from step 128 on, is artificially correlated with the first half and is not shown).
Multifractal parameters: α¼ 1.8, C1¼ 0.1, H¼ 0.333, with some horizontal anisotropy (e¼ 0.2, c¼ 0.1) and in a Lagrangian frame
(Ht¼ 2/3).
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Eqn. (9.36) is the most usual (but still special case) of
the Taylor–Goldstein equations for the vertical wind
fluctuation. The equations for the other fluctuations
can also be derived from this; these are sometimes
called “polarization” relations and will not be discussed
further. In addition, as in Chapter 8, a mean “back-
ground” wind u0 can be taken into account by the
transformation ω ! ωþ �k��u0 (cf. Section 8.2.2).
Making the final approximation that N(z)¼ constant,
and Fourier transforming with respect to z, we obtain
the classic zero background wind (u0¼ 0) dispersion
relation:

ω ¼ �
kxN

ðk2x þ k2zÞ
1=2

ð9:38Þ

Note that the low-frequency Rossby wave disper-
sion relation is nearly of the same form.

Before continuing, let us pause and consider what
has been accomplished. One has started with a highly
turbulent atmospheric flow whose typical nonlinear
terms are roughly 1012 times the linear ones (the
Reynolds number), yet one has assumed that this is
compatible with a linear approximation for small
perturbations. Although, a priori, the validity of such
a linearization seems doubtful at best, the Taylor–
Goldstein equations (including the polarization rela-
tions) are routinely used as the basis for interpreting
various atmospheric datasets. Over time it has
spawned a sizeable gravity wave literature. Since the
usual response to such theoretical criticism is some-
thing along the lines of “well, it seems to work,” we
will instead attempt to check that the linearization
(i.e. dropping the second-order terms in Eqn. (9.35))
is justified, i.e. to pursue an empirically based cri-
tique. To this end we can use the dropsonde data
discussed in Chapters 4 and 6 to evaluate at least some
of the terms in Eqn. (9.35) and to directly empirically
check whether or not the neglected (second-order)
terms are indeed small compared to the kept terms.

The simplest terms to empirically check are the
vertical shear of the horizontal wind, i.e. the assump-
tion that @u0=@z >> @u1=@z which is used to linearize
the horizontal momentum equation (see Eqn. (9.35),
top: w1@u0=@z is kept but w1@u1=@z is dropped).
To evaluate these terms, we can take advantage of
the fact that on many occasions, dropsondes were
dropped at 0.3 s intervals, corresponding to ~50m
separation in the horizontal (see Fig. 9.5 for the
trajectory of the pair used here). The perturbed and
unperturbed winds can be defined as:

u0 ¼
ðusonde1 þ usonde2Þ

2

u1 ¼
ðusonde1 � usonde2Þ

2

ð9:39Þ

In Fig. 9.6 we see the basic means and fluctuations
estimated this way at both 80m and 20m vertical
resolutions. From the figure we see that u1 can readily
be 0.5m/s, i.e. Δu in the horizontal can readily be
� 1m/s, so that for a 50m separation this implies that
the “fluctuation Re” (i.e. the Reynolds number based
on Δv rather than on v) is of the order 1.50/10�6�
5� 107.

In order to see if the linearization can be justified,
we may now consider Fig. 9.7, which compares the
mean (@u0=@z) and fluctuation (@u1=@z) shears for
layers at 80 m vertical resolution. We can see that they
are typically comparable and much larger than the
noise level of the measurements. In order to quantify
this further, we can calculate the relative difference
(E) at the 80m resolution:

E ¼
@u1
@z

�

�

�

�

80
� @u0

@z

�

�

�

�

80
@u1
@z

�

�

�

�

80
þ @u0

@z

�

�

�

�

80

ð9:40Þ

If E¼ 1, then the mean shear is negligible compared
to the perturbation, if E¼ –1, then on the contrary, the
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–1000 0 1000 Fig. 9.5 The trajectories of
the pair of sondes analysed
here, dropped at about
12 km altitude.
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fluctuation is negligible, justifying the linearization
(Fig. 9.8). It can be seen that linearization is generally
untenable, and often so by rather large factors. Indeed,
it is rather the mean shear which should most often be
neglected!

So how do we explain the existence of waves,
indeed waves whose dispersion relations are presum-
ably not too different from those predicted by the
simple theory presented here? The answer is that the
dispersion relations, like the other turbulent laws
discussed in this book, are emergent laws with their
basic characteristics – in this case dispersion laws –

determined by the scaling symmetries. In the next
section we show quantitatively how this is possible.

9.2.2 The emergence of dispersion laws:
an extreme unlocalized (wave) model
Let us now consider a simple FIF model which is only
localized in space, but not in space-time. As usual,
the propagators must be chosen in Fourier space to
respect the appropriate scaling symmetries; for the
observable I, let us choose:

eg Ið�k,ωÞ ¼
�

iðω� k�kk
Hτ Þ
	�H=Ht

;

eg I

�

l�GT
st ð�k,ωÞ

	

¼ lHeg Ið�k,ωÞ; Gst ¼

�

Gs 0
0 Ht

�

ð9:41Þ
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Fig. 9.6 The mean horizontal wind (u0) and fluctuations (u1) for
the means taken over 80 m thick layers, and for u1 only for 20 m thick
layers. The horizontal axis shows the altitude in units of 20 metres.
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Fig. 9.7 The vertical shears at 80 m vertical resolution; darker is
@u0=@z, lighter the perturbation, @u1=@z. The solid lines are
two-standard-deviation error bars showing that most of the
variations are real, not instrumental.
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Fig. 9.8 The relative difference of the mean
and perturbation shears (E) shown in Fig. 9.7.
If E¼ 1, then the mean shear is negligible
compared to the perturbation, if E¼ –1,
the fluctuation is negligible, justifying the
linearization. It can be seen that linearization
is generally untenable. The horizontal axis
shows the altitude in units of 20 metres.
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These are propagators for fractional wave equations
(a little different from Eqn. (9.22)). Where Gst is the
space-time generator of the anisotropy and Gs is the
spatial generator satisfying:

kl�GT
s
�kk ¼ l�1k�kk ð9:42Þ

the form Eqn. (9.41) for the propagator gI is a little
more general than the fractional wave equation prop-
agator, since it allows for Hτ 6¼ 1 so that it is useful in
a Lagrangian frame where can Hτ can be taken as 2/3
(Section 8.2.1). Following our discussion of the prop-
agator for the classical wave equation, we anticipate
that the behaviour will be dominated by the ω, k
which make gv singular, i.e. those satisfying the dis-
persion relation:

ωð�kÞ ¼ k�kk
Hτ ð9:43Þ

In order to understand the implications of this prop-
agator, it is instructive to take the inverse Fourier
transform of eg Ið�k,ωÞ with respect to ω:

eg Ið�k, tÞ ¼ ΘHeaviðtÞt
�1þH=Hτ eik�kk

Hτ t ð9:44Þ

(we ignore constant factors). The Heaviside function
Θ(t) and power law shows directly that gI is a causal
temporal fractional integration of order H/Hτ of
waves; we come to the same conclusion by noting
that the upper-half ω plane is analytic (Section 9.1.2).

We can use the standard method of stationary
phase (e.g. Bleistein and Handelsman, 1986) to obtain
an asymptotic approximation to the space-time con-
volution for I:

IðΔr , tÞ � ee
�

�kðΔrÞ, t
	

t egv

�

�kðΔrÞ, t
	

ð9:45Þ

where t indicates convolution with respect to time
only and the propagator is:

gIð�r, tÞ � egI

�

�kð�rÞ, t
	

¼ ΘHeaviðtÞ
eið�k��r�ωð�kÞtþf0ð�kÞÞ

t
5=2�H=Ht det @

2ωð�kÞ
@ki@kj

� 	

ð9:46Þ
where f0 is a phase and:

Δr ¼ �v gð�kÞt; �vgð�kÞ ¼ rωð�kÞ; ωð�kÞ ¼ k�kk
Hτ

ð9:47Þ

Eqns. (9.46) and (9.47) should be understood as para-
metric equations: k is the wavevector which satisfies the
“ray” equation �r ¼ �vgð�kÞt, where vg is the group vel-
ocity and ωð�kÞ ¼ k�kk

Ht is the dispersion relation
(note that we would have obtained ωð�kÞ ¼ �k�kk

Ht if
we had chosen the equally valid propagator with –ω in
the place of ω).

Eqns. (9.46) and (9.47) show that the velocity field
is the fractional time integral of wave packets propa-
gating along rays at the group velocity, dispersing
and decreasing in amplitude as they travel as t�2

(the exponent is 5/2 –H/Ht¼ 2> 3/2; Hτ¼ 2/3).
The classical time dependence of the attenuation
of wave packets is t�3/2 so that the waves attenuate a
little faster. Also, as usual, the above breaks down
when the determinant in the denominator vanishes;
these singular curves are the “caustics.” Table 9.1
shows the comparison of the flux propagators and
the observables.

Although there are two different Green’s functions
used to obtain v, the overall field is still symmetric
with respect to the same generator Gst, and the

Table 9.1 A comparison of flux and wave-like velocity propagators. In both localized and unlocalized cases, the propagators satisfy:
~g
�

λ�GT
st ð�k,ωÞ

	

¼ λ�H~gð�k,ωÞ. Note that Dst¼ Tr(Gst)¼DsþHτ, z ¼ k�kk
Ht t.

Flux-like Wave-like

(Power law!) Localization in space-time Unlocalized

egð�k,ωÞ ¼ ðiωþ k�kk
Hτ Þ�H=Ht

egð�k,ωÞ ¼
�

iðω� k�kk
Ht Þ
	�H=Ht

egð�k, tÞ ¼ ΘHeaviðtÞt
�1þH=Ht f ðzÞ; f ðzÞ �

zH=Ht�1 ; z � 0

1; z � 1
egð�k, tÞ ¼ ΘHeaviðtÞt

�1þH=Ht f ðzÞ; f ðzÞ � eiz

gð�r , tÞ ¼ ΘHeaviðtÞ½½ð�r , tÞ


�ðDst�HÞ

e.g.½½ð�r , tÞ


2 ¼ k�rk

2 þ t2=Ht

gð�r, tÞ � ΘHeaviðtÞ
eið�k��r�ωð�kÞtþfð�kÞÞ

t5=2�Hdet
@2ωð�kÞ
@ki@kj

� 	

�r ¼ �vgð�kÞt; �vgð�kÞ ¼ rωð�kÞ; ωð�kÞ ¼ k�kk
Ht

9.2 The emergent laws of turbulence-generated waves

323



structure function exponent x(q) is also unchanged.
In addition, the spatial kΔrk – which is the basic
physical scale function – can (if necessary) be the
same for both ge and gI (it is only the space-time scale
function which need be different). Lovejoy et al.
(2008) give some more information on the statistical
properties of the turbulence–wave model, and in the
next sections we consider more realistic scaling dis-
persion relations.

9.2.3 Gravito-turbulence dispersion
relations
We have seen that the standard gravity wave model
assumes, for a layer of thickness Δz, a uniform strati-
fication characterized by N2 ¼ gðΔlogθ=ΔzÞ, and
weak nonlinearity leading to the Taylor–Goldstein
equations and to the dispersion relation, Eqn. (9.38).
In contrast, our turbulence flux-based approach
assumes a highly heterogeneous vertical structure
whose statistics are determined by the (large-scale aver-
aged) buoyancy variance flux f ¼ g2½ðΔlogθÞ2=τb
l via
its effect on ls (the subscript indicates that the flux is
measured at space-time resolution l). The combined
e, f fluxes lead to a physical scale function kΔrk, thus
to a wave-like propagator (such as Eqn. (9.41)) and
hence the dispersion relation Eqn. (9.43).

However, the scale function is fairly general. For
example, considering only the vertical (x,z) plane, it is
of the form:

k�k k ¼ gΘðθÞk�kkcan; k�kkcan¼ l�1
s

�

ðkxlsÞ
2 þ jkzlsj

2=Hz

	1=2

ð9:48Þ

where gΘðθÞ is a relatively arbitrary function of
direction in the vertical plane; see Section 6.5.1 (here
θ is the polar angle in the vertical plane, not the
potential temperature, and Θ is not the Heaviside
function).

Several of the predictions of gravity wave theory
have been at least roughly empirically verified; it is

therefore of interest to choose gΘðθÞ so that the turbu-
lence/wave theory gives a similar dispersion relation
and hence gives similar predictions. Since the classical
dispersion relation is symmetric with respect to iso-
tropic scale changes (i.e. with x, z generator

G ¼
1 0
0 1

� �

rather than the anisotropic

G ¼
1 0
0 Hz

� �

), the two dispersion relations cannot be

identical. However, they can be chosen to be suffi-
ciently similar so that the new relation can plausibly
be compatible with the results of previous atmos-
pheric gravity wave studies.

Using the values Ht¼ 2/3, Hz¼ 5/9 from
dimensional analysis, we find that the choice
gΘðθÞ ¼ ðcos θÞ3=2 leads to the following gravity
wave-like “gravito-turbulent” dispersion relation:

ωð�kÞ ¼ e1=3
jkxj

k�kk
1=3

ð9:49Þ

To display the similarity with the classical dispersion
relation more clearly, Table 9.2 shows the two special
cases which are most commonly tested empirically:
near-horizontal and near-vertical propagation.

It can be seen that in both cases, for near-horizontal
propagation, the dispersion relation becomes linear in
kx so that the horizontal group velocity is independent
of kx, i.e. it “saturates.” This saturation is considered
an important empirical confirmation of the Taylor–
Goldstein equations and quasi-linear gravity waves; it
is the basis of the influential saturated cascade theory
(SCT) (Dewan, 1997). In addition, the dependencies on
ðΔlogθÞ are very similar (a 2/5 power instead of a 1/2
power), although it should be recalled that in the
turbulence case the potential temperature profile is
considered highly variable (turbulent), not linear
(smooth). Also, for near-vertical propagation, in both
cases ω is independent of kz. A final physically signifi-
cant similitude is the fact that in both cases the group
velocity has a “restoring” vertical component, i.e. wg is
opposite in sign to ω/kz, so that for example if the
wave front is propagating upward, then the wave
energy propagates downwards (in the absence of a
mean advection; see Nappo, 2002). The comparison
of the group velocities is shown in Fig. 9.9. In Fig.
9.10 we show (x,z) and (t,z) sections of (x,z,t) numer-
ical multifractal simulations, showing the stratified
wave-like structures that the model produces, includ-
ing in the presence of overall advection (these models
were actually for a passive scalar, produced by
replacing e1/3 by e�1/6w1/2 where w is the passive scalar
flux). In Fig. 9.11 we show a time sequence, and in
Fig. 9.12 we show the effect of changing the sphero-
scale and the vertical wind (all these use the gravito-
turbulence dispersion/scale function). Finally in
Fig. 9.13 we show simulations of horizontal sections
with varying scale functions/dispersion relations (by
changing the shape of the unit ball B1 via the function
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Θ defining the unit vectors), showing that quite real-
istic morphologies are readily produced.

9.2.4 A mixed turbulence/wave model
We have presented a model in which the space-time
propagator corresponds to a fractional integral over
waves with a nonlinear turbulent dispersion defined
via the physical scale function. The implications for
energy transport are very strong: the turbulent energy
flux input will generally be transported far from the

source via the waves. Since the energy flux is related
to the velocity differences via e�Δv3/Δx, most of
the energy must remain localized for the model to
be self-consistent. One way of achieving this energy
localization would be if the dispersion relation had a
negative imaginary part. However, this would imply a
dissipation mechanism which – if too strong – would
contradict the picture of a cascade of conservative
fluxes upon which the FIF is built. A more satisfying
method is to combine the wave with the turbulent
scale functions so that the final model has aspects of

Fig. 9.9 The contour lines of ω,
with arrows showing the
corresponding gradient (group
velocities). The formula for the gravito-
tubulence dispersion relation waves
is the same as in the text (Table 9.2),
with Ns¼ωs¼ (f/e)1/2. Note that
Nsls

2/3¼f1/5. Reproduced from
Lovejoy et al. (2008).

Table 9.2 A comparison of the standard gravity wave dispersion relations: with a turbulent/wave model with a gravity wave-like choice of
gΘðθÞ ; a “gravito-turbulence” dispersion relation. To make the comparison more clear, we have expressed the flux f in terms of the potential
temperature and g. Recall that ls is the sphero-scale and τb is the time scale of the buoyancy fluctuation.

Linear theory gravity wave dispersion “Gravito-turbulent” dispersion

General form

ωðk Þ � g1=2
Δlogθ

Δz

0

@

1

A

1=2

jkx j

jkj

jkj ¼ ðk2x þ k2z Þ
1=2

ωðk Þ ¼ e1=3
jkx j

kkk1=3

kkk ¼ l�1
s

�

ðlskxÞ
2 þ ðlskzÞ

18=5
	1=2

; ls ¼ f�3=4e5=4

Near-horizontal

propagation ωðk Þ � g1=2
Δlogθ

Δz

0

@

1

A

1=2

jkx j

jkz j
; jkx j << jkz j ωð�k Þ ¼ g2=5

ðΔlogθÞ2

τb

2

4

3

5

1=5

kΔx,Δzk

jkx j

jkz j
3=5

; jkx j << jkz j
9=5

l4=5s

Near-vertical

propagation ωðk Þ � g1=2
Δlogθ

Δz

0

@

1

A

1=2

; jkx j >> jkz j ωð�k Þ ¼ ε
1=3

kΔx,Δzkjkx j
2=3

; jkx j >> jkz j
9=5

l
4=5
s
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both; in this case, the wave energy could considered as
“leakage” in analogy with the Lumley–Shur model.
A simple way to achieve this with a Lagrangian
temporal exponent Ht¼ 2/3 is to use:

egI ð�k ,ωÞ ¼ ðiωþ k�kk
Ht Þ�Htur=Ht ½iðω� k�kk

Ht Þ
�Hwav=Ht ;

Htur þ Hwav ¼ H ð9:50Þ

We see that the extreme localized and extreme unlo-
calized models correspond to Htur¼H, Hwav¼ 0 and
Hwav¼H, Htur¼ 0 respectively (recall for the wind,
H¼ 1/3, and the subscripts tur, wav indicate

“turbulence” and “waves” respectively) compare this
to the Eulerian propagator, Eqn. (9.23). In Fig. 9.14
we show the effect of increasing Hwav: one can see
how structures become progressively more and more
wave-like while retaining the same scaling symmet-
ries, close to observations.

Turning our attention to the Eulerian scale func-
tions discussed in Chapter 8, we saw that with zero
mean wind the nondimensional real-space scale
function in horizontal space-time (i.e. (x,y,t) space)
is isotropic with respect to Gs¼ 1, i.e. it is only

Fig. 9.11 Eight time steps in the
evolution of the vertical cross-section
of a passive scalar component from
the zero wind case of Fig. 9.10. The
structures are increasingly stratified
at larger and larger scales and display
wave phenomenology. Reproduced
from Lovejoy et al. (2008). See colour
plate section.

Fig. 9.10 A multifractal simulation
of a passive scalar in (x,z,t) space with
the observed multifractal parameters
(α¼ 1.8, C1¼ 0.05) and theoretical
values Ht¼ 2/3, Hz¼ 5/9. The
simulations show the vertical wind
increasing from 0 (left) to 0.25 to 0.5
pixels/time step (only a single time
step is shown). The top row shows the
dispersion relation (contours), group
velocity (arrows), the second is an (x,z)
cross-section, and the third row is a
(t,z) cross-section. The numerical
simulation techniques are based on
those described in Chapters 5 and 8.
Reproduced from Lovejoy et al. (2008).
See colour plate section.

Causal space-time cascades

326



trivially anisotropic so that Ht¼ 1. In this case, rather
than use the above model, we could use the propaga-
tor of the (anisotropic) “fractional wave equation” for
the propagator g(r,t):

@
2

@x2
þ a�2 @

2

@y2
�

1

V2

@

@t2

� �Hwav=2

gwavð�r, tÞ ¼ dð�r, tÞ

ð9:51Þ

for some exponentHwav (and wave speedV). By taking
Fourier transforms of both sides, it can be seen that:

egwav ð�k,ωÞ¼ ðω2�k�kk
2Þ�Hwav=2; k�kk

2 ¼ðk2xþa�2k2yÞ

ð9:52Þ

so that this wave propagator corresponds to the
turbulent propagator eg turð�k,ωÞ ¼ ðiω=V þ k�kkÞ

�Htur

with the same spatial part. Notice that the dispersion
relation is still essentially the classical ω ¼ �Vk�kk
although the trivial anisotropy of k�kk makes this

somewhat more interesting. The classical dispersion
relation is satisfied by Kelvin waves as are inertial
gravity (Poincaré) waves in the low Coriolis param-
eter/ high “effective thickness” limit often invoked at
these space-time scales.

This propagator can be “mixed” with the turbu-
lent propagator to yield:

eg Ið�k,ωÞ ¼ eg turð�k,ωÞegwavð�k,ωÞ

¼ ðiωþ k�kkÞ
�Ht ðω2V�2 � k�kk

2Þ�Hwav=2

jeg I j
2 ¼ ðω2 þ k�kk

2Þ�Htur ðω2V�2 � k�kk
2Þ�Hwav

ð9:53Þ

which (as shown in Section 9.1.2) is causal, and which
satisfies:

eg I

�

l�1ð�k,ωÞ
	

¼lHeg Ið�k,ωÞ; H¼HturþHwav ð9:54Þ

In Chapter 8 we allowed for turbulent advection with
mean m and variability accounted for by s (Eqn. 8.22)

Fig. 9.12 The effect of vertical wind (left to right 0, 0.25, 0.5 pixels/time step), and horizontal and space-time (ls ¼ lt) sphero-scales increasing
top to bottom from 1 pixel to 4, 16, 64 pixels for vertical cross-sections of simulated passive scalar, for the gravito-turbulence dispersion
relation described in the text. In order to visualize the time evolution, the successive vertical sections are “stacked” on top of each other; the
rendition uses simulated single scattering visible radiation through the stack (it is as though the time dimension is the “depth” of the
cloud). Reproduced from Lovejoy et al. (2008).
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by replacing ω by ω0 ¼ ðωþ �k ��mÞ=s (a “background
wind” with statistical variability). With this, we
obtain:

eg Ið�k,ωÞ ¼ ðiω0 þ k�kkÞ
�Htur ðω02

=V2 � k�kk
2Þ�Hwav=2

ð9:55Þ

So that eg Ið�k,ωÞ satisfies eg I

�

l�1ð�k,ωÞ
	

¼ lHeg Ið�k,ωÞ
with H ¼ HturþHwav.

9.2.5 MTSAT wave behaviour
In Chapter 8 we recalled that the popular Wheeler
and Kiladis method of extracting wave behaviour
from satellite imagery such as MTSAT is to take the
spectral power density, then “average out” the turbu-
lent “background” and examine the deviations to see
signs of dispersion type relations notably in (2D)
wavenumber/frequency subspaces. Using this as well
as cross-spectral analysis between thermal IR and
passive microwave fields, Wheeler and Kiladis

Fig. 9.13 A series of horizontal
sections of (x,y,t) passive scalar
cloud simulations with horizontal
generator G ¼ ð 1:2 0:05

�0:05 0:8
Þ with

Hτ¼ 2/3 as usual. From left to right,
the horizontal sphero-scale¼ 1 pixel,
8, 64 pixels. The horizontal unit
ball is characterized by
ΘðθÞ ¼ 1þ aCosð2θ� 2θ0Þ with
a¼ 0.65, and from top to bottom,
the orientation θ0 is varied from
0 to 5π/6 in steps of π/6 (this is the real
(x,y) space function). These simulations
show how sensitive the morphologies
are to the unit balls (i.e. the spatial
scale function/dispersion relation).
Reproduced from Lovejoy et al. (2008).
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(1999) claimed evidence for Kelvin waves, equatorial
Rossby waves and mixed Rossby–gravity waves.
Note that their temporal resolutions differed by about
an order of magnitude: their data were daily over a
two-year period rather than hourly for two months,
so we do not expect to see much evidence for these
particular waves.

Let us therefore consider the spectral density
corresponding to a purely turbulent e and a mixed
wave/turbulent propagator (Eqn. (9.55)). This
model corresponds to the following spectral
density:

PIð�k,ωÞ ¼ jeg Ið�k,ωÞj
2
Peð�k,ωÞ ¼ ðω02 þ k�kk

2Þ�Htur

ðω02
=V2 � k�kk

2Þ�HwavPeð�k,ωÞ ð9:56Þ

According to the model of turbulence-generated
waves, for physical reasons the conserved flux e must
be based purely on the turbulent part, so that:

Peð�k,ωÞ ¼ ðω02 þ k�kk
2Þ�se=2; se ¼ D� Kð2Þ ð9:57Þ

For the MTSAT data, we saw (Figs. 8.7f, 8.7g, 8.11,
8.12) that K(2) � 0.12� 0.01, D¼ 3, se � 2.88� 0.01.

With these parameters, combining Eqns. (9.55),
(9.56), we now find for the overall spectral density:

PIð�k,ωÞ ¼ ðω02 þ k�kk
2Þ�se�Htur ðω02

=V2 � k�kk
2Þ�Hwav

ð9:58Þ

For the MTSAT data, Pinel and Lovejoy, 2012, found
HI¼ (sI� se)/2� 0.26� 0.05 so that even if Hwav is of
the same order as Htur, the exponent of the turbulent
term will be much larger than the wave term and the
turbulent term will dominate. This is why to a first
approximation (Section 8.3) it was possible to ignore
possible wave contributions. However, we can per-
form regressions to minimize the deviations of log
Ptheory(kx,ky,ω) from the empirical log Pdata(kx,ky,ω)
using the full wave-turbulence model (Eqn. (9.58)) for
Ptheory(kx,ky,ω) and determining the best-fit param-
eters including Hwav. This has been done in
Fig. 9.15; in order to show the improvement when
using the error minimizing value Hwav¼ 0.17� 0.04
� 1/6 (hence Htur¼HI�Hway� 0.09� 0.06) we have
compared contours on subspaces. With the
“optimum” parameters (see Eqn. 8.33, 8.34 and the
nondimensional wave speedV�1.0� 0.8), the function
Pdata(kx,ky,ω) –which varies over a range of~105 – is fit
to within � 13% (excluding the diurnal spike).
Although the improvement in the fits for Hwav¼ 1/6
with respect to the pure turbulence model (Hwav¼ 0) is
not large, the best classical wave model withHwav¼ 2 is
clearly quite poor, (even Hwav¼ 1 is poor) so that the
waves may originate in a fractional wave equation.

9.3 Predictability/forecasting

9.3.1 Predictability limits from dynamical
systems theory in low dimensional chaos
In Chapter 1 we mentioned the quiet revolution in
weather forecasting implicit in the introduction of
ensemble forecasting systems (EFS). With EFS, rather
than the deterministic question “what is tomorrow’s
weather?” forecasters are asking the stochastic ques-
tion “what are the possible states of tomorrow’s
weather and what are their probabilities of occur-
rence?” As currently constituted, EFS are hybrid
deterministic/stochastic systems, since both the selec-
tion of the initial ensemble and the basic forward
integration of the equations are primarily
deterministic. We say “primarily” because with the
introduction of “stochastic parametrizations” (Buizza

Fig. 9.14 The effect of increasing Hwav with HwavþHtur¼H¼ 0.33,
Ht¼ 0.66; clockwise from the upper left we have Hwav¼ 0, 0.33,
0.52, 0.38 (i.e. Htur¼ 1/3, Hwav¼ 0.33, 0, –0.19, –0.05), C1¼ 0.1, α¼ 1.8.
There is a small amount of differential anisotropy characterized by
G ¼ ð 0:95 �0:02

0:02 1:05
Þ The horizontal unit ball is characterized by

ΘðθÞ ¼ 1þ aCosð2θ� 2θ0Þ with a¼ 0.65, with θ0¼ 0. The random
seed is the same in all cases so that one can see how structures
become progressively more and more wave-like while retaining the
same scaling symmetries, close to observations. Reproduced from
Lovejoy et al. (2008). See colour plate section.
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et al., 1999; Palmer, 2001) random numbers are intro-
duced in an otherwise deterministic numerical
integration scheme, and this at the finest (grid) level.
At the moment this is done in a relatively ad hoc
manner, but in future it could be based on cascades.
However, if cascades are indeed the correct stochastic
space-time process, then this also opens another pos-
sibility: new, direct techniques of stochastic forecast-
ing. In this section, we review the issue of
predictability and forecasting and discuss some par-
ticularities of the cascade approach.

The notion of “initial condition sensitivity”
became well known due to the work of Lorenz
(1963) on his three-component model (correspond-
ing to the first three Fourier components of convec-
tion). By the 1980s such exponential error growth

became the hallmark of the “deterministic chaos
revolution,” and it was widely viewed to be a generic
property of nonlinear systems.

The idea of exponential error growth emerged
from the pioneering work of Lyapunov (1907) and
was subsequently generalized into the elegant
multiplicative ergodic theorem (MET) (Oseledets,
1968), a cornerstone of chaos theory. A key assump-
tion of the theorem is that temporal averages of a
single sample of the process are the same as the average
at one time over an ensemble of identical processes,
i.e. that the process is “ergodic.” From this common
geophysical ergodicity assumption Oseledets was able
to demonstrate exponential error growth:

jdXðtÞj ¼ emtjdXð0Þj ð9:59Þ

=1/6

       = 0
wav

H

Hwav

=1H
wav

Fig. 9.15 Comparison of the 2D energy densities Pdata with Ptheory where the latter is obtained using the wave/turbulence model
(Eqn. (9.58)) and the MTSAT data (see fig. 8.11). The three 2D subpaces are considered: from left to right, the subspaces are (ω,kx), (ω,ky), (kx,ky).
The range of ω is (2 h)�1 to (276 h)�1, for kx it is (60 km)�1 to (13 000 km)�1 and for ky it is (60 km)�1 to (8000 km)�1. The parameters are se¼ 3.0,
H¼ 0.2. As we move from the top to bottom row, we increase Hwav from zero (top, a pure turbulence model) to Hwav¼ 1/6 (middle, the value that
minimizes least mean square deviations of the theoretical form from the data) and the bottom row value Hwav¼ 1 (the classical integer ordered
wave propagator has Hwav¼ 2). The parameter values that minimize the regression error are Hwav� 0.17� 0.04� 1/6, Htur� 0.09� 0.06, V�1.0� 0.8
(so that the dimensional wave speed� Vw � 11.3� 1.1 m/s), and the turbulence parameters are the same as in ch. 8: sI¼ 3.4� 0.1, se� 2.88� 0.01,
H� 0.26� 0.05, mx��0.3� 0.1 (corresponding to �3.3� 1.1m/s), my� 0.1� 0.07 (corresponding to 1.1� 0.8(m/s) hence s¼ 0.95� 0.03 and
the turbulence parameters are the same as in Eqn (8.33). Note that the fact that integer Hwav gives quite poor fits whereas Hwav¼ 1/6 gives quite
good fits implies that while the classical dispersion relation may be valid, the classical wave equation does not apply, and the waves are emergent
high Reynolds number properties. Reproduced from Pinel and Lovejoy (2012).
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where X is a state vector in phase space and dX is the
vector difference in state between a state and its per-
turbation. m is the rate of divergence; the “Lyapunov
exponent” (for more details, see the review by Schert-
zer and Lovejoy, 2004b). Eqn. (9.59) is valid as long as
m is finite, an assumption usually taken for granted.
If τ is characteristic time after which predictions are
effectively impossible then m¼ 1/τ. This result is gen-
erally valid for finite d-dimensional systems. How-
ever, if we attempt to generalize this to evolving fields,
i.e. to nonlinear partial differential equations (infinite
dimensional (functional) spaces), we encounter severe
difficulties. In fact, only a few limited extensions
have been obtained (Ruelle, 1982). From our discussion
in Chapters 2 and 8 we can already anticipate a key
difficulty: the characteristic time for an eddy size l
is the eddy turnover time, so that m¼ 1/τ¼ l�2/3e1/3

which diverges for small l, thus violating the finiteness
assumption of themathematical derivation of theMET.

9.3.2 Predictability in homogeneous
turbulence: the phenomenology of error
growth through scales and the MET
The general phenomenology of error growth through
scales is rather straightforward: an error or uncer-
tainty initially confined to small scales will progres-
sively “contaminate” large-scale structures through
these interactions. This is in sharp contrast to the
MET, which does not consider the problem of many
nonlinearly interacting spatial scales. The problem
of the evolution of spatially extended fields was first
theoretically investigated by Thompson (1957). Using
initial time-derivatives and various meteorological
models, Thompson studied the nonlinear uncertainty
growth due to errors in the initial conditions resulting
from the limited resolutions of the measurement
network and of the models. He estimated the root mean
square (RMS) doubling time for small errors to be about
two days, whereas Charney (1966), using more elabor-
ate meteorological models, estimated it as five days.

The scale dependency of the predictability times
was underlined by Robinson (1971). Indeed, if the
notion of characteristic error time τ is still relevant,
it should depend on the spatial scale l in a hierarchical
manner. For t> τ(l) two fields initially similar at scale
l become quite different (e.g. rather decorrelated) at
this scale, but may remain similar at larger scales.
This is in agreement with the estimates of the

Lyapunov exponent and the characteristic space scale
reached by the error at the eddy turnover time τ

mentioned above. This shows – contrary to the usual
assumption – that unless a break in the scaling occurs,
leading to smooth small-scale behaviour, the Lyapunov
exponent m will diverge at small scales.

Let �u1ð�r, tÞ and �u2ð�r, tÞ be two solutions of a non-
linear system (e.g. velocities for Navier–Stokes
equations) initially identical, but with a perturbation
(error) d�uð�r, 0Þ ¼ �u2ð�r, 0Þ � �u1ð�r, 0Þ at t¼ 0, confined
to infinitesimally small spatial scales. In terms of the
“butterfly effect”, the time-evolution of d�uð�r, 0Þ cor-
responds to the effect of butterflies homogeneously
distributed in space, rather than the effect of a single
butterfly. When the nonlinear interactions preserve
the kinetic energy (e.g. Navier–Stokes equations), it is
convenient (but not sufficient) to consider both the
correlated (kinetic) energy (per unit of mass):

ecð�r, 0Þ ¼
1

2�u2ð�r, 0Þ��u1ð�r, 0Þ ð9:60Þ

and the decorrelated energy:

eΔð�r , tÞ ¼
1

2
jd�uð�r , tÞj

2 ¼
1

2
j�u2ð�r , tÞ � �u1ð�r , tÞj

2

ð9:61Þ

as well as the total energy eT and the energy of each
solution en:

eTð�r, tÞ ¼ e1ð�r , tÞ þ e2ð�r , tÞ; enð�r , tÞ ¼
1

2
j�unð�r , tÞj

2

ð9:62Þ

This implies the relation:

eTð�r, tÞ ¼ ecð�r , tÞ þ eΔð�r , tÞ ð9:63Þ

Hence, if the total energy is statistically stationary
(conserved on average), there will be a flux of correl-
ated energy ecð�r, tÞ to decorrelated energy eΔð�r, tÞ.
Since the latter corresponds to a linear decomposition
of the former with respect to wavenumber k, this
also holds for the corresponding energy spectra
ETð�k, tÞ ¼ Ecð�k, tÞ þ EΔð�k, tÞ. Therefore, the decorre-
lated energy spectrum EΔð�k, tÞ steadily increases
in magnitude from large to small wavenumbers,
converging to the total energy spectrum
ETð�k, tÞ � k�5=3 (Fig. 9.16). The critical wavenumber
ke(t) of the transition from dominant correlation
to dominant decorrelation can be defined by
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�

keðtÞ, t
	

¼ EΔ

�

keðtÞ, t
	

, 1/le(t) and decreases as
keðtÞ � t�3=2.

If the constant of proportionality in the definition
of the eddy turnover time, as well as that relating the
latter to the error time, is of order unity, then taking
“typical values” e� 10�3m2s�3 (see Section 8.1.3)
and the viscous dissipation scale as Z � 10�3m),
one obtains τeðZÞ � e�1=3Z2=3 ¼ 10�1s, as well as
τeðlÞ � τeðZÞðl=ZÞ

2=3 and therefore τeðZÞ¼ 10 s;
1/2 h; 28 h; 5.4 days respectively for 1 km, 103 km,
104 km. These estimates are close to those obtained by
Lorenz (1969) (Fig. 9.16), but slightly lower than the
numerical (closure, nonintermittent) results obtained
by Kraichnan (1970), Leith (1971), Leith and Kraich-
nan (1972) and Métais and Lesieur (1986).

9.3.3 Divergence of states in
multifractal processes
Before discussing the predictability in more theoret-
ical terms, we can already investigate the divergence
of multifractal simulations by considering two scalar
processes I1, I2 which are identical up until t¼ t0 (they
have identical subgenerators g1(t)¼ g2(t) for t< t0)
and then diverge, i.e. their subgenerators become
statistically independent. Due to the long-range cor-
relations induced by the fractional integrations (for
both the generator G(t) and the second fractional
integral on e¼ eG(t) to produce I(t)), there will be
strong correlations which will die away as Δt (¼ t –
t0) increases. Fig. 9.17a gives an example where the
processes are identical up until t0¼ 210 – 27 but

diverge thereafter. In order to quantify this, we can
define the “error” E as the absolute difference normal-
ized by the average:

E ¼ 2
I2ðt0 þ ΔtÞ � I1ðt0 þ ΔtÞ

I2ðt0 þ ΔtÞ þ I1ðt0 þ ΔtÞ

�

�

�

�

�

�

�

�


 �

ð9:64Þ

(using qth powers would simply introduce intermit-
tency corrections depending on K(q)). In Fig. 9.17b
we see that the error is indeed a power law of the time
and diverges with increasing Δt. This is indeed –

0.5 1.0 1.5 2.0
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Log 10E
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log1029
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Fig. 9.17 (a) The evolution of a pair of one-dimensional
multifractals with α¼ 1.8, C1¼ 0.1, H¼ 0.333. The subgenerators are
identical up until t0¼ 210– 27 (indicated by the arrow) after which
they are independent. The insert shows a blow-up. (b) The “error” E
defined in Eqn. (9.64) for the average of 1000 realizations with the
parameters of Fig. 9.17a indicating a power-law function of the time
Δt from divergence t0. The top curve is for I1 and I2 statistically
independent, the bottom (power law with reference
slope¼H¼ 0.333) is for subgenerators identical until t¼ t0,
independent thereafter (as in Fig. 9.17a). As expected, by
extrapolation we see that the two are the same at
Δt¼ 29, which is half the length of the series (the simulated series is
periodic so that at longer times the dependent series are actually
less dependent).
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Fig. 9.16 Atmospheric error growth according to a quasi-normal
closure simulation (reproduced from Lorenz, 1969). The decorrelated
energy spectrum EΔ(k,t) initially confined to a few metres (on the
right) “pollutes” the larger scales (up to 20 000 km (on the left) after
various time intervals (from few minutes to 5 days).
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as expected for multifractals – quite different from the
exponential divergence for low-dimensional chaos.

We can extend the simulations to two spatial
dimensions and time; Fig. 9.18 shows an example
with two simulations (upper rows) and a forecast
(bottom row). This visually shows how initially
identical structures for t< 0 (identical subgenerators
g1(r,t)¼ g2(r,t) for t < 0) have divergent evolutions
for t> 0 if we allow them to be statistically independ-
ent for t> 0. We see that for larger and larger t, only
the larger structures are common to both simulations
since the lifetime of the small structures is compara-
tively short. In the bottom row, we see a simple
forecast which keeps the subgenerator constant for
t> 0; we see that the forecast deteriorates quickly
for the small, less quickly or the large: see the next
subsection.

9.3.4 Predictability limits in multifractal
cascades
In order to generalize the approach followed in the
spectral analysis of predictability to multifractals
(Section 9.3.2), we consider the time evolution of a
pair of fields of common resolution L. They are
identical up to the time t0 when one lets the fluxes
become independent at small scales (Schertzer and
Lovejoy, 2004a). For simplicity, consider the scalar

rain rate R(x,t) illustrated by Fig. 9.17 (time t
along the horizontal, location x along the vertical).
Figs. 9.19a and 9.19b display a pair of rain-rate fields
R1L(x,t) and R2L(x,t) and Fig. 9.19d their absolute differ-
ence jdRLðx, tÞj. One may qualitatively note the role of
intermittency: most of the difference jdRLðx, tÞj is due
to a small number of extremely large values.

Marsan et al. (1996) checked that the spectral
analyses of multifractal simulations of a velocity
component are in agreement with homogeneous
turbulence results. Bursts of violent fluctuations
cannot be accounted for using second-order statis-
tical moments, in particular energy spectra; these
are evident in Fig. 9.20, which displays an “elemen-
tary” decorrelated/error energy spectrum, i.e. not
obtained by ensemble averaging, but only over a
unique sample. It is no longer as smooth as the
ensemble-averaged decorrelated/error energy spec-
trum EΔ (k, t) (e.g. Fig. 9.16), but rather corres-
ponds to a sequence of decorrelation (more
generally of independence) bursts at different
scales. These bursts result from the fact that
although the energetics of the upscale cascade of
errors remain basically the same, they do not con-
strain the largest fluctuations of the errors as much
as in the homogeneous turbulence case.

We emphasized that statistics of second-order
moments, in particular their correlation, which

(a)

(b)

(c)

t = 0 
t 

Fig. 9.18 The top two rows (a–b) show successive snapshots (t¼ i� τ, i¼ 3, 6, 9,. . ., 27; τ being the eddy turnover time of the smallest
structures) of two simulations (256 � 256 in space) that are identical until time t¼ 0, when their fluxes at small scales become progressively
independent step by step due to the sudden independence of the subgenerators at that time. Most of the difference between the two
realizations is concentrated in a few “hot spots”. The bottom row (c) shows a forecast based on the “memory” of the evolution up to t¼ 0 of (a),
i.e. it has the same stochastic subgenerator until time t¼ 0, then it is defined in a deterministic manner to preserve the mean of the flux. Note
the more rapid disappearance of small-scale structures. Parameters are α¼ 1.5, C1¼ 0.2, H¼ 0.1 (close to those of rain), and the colour scale is
logarithmic. The anisotropy of space-time is characterized by Ht¼ 2/3. Reproduced from Schertzer and Lovejoy (2004a). See colour plate section.
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corresponds to the correlation energy for a velocity
field, are inadequate in accounting for the coevolution
of a pair of multifractal fields. Therefore we need
to consider a covariance of order q for different
values of q. This is rather simple for fluxes, e.g. the
respective energy flux densities eiL (i¼ 1,2) of a pair
of velocities ui(x,t). Up to t0 the fluxes are identical
over the full range of the cascade process (i.e. over
the possibly infinite cascade scale ratio L). After t0,
they remain rather similar only over a decreasing
scale ratio l(t)�L, which necessarily follows a
power law. More precisely (Schertzer and Lovejoy,
2004b), the latter is defined by the dynamical

exponent Ht, which defines the scaling space-time
anisotropy (Chapter 8):

lðtÞ ¼ L; t � t0

lðtÞ ¼ Min
�

L,
�

T=ðt � t0Þ
	1=Ht

	

t > t0
ð9:65Þ

where T is the outer time scale.
As a consequence, one obtains for the (normal-

ized) covariance of order q:

CðqÞðe1,L, e2,LÞ ¼
D ðe1,L, e2,LÞ

q
E

D

ðe1,LÞ
q
ED

ðe2,LÞ
q
E / lðtÞKðq, 2Þ

ð9:66Þ
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Fig. 9.19 Simulation of multifractal
predictability decay for rain field. (a) and (b) are
identical up to t0¼ 64, after which their fluxes
become independent. (c) displays the forecast
based on their common past and the
deterministic conservation of the flux afterward.
Singularities of the fields (i.e. their log divided by
the log resolution), as well as of their absolute
differences (d–f), are displayed according to the
following palette: white for negative singularities;
green to yellow for singularities contributing to
statistics up to the mean; red for singularities
contributing to second- and higher-order
moments. Reproduced from Schertzer and
Lovejoy (2004b). See colour plate section.
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with K(q, 2) � K(2q) – 2K(q). The multifractality
K(q,2) of the joint field e1,Le2,L is purely defined by
that of ei,L (i.e. K(q)). The distinctive feature is that
instead of being fixed at L (as for ei,L¼ e2,L) the
range of scale ratios (1, l(t)) also has a power-law
decay (Eqn. (9.65)). The same occurs for its probabil-
ity distribution. It is important to appreciate that
these power laws are valid for all time scales, not only
the large scales. This is in a sharp contrast to the
exponential decay predicted for low-dimensional
chaos (the MET), which is therefore not relevant for
multifractal fields.

We may now explore the question of optimizing
forecast procedures so that the decay law of the (nor-
malized) covariance CðqÞðeF,L, e2,LÞ of order q of the
forecast field eF, L and of the observed field e0,L is
as close as possible to the theoretical CðqÞðe1,L, e2,LÞ
(Eqn. (9.66)). For example, let us point out that the
multifractal behaviour of meteorological fields theor-
etically explains and confirms the recent empirical
evidence that stochastic parametrizations do better than
deterministic ones (Buizza et al., 1999; Houtekamer
et al., 1996), in particular in the EFS framework. It
suffices to use the fact that a multifractal field may be
defined with the help of a white-noise subgenerator.
Indeed, past and future components of a white noise

are independent and identically distributed. There-
fore, any white noise identically distributed to the
past component is obviously a possible future com-
ponent. The resulting process will in the future keep
the same statistical properties, as well as the same
scale ratio. However, a future component defined in
a deterministic manner cannot have an identical stat-
istical distribution. In particular, its scaling function
Kdet(q) is linear with respect to q, instead of being
nonlinear, as is that of the observations K(q). At best,
one can only find a (deterministic) procedure to pre-
serve the statistics of a given order q. This is
illustrated in Fig. 9.19, obtained by a numerical simu-
lation, where the (deterministic) future component of
the noise of the forecast field R3,L (x,t) (Fig. 9.19c)
was defined to preserve the mean (q¼ 1) of the flux.
Figs. 9.19e and 9.19f display the drastic loss of all
extreme events (q>> 1) with respect to the samples
R1,L (x,t) and R2,L (x,t). More quantitative state-
ments can be readily obtained with the help of the
covariance CðqÞðeF,L, e2,LÞ of order q. This should
encourage the radical EFS evolution to increasingly
account for the randomness of meteorological fields
at different scales and go beyond ensemble determi-
nistic forecasts and stochastic parametrizations by
developing stochastic forecasts.

9.4 Summary of emergent laws
in Chapter 9
Causality requires the use of a Heaviside function
ΘHeavi(t) in cascade processes for the turbulent flux
j(r,t):

jð�r , tÞ ¼ N
1=a
Dst

C
1=a
1 gað�r, tÞ

h

ΘHeaviðtÞ
hh

ð�r, tÞ
ii

tur

�Dst=a
i

;

ΘHeaviðtÞ ¼
1; t > 0
0; t � 0

ð9:67Þ

where gα is the subgenerator of extremal Lévy
noise index α, C1 is the codimension of the mean
and NDst is the appropriate normalization constant
and ½½ð�r, tÞ

tur is a localized space-time scale for
turbulent flux (cf. Eqn. 5.78).

Although, presumably due to its physical nature,
the turbulence flux is localized in space-time, the
observables I need not have such a strong constraint.
While their structures in space continue to be local-
ized, they need not be localized in space-time, so
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Fig. 9.20 Elementary error energy spectrum displaying
decorrelation bursts (reproduced from Schertzer et al., 1997).
This elementary error energy spectrum is obtained from a unique
realization rather than from an ensemble average. It is no longer as
smooth as in Fig. 9.19, but rather corresponds to a sequence of
decorrelation bursts at different scales.
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we can also have wave-like propagators. In the FIF
model, this can be written:

I ¼ j  gturðRÞ  gwavðRÞ; R ¼ ð�r, tÞ ð9:68Þ

where:

gturð�r, tÞ ¼
�

ΘHeaviðtÞ
��

ð�r, tÞ
��

tur
�ðDst�HturÞ

�

ð9:69Þ

and:

gwavð�r , tÞ ¼ ðF:T:Þ�1½egwavð�k,ωÞ
 ð9:70Þ

where both propagators satisfy the scaling equations:

gturðTlR Þ ¼ lsturgturðRÞ;

gwavðTlRÞ ¼ lswavgwavðRÞ ð9:71Þ

stur ¼ Dst � Htur ; swav ¼ Dst � Hwav

and:

HturþHwav ¼ H; Tl ¼ l�Gst ð9:72Þ

The unlocalized “wave” space-time propagator gw is
causal if ggwavð�k,ωÞ is analytic in the lower half of
the complex w plane. In the fairly general wave
case where the waves satisfy a (fractional, aniso-
tropic) wave equation, we have the nondimen-

sional (V¼ 1) wave-like (delocalized in space-
time) and turbulent-like (localized in space-time)
propagators:

egwavð�k,ωÞ ¼ ðω2
=V2 � k�kk

2Þ�Hwav=2 ð9:73Þ

Which implies the dispersion relation:

ω ¼ �Vk�kk ð9:74Þ

where: k�kk is the spatial, Fourier scale function.
A specific example taken from the MTSAT analysis

yields a combined turbulent/wave spectral density PI:

Pjð�k ,ωÞ ¼ ðω02 þ k�kk
2Þ�sf

PIð�k,ωÞ ¼ Pfð�k,ωÞ ðω02 þ k�kk
2Þ�Htur

ðω02
=V2 � k�kk

2Þ�Hwav ð9:75Þ

(Pj for the flux) where we have taken into account an
overall mean advection

�
m as well as its statistical vari-

ability by the transformation ω0 ¼ ðωþ �k ��mÞ=s
where s is the standard deviation corrected for spatial
anisotropy (Eq. 8.25).
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Chapter

10
The emergent laws of macroweather
and the transition to the climate

10.1 What is the climate?

10.1.1 Climate change as an emergent
scaling process
Meteorological and climatological sciences have
become increasingly distinct, yet there is still no gen-
erally accepted definition of the climate, or – which is
nearly the same thing – what precisely is the distinc-
tion between the weather and the climate? And if our
notion of the climate is vague, what do we mean by
climate change?

While atmospheric scientists routinely use the
expressions “climate scales” and “meteorological
scales,” the actual boundary between them is not clear
and most improve little upon the dictum:

The climate is what you expect, the weather is what you
get. (the character Lazarus Long in Heinlein, 1973; often
attributed to Mark Twain)

This definition is not so different from earlier ideas
of climate such as “the synthesis of the weather”
(Huschke, 1959) or “the sum total of the weather
experienced at a place in the course of a year and
over the years” (Lamb, 1972). More recently, E. Lor-
enz approvingly cited this, saying: “before embarking
on a search for an ideal definition, assuming one
exists, let me express my conviction that such a
definition, when found, must agree in spirit with
the statement, ‘climate is what you expect’” (Lorenz,
1995). He then proposed several definitions based on
dynamical systems theory (see Lovejoy and Schertzer,
2012a).

The Heinlein/Twain dictum is actually quite close
to the principal definition given by the US National
Academy of Sciences:

Climate is conventionally defined as the long-term
statistics of the weather. (Committee on Radiative
Forcing Effects on Climate, 2005)

Which improves on the Almanac only a little by
proposing:

to expand the definition of climate to encompass the
oceanic and terrestrial spheres as well as chemical
components of the atmosphere.

Another official source attempts to quantify the issue
of the exact meaning of “long-term” by tentatively
suggesting a month as the basic “inner” climate time
scale, but ultimately it seems to yield to a higher
authority:

Climate in a narrow sense is usually defined as the
“average weather,” or more rigorously, as the statistical
description in terms of the mean and variability of
relevant quantities over a period of time ranging from
months to thousands or millions of years. The classical
period is 30 years, as defined by the World
Meteorological Organization (WMO). These quantities
are most often surface variables such as temperature,
precipitation, and wind. Climate in a wider sense is the
state, including a statistical description, of the climate
system. (Intergovernmental Panel on Climate Change
AR4, Appendix I: Glossary, p. 942: Solomon et al., 2007)

At first sight, the last sentence is an interesting add-
ition but is ultimately tautological since it defines the
climate as the statistics of the “climate system,” which
itself is left undefined.

Finally, an attempt at a more comprehensive def-
inition is only a little better:

Climate encompasses the statistics of temperature,
humidity, atmospheric pressure, wind, rainfall,
atmospheric particle count and numerous other
meteorological elements in a given region over long
periods of time. Climate can be contrasted to weather,
which is the present condition of these same elements
over periods up to two weeks . . . Climate . . . is
commonly defined as the weather averaged over a long
period of time. The standard averaging period is 30
years, but other periods may be used depending on the
purpose. Climate also includes statistics other than the
average, such as the magnitudes of day-to-day or year-
to-year variations . . . The difference between climate
and weather is usefully summarized by the popular
phrase “Climate is what you expect, weather is what
you get.” (Wikipedia, March 2010)
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What is new here is the explicit attempt to distinguish
weather (periods of less than two weeks) and climate
(periods of 30 years or more). However, as with the
IPCC definition, these time periods are simply sug-
gestions, with no attempt at physical justification. In
any case they leave the intervening factor of 1000 or
so in scale (literally!) up in the air.

An obvious problem with these definitions is that
they fundamentally depend on subjectively defined
averaging scales. This fuzziness is also reflected in
numerical climate modelling, since global climate
models (GCMs) are fundamentally the same as
weather models but at lower resolutions, with a dif-
ferent assortment of subgrid parametrizations, and
they are coupled to ocean models and – increasingly
– to carbon-cycle, cryosphere and land-use models.
Consequently, whether we define the climate as the
long-term statistics of the weather, or in terms of the
long-term interactions of components of the “climate
system,” we still need an objective way to distinguish
it from the weather. These problems are clearly com-
pounded when we attempt to objectively define
climate change.

However, there is yet another difficulty with this
and allied definitions: they imply that climate dynam-
ics are nothing new; that they are simply weather
dynamics at long time scales. This seems naïve, since
we know from numerous examples in physics that
when processes repeat over wide enough ranges of
space or time scale they typically display qualitatively
new features, so that over long enough time scales we
expect that new climate laws should emerge from the
higher-frequency weather laws. These qualitatively
new emergent laws could simply be the consequences
of long-range statistical correlations in the weather
physics in conjunction with qualitatively new climate
processes – due to either internal dynamics or to
(external) orbital, solar, volcanic or anthropogenic
forcings – their nonlinear synergy giving rise to
emergent laws of climate dynamics. From the GCM
modelling point of view, the weather “boundary
conditions” – supposedly quasi-fixed and determi-
ning the climate (Bryson, 1997) – turn out instead to
be nonlinearly coupled with it (Pielke, 1998): i.e. they
constitute new “slow dynamics.”

A useful definition of climate should involve a
physical basis for the distinction/boundary between
weather and climate as well as an identification of
each regime with specific mechanisms and a corres-
ponding specific type of variability. Both of these

ingredients are provided by the scaling approach. In
this framework, weather processes are those whose
space-time variability follows the emergent turbulent
laws discussed earlier. We have seen in Chapter 8 that
the driving solar energy flux, combined with the finite
size of the earth, implies a drastic “dimensional tran-
sition” in the behaviour at the lifetime of the corres-
ponding atmospheric structures at tw � 10 days, and
for ocean structures at to � 1 year. Both time scales
not only follow directly from the energy-flux-based
theory of the horizontal variability/dynamics (and tw,
directly from realistic estimates of the solar forcing),
but – at least in the case of tw – also correspond to the
observed sharp change in the scaling of all the atmos-
pheric fields somewhere in the 5–20-day (“synoptic
maximum”) region, followed by a flatter “plateau”
low-frequency macroweather regime. At least for
the temperature, over time scales between tw and to,
the ocean boundary condition has strongly turbulent
variability with C1 � 0.1, α � 1.8, H � 0.5 so that
its effect on atmospheric buoyancy and humidity
is to increase the intermittency of monthly average
temperatures over the land and ocean (see Fig. 8.6e).

Since the atmosphere is a nonlinear dynamical
system with interactions and variability occurring over
huge ranges of space and time scales, the natural
approach is to consider it as a hierarchy of processes
each with wide-range scaling, i.e. each with nonlinear
mechanisms that repeat scale after scale over poten-
tially wide ranges (see Figs. 1.9c, 1.9d). Following
Lovejoy and Schertzer (1986), Schmitt et al. (1995),
Pelletier (1998), Koscielny-Bunde et al. (1998),
Talkner and Weber (2000), Blender and Fraedrich
(2003), Ashkenazy et al. (2003), Huybers and Curry
(2006) and Rybski et al. (2008), this approach is
increasingly superseding earlier approaches that
postulated more or less white-noise backgrounds with
a large number of spectral “spikes” corresponding to
many different quasi-periodic processes. This includes
the slightly more sophisticated variant (Mitchell, 1976)
which retains the spikes but replaces the white noise
with a hierarchy of Ornstein–Uhlenbeck processes
(white noises and their integrals: in the spectrum,
“spikes” and “shelves”; see Fig. 8.6d). In Appendix 10B
we discuss the corresponding stochastic linear forcing
approaches. Finally, we could also mention Fraedrich
et al. (2009), who proposed a “hybrid” composite which
includes a single short-range scaling regime.

The resulting trichotomy scaling weather/macro-
weather/climatemodelwas already empirically illustrated
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in Fig. 1.9c (see Lovejoy, 2012). The label “weather”
for the high-frequency regime seems obvious and
requires no further comment. Similarly the lowest
frequencies correspond to our usual ideas of multi-
decadal, multicentennial, multimillennial variability
as “climate.” But labelling the intermediate region
“macroweather” – rather than, say, “high-frequency
climate” – needs some justification. The point is per-
haps made more clearly with the help of Fig. 1.9d,
which shows a blow-up of Fig. 1.9c with both global
and locally averaged instrumentally based spectra as
well the corresponding spectra from a GCM control
run (see the figure caption for details, and Sections
11.3.3 and 11.3.4). While the spectrum of the data
(especially those globally averaged) begins to rise for
frequencies below ~(10 years)�1, the control-run
spectrum maintains its relatively flat “plateau”-like
behaviour out to at least (500 years)�1. Similar con-
clusions for the control runs of other GCMs at even
lower frequencies were found by Fraedrich and Blender
(2003), Blender et al. (2006), Zhu et al. (2006) and
Rybski et al. (2008) (see Section 11.3.3 for various
GCM simulations and a detailed discussion), so that
it seems that in the absence of external climate
forcing, the GCMs – which are thus essentially macro-
weather models – reproduce the plateau but not the
lower-frequency climate regime with its characteristic
strong spectral rise. Similarly, we shall see in the
next section that when the FIF cascade models that
reproduce the weather-scale statistics are extended
to low frequencies they too predict the “plateau,”
and they too need some new ingredient to yield the
lower-frequency climate regime. In this chapter, we
therefore focus on low-frequency (macro) weather;
the climate regime proper is the subject of Chapter 11.

10.1.2 From the weather to
macroweather: a dimensional transition
to a new scaling regime characterized
by H < 0
In Chapter 8 we studied the high-frequency weather
regime, finding that the nonconservation/fluctuation
exponent H was generally positive, indicating that
mean fluctuations in a field f: <Δf> ¼ <fΔt>ΔtH

increased with scale Δt (since the mean flux <fΔt> is
constant) up to scales of tw � 5–20 days, after which
the statistics underwent a drastic transition. This was

found both in spectra of diverse atmospheric variables
and in cascade analyses of the corresponding fluxes
(see Figs. 8.2a, 8.2b, 8.2c, 8.3a, 8.3b, 8.3c, 8.4a, 8.4b,
8.4c). Although we noted that at lower frequencies the
spectra were fairly flat, we did not consider these low
frequencies in much detail except to note the existence
of a corresponding ocean spectral plateau at periods
longer than to � 1 year (Fig. 8.6d). In this section we
show that a general characteristic of the new regime is
that H < 0, implying that fluctuations decrease with
scale, so that the corresponding series appear “stable”
with fluctuations “dying out” as they are averaged
over larger and larger scales. We also show how this
behaviour is predicted by generalizing the cascade-
based FIF model to long time scales. In order to
visually appreciate the typical difference between
H < 0 and H > 0 series, see Figs. 1.9e and 5E1a.

In order to understand the basic features predicted
by the model for the weather, the transition and the
macroweather regime, we can restrict our attention to a
(x, y, t) section of the full (x, y, z, t) model and ignore the
complications associated with the intermittency aug-
mented by the ocean which is relevant over the regime
tw< Δt< to (see however Appendix 10D). If we rewrite
the equation for the cascade generator (see Section 9.1.3,
Eqns. (9.25)–(9.29)), nondimensionalizing r with Lw ¼
Le and t with tw, then we obtain for the generator
Gð�r, tÞ ¼ log εð�r, tÞ:

Gð�r, tÞ ¼

ð

1

Λ
�1
w

ð

B1

Bw

gð�r� r0, t � t0Þgðr0, t0Þdr0dt0

þ

ð

Λc

1

ð

B1

Bw

gð�r� r0, t � t0Þgðr0, t0Þdr0dt0 ð10:1Þ

Λw ¼ Lw=Li ¼ tw=ti is the total range of meteoro-
logical scales (Li, ti are the inner dissipation space
and time scales) and Λc ¼ tc=tw is ratio of the
overall outer time scale of the overall high and macro-
weather process tc to the outer time scale of the
weather process (tc is the outer scale of the
macroweather process; it is equal to the inner scale
of the climate process; the total range of scales is then
tc/ti ¼ ΛwΛc). We ignore the vertical, i.e. r ¼ (x, y), so
that the spatial domain of integration is an annulus
between radii Λw

�1 and 1, i.e. between circles, “balls”
Bw and B1 respectively. Fig. 10.1 shows a schematic
with the ranges of integration in Eqn. (10.1). Eqn.
(10.1) is a convolution between the subgenerator
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noise g which represents the “innovations” and the
power-law kernel g which represents the interaction
strength between scales physically and temporally
separated by the space-time interval (rʹ,tʹ). For Λc ¼
tc / tw >> 1 we therefore have approximately:

Gð�r , tÞ � Gwð�r, tÞ þ GmwðtÞ

Gwð�r, tÞ ¼

ð

1

Λ
�1
w

ð

B1

Bw

gð�r� r0, t � t0Þgðr0, t0Þdr0dt0

GmwðtÞ ¼

ð

Λc

1

gðt � t0Þgð0, t0Þdt0 ð10:2Þ

where gðt � t0Þ is a spatially integrated Lévy noise.
The approximation in Eqn. (10.2) consists in assuming
for t >> j�rj that gð�r, tÞ � gð0, tÞ so that for long
enough time lags the spatial lags are unimportant.
Gw(r,t) is a 2D (space-time) integral corresponding to
the contribution to the variability from the weather
regime (t < 1, jrj< 1), and the second Gmw(r, t) is
a 1D (purely) temporal contribution due to the macro-
weather regime (mw for “macroweather”). This drastic
change of behaviour due to the change of space-time
dimension overwhich the basic noise driving the system
acts is a kind of “dimensional transition” between
weather and macroweather processes. This concept
was originally introduced to refer to the hypothetical
large scale/small scale (2D/3D) transition required by
classical isotropic turbulence approaches in the weather
range (Schertzer and Lovejoy, 1984), see section 1.24
andCh. 6.1. Fig. 10.1 gives a schematic indicating that at
small scales the interactions occur over all spatial and
temporal intervals (the interaction region is a space-
time volume), whereas for long times the interaction
region is pencil-like: it is essentially 1D. Physically this
is a transition from the high-frequency regime, where
both spatial and temporal interactions are important,
to a lower-frequency regime where the dynamics are

dominated by temporal interactions. In the former case
this means between neighbouring structures of all sizes
and at their various stages of development, but in the
latter case only between very large structures at various
stages in their development.

In this simplest model it is this separation into
independent additive weather andmacroweather gener-
ators with correlated noises integrated over spaces of
different effective dimensions that is responsible for
the statistical difference between weather and the
macroweather plateau. At the level of the fluxes it
means that the macroweather process multiplicatively
modulates the weather process at the larger time scales:

εΛw,Λc
ð�r, tÞ� eGwð�r, tÞþGmwð�r, tÞ ¼ εΛw

ð�r, tÞεΛc
ðtÞ ð10:3Þ

with εΛw
ð�r, tÞ having the high-frequency variability,

εΛc
ðtÞ the low-frequency. The generic result is a

“dimensional transition” in the form of a fairly realistic
spectral plateau. The notation in Eqn. (10.3) empha-
sizes the range of scales of the processes, but in what
follows it will be more convenient to refer to them by
their physics, i.e. weather “w”, macroweather “mw” or
the overall process “w,mw”:

εw,mwð�r, tÞ ¼ εwð�r, tÞεmwðtÞ ð10:4Þ

To obtain the observables, we again appeal to the FIF
model, e.g. v¼ g*ε, where we use the Green’s function
g discussed in Chapter 8. In this case, for d ¼ 1, 2
spatial dimensions and time, nondimensionalizing r
with Le, and t with tw we have:

gð�r , tÞ ¼ YðtÞ½½R

�D=α ¼ YðtÞðj�rj
2 þ t2Þ�ðdþ1Þ=ð2αÞ;

R ¼ ð�r, tÞ ð10:5Þ

with D ¼ d þ 1 (cf. Eqns. (8.15), (9.29) with d ¼ 2 for
(x,y,t) space mx ¼ my ¼ 0, a ¼ 1). In d spatial

macroweather Fig. 10.1 Schematic diagram showing the
regions of integration in Eqn. (10.1) and the idea
of “dimensional transition” when the region
becomes pencil-like (1D, large scales) rather than
volume-like (3D, small scales); this is the
dimensional transition. The integrations are
between the cylinders whose cross-sections are
BW and B1.
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dimensions, from Eqn. (10.4), we see that the
macroweather generator is:

εmwðtÞ ¼ eGmwðtÞ; Gmw ¼

�

C1

Ndþ1

�1=α

gα  gmw;

gmw ¼ YðtÞt�ðdþ1Þ=α ð10:6Þ

(Ndþ1 is a normalization constant: see Section 5.4.2)
and gmw falls off more rapidly than for a d ¼ 0 (pure
temporal multifractal) cascade process which requires
g(t) � t�1/α, leading to low intermittency.

The statistical behaviour of this regime is quite
complex to analyze and has some surprising properties,
which are investigated in detail in Appendix 10A
(see also Lovejoy and Schertzer, 2011b). The main
characteristics are that (a) although the bare process
is still log-Lévy, the weak temporal correlations lead
to (slow) central limit convergence (apparently) to
Gaussians for the dressed statistics; (b) at large tem-
poral lags Δt the autocorrelations ultimately decay
as Δt�1, although very large ranges of scale may
be necessary to observe it; (c) since the spectrum
is the Fourier transform of the autocorrelation
and the transform of a pure Δt�1 function has a low
(and high) frequency divergence, the actual spectrum
of a finite-range macroweather regime depends
on the overall range of scales Λc (by comparing
Fig. 8.5c with Fig. 11.5b, we find empirically for the
temperature field that to within a factor of ~2, the
mean Λc ¼ tc/tw over the latitudes � 1100); (d) over
surprisingly wide ranges (factors of 100–1000 in
frequency for values of Λc in the range 210–216), one
finds “pseudo-scaling” with nearly constant spectral
exponents βmw which are typically in the range
0.2–0.4 for realistic values of Λc; (e) the statistics
are independent of H and C1 and only weakly depend-
ent on α.

The upshot of this is that we expect a rough
scaling with spectral exponent βmw whose value
largely depends on the overall range of the plateau
regime (Λc), pretty much independently of the
values of α, C1 and H. Fig. 10A.6 shows some of
the details: for example, using regressions over a
range 128 in scale, we obtain βmw ¼ 0.40, 0.33,
0.29, 0.23 with outer scales tc � 30, 110, 450, 1800
years (with α ¼ 1.8, tw ¼ 10 days, i.e. correspond-
ing to Λc ¼ 210, 212, 214, 216). The (rough) empirical
range of βmw � 0.2–0.4 is thus compatible with

tc � > 30 years. In summary, we therefore find
for the overall FIF model:

EðkÞ � k�βw ;

EðωÞ � ω
�βw ;

EðωÞ � ω
�βmw ;

k > L�1
w

ω > t�1
w

t�1
c < ω < t�1

w

ð10:7Þ

where tc is the long external scale where the plateau
ends and the climate regime begins, and the
weather and macroweather spectral exponents are:

βw ¼ 1þ 2H � Kð2Þ
0:2 < βmw < 0:4

ð10:8Þ

The weather exponent is the usual one (with the usual
structure function exponent x(q) ¼ qH – K(q)), but
the macroweather exponent βmw is new. Note in
particular that it is independent of H and that βmw

> 0. As we just argued, in the macroweather regime,
the intermittency rapidly disappears as we “dress”
the process by averaging over scales > tw so that the
plateau is roughly quasi-Gaussian and we have an
effective macroweather exponent Hmw:

Hmw � �ð1� βmwÞ=2 ð10:9Þ

so that (since βmw < 1), Hmw < 0 and the correspond-
ing (generalized) structure function exponent at least
approximately satisfies the monofractal linear
relation:

xmwðqÞ � qHmw ð10:10Þ

Using 0.2 < βmw < 0.4 corresponding to –0.4 < Hmw

< –0.3, this result already explains the preponderance
of spectral plateau β’s around the low values already
noted in many analyses presented in Section 8.1.
However, as we saw in Section 8.1.4 (Fig. 8.3d), the
low-frequency ocean (lo) plateau has a somewhat
higher βlo � 0.6, which implies Hlo � –0.2; presum-
ably one cause is the smaller range tc/to compared to
tc/tw (to/tw � 30, Fig. 8.6d). In addition, in Appendix
10D we use a simple coupled ocean–atmosphere
model to model this as a consequence of double
(atmosphere and ocean) dimensional transitions.

As a final comment, we could note that since βw

is often close to the value 2 and βmw close to zero,
the combined weather/macroweather regime is not
far from the Ornstein–Uhlenbeck (OU) spectrum
E(ω) � s2/(ω2 þa2) where s is a constant and
a ¼ tw

�1 is the transition frequency. This is the
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spectrum that results from the solution of linear sto-
chastic systems forced by white noise, it is the basis of
the stochastic linear forcing (SLF) approach (e.g. Pen-
land, 1996) to stochastic forecasts in the macro-
weather regime: see Appendix 10B for more details.
However, since βmw > 0, the Ornstein–Uhlenbeck
spectrum has too little low-frequency variability to
be fully realistic: see for example Fig. 8.4d, which
shows a comparison with empirical air and sea
surface temperature spectra, and Fig. 10.14 for the
corresponding real-space comparison. Similarly,
at high frequencies the fields are intermittent (non-
Gaussian) and in addition βw is not exactly ¼ 2.

10.1.3 Testing the FIFmodel . . .or how to
determine decadal-scale macroweather
variability from 1 Hz aircraft data
In order to test the realism of the FIF model in
reproducing the macroweather regime, we made a
detailed comparison of temperature data and numer-
ical simulations of the FIF weather model. The data
were taken at 75� N (taken from the 20CR reanalysis,
from 1871–2008). We averaged from six-hourly to
daily resolutions, which resulted in a series 50 404
days long for each 2� � 2� longitudinal pixel. The
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Fig. 10.2 (a) Top: 700 mb temperature
data from the 20CR reanalysis (1871–
2008) for 2� � 2� pixels at 75� N; the
data were annually detrended and
averaged over 16 days (1871 at left, 2008
at right); 16 pixels spaced at 10� in
longitude were used so as to exactly
match the simulation. Bottom: a time
series of a single pixel of an (x,t)
simulation 16 � 50 404 pixels and then
averaged over 16 simulated days; the
effective scales of the simulation were
1 day in time and LW/16 � 1200 km in
space; the parameters were α ¼ 1.8,
C1 ¼ 0.1, Hw ¼ 0.5 (close to
the temperature as measured by aircraft,
cf. Table 4.4). For graphical purposes, in
addition to the standard deviation
(¼ � 4.05 K), the simulation mean was
adjusted to be the same as the data.
(b) Comparison of the globally averaged
reanalysis temperature with the same
simulation realization as in Fig. 10.2a,
also averaged over the simulation’s
(single) spatial dimension (the simulated
global temperature). Both were passed
through 3-year moving averages to
bring out the low-frequency variability.
Note the great reduction in the standard
deviation (� 0.39 K, cf. � 4.05 K for the
16-day resolution standard deviation in
Fig. 10.2a) of the data. To facilitate the
comparison the simulation standard
deviation was increased by a factor 1.4
with respect to the calibration of
Fig. 10.2a.
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simulation was of a simple (x,t) cascade (see Figs.
10.2a, 10.2b) with the parameters α ¼ 1.8, C1 ¼ 0.1,
Hw ¼ 0.5, εw � 10�3 m2/s3 (tw � 10 days) observed by
the NOAA Gulfstream 4 aircraft near 200 mb altitude;
see Table 4.8 and see Section 8.1.3 for estimates of εw.
The simulation was scaled so that its standard devi-
ation coincided with that of the data. The latitude
75� N was chosen both because it is largely dominated
by land or ice-covered ocean, so that intermittency
effects due to the ocean circulation are not so strong,
and because later we discuss and compare it with
Greenland paleotemperatures which are nearly at the
same latitude (see Section 11.1.2).

Except for the standard deviation of the tempera-
ture at 75� N (and for Fig. 10.2a, the mean) there was
no attempt whatsoever to “fit” the simulation to the
reanalysis data, so we do not expect a perfect data/
simulation match. The object was to see how close the
above “toy model” of a dimensional transition can
account for the atmospheric variability over large
ranges of time scales. In order to remove extraneous
issues of sample size and series length, a 217 � 24

simulation was made and the first 50 404 spatial
segments were taken (this is a bit less than half the
simulation length and so avoids artificial correlations/
tendencies due to the periodicity of the simulations).
The effective spatial resolution of the simulation was
thus Lw/16 � 1200 km. For comparison, 16 series
from pixels spaced at 10� in longitude were also
used so that both the data and the simulation were
50 404 � 16 pixels. In Fig. 10.2a we see that the real
and simulated series are indeed quite similar in

appearance, although the simulation has apparently
a few more extremes. It cannot be excluded that
these extremes are in fact realistic but are poorly
reproduced by the (overly smooth) reanalysis. In
Fig. 10.2b we show the same globally averaged
reanalysis and “globally averaged” simulation
obtained by averaging the simulation over all of its
(single) spatial dimension. The main difference
between the two is a slight tendency for the reanalysis
temperatures to increase during the second half of
the series (global warming).

The comparison of the simulation and empirical
spectra is shown in Fig. 10.3. For clarity, we have
averaged the spectrum over logarithmically spaced
bins, 10 per order of magnitude. Over the high-
frequency weather regime, the model and data agree
quite well. This is not surprising, since the aircraft
data that were used to determine the parameters were
at these smaller scales (recall that the overall standard
deviations are the same; this determines the relative
vertical placement of the curves in Fig. 10.3). How-
ever, what is not at all trivial is that the low-frequency
part of the spectrum – including the mean spectral
exponent βmw � 0.2 – is also quite well reproduced;
presumably the agreement would be better if the
critical external scale was given a small adjustment.
Certainly, ensemble averaging over many realizations
of the FIF model give a fairly accurate slope βmw ¼ 0.2
as indicated by the reference line for the theory as well
as further data/model comparisons: see Appendix
10A. The high-frequency aircraft parameters thus
give a remarkably good model of the temperature
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Fig. 10.3 A comparison of the spectrum of
the same data as in Fig. 10.2a and 10.2b
(bottom), with the simulation (top); both spectra
were averaged over logarithmic bins, 10 per
order of magnitude. The reference lines have
the theoretical slopes βw, βmw, as indicated
in Eqn. (10.7).
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spectra at 75� N out to decadal scales (until the data
spectrum starts to rise at around (50 years)�1).

In order to check the intermittency characteristics,
we refer the reader to Fig. 10.4, where we compare the
simulation and empirical trace moments (up to order
q ¼ 2). We note that at the high frequencies the
intermittencies agree quite well (with a slight differ-
ence in the effective outer scales that could be
improved by adjusting the model outer scale). The
main difference is that whereas the model has very
low intermittencies at scales larger than tw, the data
have nearly constant trace moments. While these
moments are small (� 0.05), there is nevertheless a
systematic difference.

The simplest FIF model discussed here thus has
fluxes with not enough low-frequency variability.
Recall from Fig. 8.6e that one-month averages (with
the meteorological variability largely averaged out)
display cascades associated with ocean turbulence

with C1 � 0.12, α � 1.8 (outer scale � 2 years) so
that this higher intermittency in Fig. 10.4 (top) could
be at least partially explained by the ocean intermit-
tency; in Section 10.3.2 we discuss a simple “mixed”
ocean–atmosphere model that attempts to reproduce
this behaviour. If this is true, then Eqns. (10.1)–(10.3)
show that even without scaling we would still expect
the bare fluxes to have log-Lévy distributions with the
same index α; this is presumably true even without
including the influence of the ocean intermittency,
since Table 8.1 indicates that the ocean α, C1 are
quite close to the weather values. However, as dis-
cussed in Appendix 10A, the dressed fluxes do
apparently eventually approach quasi-Gaussian
limits. This appendix also describes a final simula-
tion/data comparison using real-space fluctuations.

10.1.4 More evidence for the spectral
plateau
A fairly general prediction of the atmosphere and
ocean dimensional transition models for the plateau
is that the macroweather exponents are independent
of H and depend only weakly on C1, α. Since the main
state variables all share roughly the parameters C1 �
0.1, α � 1.8, we therefore expect two fundamental
plateau spectral exponents: βmw � 0.2–0.4 for those
primarily affected by the atmospheric dimensional
transition (“continental climates”), and βmw � 0.6
for those affected by both oceanic and atmospheric
transitions (“maritime climates”). Therefore a further
test of the model is to consider the other fields and
compare them at locations where we expect them to
be mostly continental or mostly maritime. Figs. 10.5a
and 10.5b show the spectra for T, u, v, hs from two 2�-
wide latitude bands, one tropical (centred on 5� N,
mostly maritime), the other mid-latitude (centred on
45� N, mostly continental), both 20CR products. We
see that for the temperature, wind and humidity, the
45� N spectrum (Fig. 10.5a) follows the continental
βmw � 0.2 prediction very well up to about 10 years
whereas the 5� N spectrum (Fig. 10.5b) is closer to the
maritime value βmw � 0.6 (with the notable exception
of the meridional wind, which displays a βmw � 0.2
region as indicated). Overall, we conclude that all the
data can be reasonably modelled by one or the other
(βmw� 0.2 or βmw� 0.6) regime being dominant. Since
both have H < 0, the resolution dependence is signifi-
cant, although not as strong as for the other latitudes
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Fig. 10.4 The cascade analysis of the data (top) and simulation
(bottom) shown in Figs. 10.1 and 10.2. Notice that the data
are significantly more intermittent in the plateau region than
the simulation (which has virtually no intermittency (near zero
flux moments) for long time periods (to the left, lower figure).
The low intermittency of the simulation can be gauged by the
comparison with the superposed q ¼ 2 envelopes for the universal
quasi-Gaussian processes (thick curving lines: see Appendix 4A).
The simulation is only a bit more variable, whereas the data are
much more variable.

Emergent laws of macroweather and transition to climate

344



(where Hmw � –0.4). In Appendix 10D we show
how to make simple stochastic models of this vary-
ing maritime/continental behaviour.

Our basic empirical conclusions are more or less
in accord with a growing literature – particularly with
respect to the temperature statistics. They are espe-
cially close to those of Huybers and Curry (2006),
who studied many paleoclimate series as well as the
60-year-long NCEP reanalyses and concluded that for
periods of months up to about 50 years, the spectra
are scaling with mid-latitude βmw larger than tropical
βmw (their values are 0.37 � 0.05, 0.56 � 0.08, quite
similar to ours). Using observations and climate
models at monthly resolutions, Fraedrich and Blender
(2003) used the DFA method (see Section 5.5.2; the

DFA is very similar to the Haar structure function,
Section 10.2.2). They found βmw � 0 over continents
but βmw � 0.3 in continental/ocean “transitional
regions”; a similar finding was made by Huybers
and Curry (2006), who also noted a small mean
land–sea difference (in their case of Δβmw ¼ 0.2); see
Table 10.1.

Koscielny-Bunde et al. (1998), Bunde et al. (2004),
Eichner et al. (2003) and Lennartz and Bunde (2009)
gave evidence that over continents βmw was in the
range 0.2–0.3 (similar to our estimates) and that the
exponents implied the existence of long-range correl-
ations in accord with our continental results. These
papers only used lags t up to one-quarter the length of
the series, so the largest t analyzed was � 40 years,
which is close to tc, a fact that presumably explains
why they did not notice the beginning of the climate
regime. Broadly similar results were obtained by
Blender et al. (2006), who argued that at least in some
regions such as the North Atlantic (but not Pacific),
there is indeed a long-term memory (i.e. for Gaussian
processes β 6¼ 0) which at these scales they attribute to
the thermal inertia of the Atlantic zonally averaged
ocean circulation (for evidence of long-range depend-
encies see also Fraedrich et al., 2009; Franzke 2010,
2012). We could also mention a paper by Lanfredi
et al. (2009), who considered the small but systematic
deviations from perfect DFA scaling over the range 1
month to ~1 year (caused at least partially by the
ocean cascade; see also Appendix 10A). Other pertin-
ent analyses are of GCM outputs and historical recon-
structions of the northern hemisphere temperatures
and tropical ocean averaged temperatures relevant to
El Niño (AchutaRao and Sperber, 2006). However, to
understand these, we must consider first the scale tc at
which the plateau ends as well as the geographical
distribution of the exponents. We postpone discus-
sion of these until Section 10.2.

To complete this examination of the spectral plat-
eau, let us consider other relevant climate-scale vari-
ables. In the model outlined in Chapter 8, it was the
balance of incoming and outgoing radiation (modu-
lated by the clouds, abundances of H2O, aerosols,
CO2, O3, CH4, N2O (Tuck, 2008) and the surface
variability, all of which are scaling) that determined
the overall energy flux variations that drove the
weather. Therefore, we expect εw (and by implication
εo) to be particularly significant for the climate. In
Fig. 10.6, we show an estimate from the 20CR
reanalysis at 45� N based of the Laplacian of the
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Fig. 10.5 (a) Spectra from 20CR (1871–2008) at 45� N for
temperature (T), zonal and meridional wind (u, v) and specific
humidity (hs). The reference lines correspond to βοc ¼ 0.6,
βmw ¼ 0.2, βw ¼ 2, left to right respectively. (b) Same as Fig. 10.5a
but at 5� N. The reference lines correspond to βoc ¼ 0.6, βmw ¼ 0.2,
βw ¼ 2, left to right respectively.
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Table 10.1 A comparison of various estimates of spectral exponents β and scaling range limits for the air and sea surface temperatures
(and their surrogates) and streamflow and precipitation and (where indicated) variables of state. For more data on tc, see Box 11.1; for
GCM estimates see Royer et al. (2008).

Series length

(years)

βw tw (days) βmw tc
(years)

βc

Northern hemisphere

instrumental (Lovejoy and

Schertzer, 1986), 1 month

100 _ _ � 0.2a 3 1.8

20th C (6 hours) (700 mb),

global, Fig. 1.9c

138 3 10 � 0.6a 5 � 1.7a

NOAA NCDC, NASA GISS,

HadCRUT3 (surface, monthly,

Appendix 10.C)

129 _ _ 0.2 (over land)

0.6 (SST)

10 1.7

Satellite global, (600 mb), daily,

Fig. 10.7

7 3 25 � 0.2a 2 � 2a

20thC u, v, T, h, ε (6 hours) (700

mb), 44 N, Figs. 10.5a, 10.6

138 2a 5 � 0.2a 10 0.6a

20thC u, v, T, h (6 hours) (700

mb), 5 N, Fig. 10.5b

138 2a 25 � 0.6a _ 0.6a

ECMWF interim (700 mb),

year 2006, Fig. 8.5

1 2a 5 � 0.2, 0.6 _ _

Instrumental, daily, USA 60 2a 7 � 0.2a 10 1a

Precipitation, USA (CPC), Fig. 8.4d 29 0.8b 5 0.05

Precipitation, France

(Tessier et al., 1996)

4096 days 0.4 � 0.1 16 0.1 � 0.1

River flow (Tessier et al., 1996) 10–30 years 1.3 � 0.1 0.5 � 0.1

River flow (Pandey et al., 1998) 10–80 years 2.4 8 0.72 20 1.7

(Lanfredi et al., 2009);

deviations < 1 year considered

as scale-bound Markov process

� 100 0.26

Mid-latitude, tropics (Huybers

and Curry, 2006)

Composite

to 106
_ _ 0.4 (mid)

0.6 (tropics)

� 100 1.6 (mid)

1.3 (tropics)

Fraedrich and Blender, 2003 NCEP reanalyses,

60

_ _ � 0 continents,

� 0.3 coasts

_ _

Eichner et al., 2003 In-situ daily

temperatures analysed

up to 40 years

� 0.3

Monetti et al., 2003 SST, 100 1.76 �
0.08

10 monthsc 0.6 � 0.16

AchutaRao and Sperber, 2006 Mean SST over

El Niño significant

regions, GCM and

reanalysis, 30 years

� 2 2–7 years � 0 _ _

Rybski et al., 2006 1000 years northern

hemisphere temp. (to

t � 200 years)

� 0.8 – 1
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(dominant) zonal wind component. We see that it is
similar to the other 20CR fields although the plateau
does indeed look very uniform and flat.

Although reanalyses have the great virtue of having
excellent statistics, they are potentially subject to
unknown biases due to their intrinsic limitations as
hybrid data/model “products.” Similarly, in-situ net-
works have other problems (how to fill the “holes” in
the fractal networks; Chapter 3). It is therefore of inter-
est to compare our results with those from remotely
sensed data. Fig. 10.7 shows an analysis of daily micro-
wave radiance data, a proxy for the 600mb temperature

field, averaged globally from 1979 to 1986. Again, the
spectral plateau is clearly visible and is in roughly the
same frequency range as for the real temperatures
(Table 10.1); interestingly the spectral exponent has
the continental value βmw � 0.2 rather than the mari-
time value� 0.6 (which is the value found for the global
20CR and globally averaged in-situ data: Figs. 10C.2,
10C.3). This discrepancy is potentially important for
evaluating global warming, although we must be cau-
tious since the data are only over a seven-year period.
Another interesting feature is that the weather regime
βw is close to 3, i.e. close to the global value (Fig. 1.9 c)
but significantly higher than the single pixel (local)
value for the ECMWF interim and in-situ estimates
discussed in Chapter 8, which have βw � 2.

Finally, we may consider classical climate indices,
first the North Atlantic Oscillation (NAO) index. The
NAO index is essentially the mean daily pressure
difference between the Arctic low and the mid-
latitude high, traditionally taken as the pressure
difference between Iceland the Azores. The NAO
characterizes the strength and direction of westerly
winds and storm tracks across the North Atlantic; its
statistical properties have been intensively studied,
especially with a view to finding characteristic
cycles/periodicities (e.g. Lind et al., 2007; Berger,
2008), although Stephenson et al. (2000) also con-
sidered some scaling alternatives. In Fig. 10.8 we
show that the index is also very similar to the other
continental fields analysed; again it displays a
βmw � 0.2 plateau, showing however some evidence

Table 10.1 (cont.)

Series length

(years)

βw tw (days) βmw tc
(years)

βc

Bunde et al., 2004; Koscielny-

Bunde et al., 1998; Lennartz

and Bunde, 2009

In-situ, 2 weeks to

30 years

_ 14 0.2 – 0.3

Ditlevsen et al., 1996 Ice cores (GRIP)d _ _ � 0.2 3 0.8

Lovejoy and Schertzer, 1986 Composite: ice cores,

instrumental

1.8 25 � 0 3–300e 1.8

Pelletier, 1998 Composite: ice core,

instrumental

1.5 7 0.5 200 1.5

a These values are not from regression lines but from plausible reference lines indicated in the figures; in most cases, the value βmw � 0.3
would work nearly as well.

b The exponent depends somewhat on the rain/no rain detection threshold.
c This “cross-over” time corresponds to our to, see Chapter 8.
d Using monthly resolution GRIP ice-core data for the last 3 kyr.
e The 3-year figure used northern hemisphere instrumental series, the 300-year figure was indirectly from Central England temperature series.
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Fig. 10.6 Spectrum from 20CR (1891–2002); the energy flux
estimated from the absolute Laplacian of the zonal wind at 700 mb,
42� N. The reference lines have βc ¼ 2, βmw ¼ 0.2, βw ¼ 1. Note that
the low frequency rise is influenced by the changes in the data
quality from the first and second half of the series.
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for a new low-frequency regime below � (10 years)�1.
The low-frequency low E excursion (for a single
frequency value) in Fig. 10.8 is presumably an artefact
of the poor statistics near (15 years)�1.

In Fig. 10.8, we also show an ocean SST-based
index, the Pacific Decadal Oscillation (PDO: we used
the monthly series from 1900 to 2010, http://jisao.
washington.edu/data_sets/). The PDO is the ampli-
tude of the largest principal component (PC, equiva-
lently, empirical orthogonal function) of the Pacific
SST distribution; it characterizes ocean dynamics
(Zhang et al., 1997). From about (10 years)�1 to lower
frequencies it follows the (atmospheric) NAO, but the
higher frequencies are closer to the 5� resolution SST
spectrum in Fig. 8.6d. The real-space (Haar) structure
function of the PDO is compared to those of SST and
global temperatures in Fig. 10.14. We also show the
spectrum of the Southern Oscillation Index (SOI),
which is the difference in pressure between Darwin
and Tahiti and which is used as a surrogate for the El

Niño–Southern Oscillation (ENSO) phenomenon.
We see that at high frequencies the spectrum is very
similar to the PDO (β � 1, H � 0), whereas the two
diverge for frequencies� < (2 years)–1, with the latter
having β � –0.3, H � –0.65 (paleo-ENSO surrogates
show that this continues only to about (100 years)–1,
after which the sign of H becomes positive – the
climate regime (J. Emile-Geay, personal communica-
tion). The ENSO oscillation phenomenology is thus
apparently associated with the transition between
“ocean weather” and the ocean macroweather regime
at scales � to.

10.1.5 Lévy collapse and universality
According to the previous section, if the FIF model
is extended beyond tw � 10 days, we no longer have
a scaling weather regime, but rather a new macro-
weather regime. We have already mentioned that
from the analysis of the plateau in Appendix 10A we
expect the dressed fluxes to tend to low intermittency
variables at scales t >> tw. However, we also noted in
Section 8.1.4 that we see evidence for the influence
of the ocean cascade with similar parameters (at least
for the temperature) even over land but up to scale
to � 1 year. This would lead to the continuation of
the intermittent multifractal variabilty to scales up
to to. In Section 10.1.3 we examined this prediction
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Fig. 10.7 The spectrum of 7 years of � 600 mb daily satellite
temperature estimates from the Microwave Sounding Unit (MSU)
channel 2 global daily average data at 100 km spatial resolution at
nadir (from 1979–1985; the other years had too much missing data
and were not used). The data were taken from http://discover.itsc.
uah.edu/amsutemps/ (page authors R. Spencer and D. Braswell,
NSSTC), and the spectrum was averaged in logarithmically spaced
frequency bins to reduce the noise. The slopes are for the indicated
reference lines and include once again a near βmw � 0.2 spectral
plateau. In the very-low-frequency regime and in the plateau the
exponents β are close to those of the instrumental temperatures but
in the high-frequency regime, they are a bit lower (βw � 3) than
the in-situ local data (βw � 2). The spikes are at (1 year)�1 and
subharmonics. While various satellite calibration issues may make it
difficult to use such data for inferring global warming or cooling
tendencies, such issues are not likely to affect the spectrum, except
perhaps at the lowest frequencies.
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Fig. 10.8 The solid line shows the spectrum of the daily North
Atlantic Oscillation (NAO) index (the pressure difference between
the Azores high and the Icelandic low), 60 years (1950–2009), from
the public NCEP, NOAA database at: ftp://ftp.cpc.ncep.noaa.gov/
cwlinks. The dashed line is the spectrum of the Pacific Decadal
Oscillation (PDO) at monthly resolution. The thin line is the Southern
Oscillation Index (SOI). The reference lines correspond to β¼ 1.4, 0.2,
3 (left to right).
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for the 75� N temperature series. Here, we examine
other fields, other latitudes and other products.

Consider the Lévy collapse of the 20CR reanalyses
from 1871 to 2008 (Fig. 10.9a): they are quite reason-
able. This is quantified by the percentage deviations
shown in Fig. 10.9b. We see that up to about 50 years
(and ignoring the very small time scale finite size
deviations) the spread of the curves for all the loga-
rithms of the moments up to second order are less
than about � 15%. Again, the fluxes are nearly

completely independent of scale for periods longer
than a year, although for periods longer than about
50 years (corresponding to the poor collapses) the
variability starts to decrease. The figure also shows
the corresponding curve for quasi-Gaussian processes
(such as the Ornstein–Uhlenbeck processes); again
they have much lower variability.

For the corresponding collapses for the ECMWF
interim reanalyses (corresponding to the spatial col-
lapses in Fig. 4.3), for h, T, u, v, w, z for the 700 mb
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Fig. 10.9 (a) Twentieth-century
Lévy collapses (time) of Laplacians
of 700 mb, 6-hourly data at 45� N of
u, v, T, hs (upper left, upper right, lower
left, lower right, and using α ¼ 1.9, 1.9,
1.9, 1.8, respectively). These are the
collapses of the cascades shown in
Fig. 8.7 b. The C1 values corresponding
to the linear (cascade regime) are:
0.083, 0.082, 0.090, 0.083, respectively.
The outer scale is 138 years so that
1 year corresponds to log10l � 2.15.
The lower curves are the envelopes
of the corresponding “collapse”
curves for quasi-Gaussian processes
(collapsed with α ¼ 1.8; see
Appendix 4A). (b) The evolution of
the percentage spread of the collapse
δ (as defined in Eqn. 4.16) for the
Twentieth-Century Reanalyses shown
in Fig. 10.9a. In top-to-bottom order
above the number “1” in “1 day”, we
have meridional wind (v), specific
humidity (hs), zonal wind (u) and
temperature (T).
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level in 2006 and for those of daily meteorological
station data (34-year-long series) for T, p, h (see the
spectra displayed in Fig. 8.2 a, b, c), see Lovejoy and
Schertzer (2011a, 2010, respectively).

10.2 Macroweather: its temporal
variability, and outer-limit tc
10.2.1 Tendency and difference
fluctuations and structure functions
for H> 0 and H< 0
In Table 10.1 we gave some limited evidence that tc was
in the range (10 years)–1 to (100 years)–1 but its value
was poorly discerned because it is near the extreme low-
frequency limit of instrumental data. We now attempt
to determine tc with more precision. Up until now, we
have primarily used spectral analysis, since it is a clas-
sical, straightforward technique whose limitations are
well known, and it was adequate for the purpose of
determining the basic scaling regimes in time and in
space. We now focus on the low frequencies corres-
ponding to several years to� 100 kyr, so it is convenient
to study fluctuations in real rather than Fourier space.
There are several reasons for this. The first is that we are
focusing on the lowest instrumental frequencies, and so
spectral analysis provides only a few useful data points –
for example on data 150 years long, the time scales
longer than 50 years are characterized only by three
discrete frequencies ω ¼ 1, 2, 3: Fourier methods are
“coarse” at low frequencies. The second is that in order
to extend the analysis to lower frequencies it is impera-
tive to use proxies, and these need calibration: the mean
absolute amplitudes of fluctuations at a given scale are
convenient for statistical calibrations. A third is that the
absolute amplitudes are also important for gauging
the physical interpretation and hence significance of
the fluctuations.

The simplest fluctuation is also the oldest: the
difference (ΔT(Δt))diff ¼ ΔT(t þ Δt) – ΔT(t). The
corresponding statisticalmoments<ΔT q

> are the clas-
sical structure functions (“generalized” from second
to qth order). According to Eqn. (8.2), the fluctuations
follow:

ΔT
d
¼ jΔtΔt

H ð10:11Þ

where jΔt is a resolution Δt turbulent flux (in the
notation of Chapter 5, Δt ¼ t/l where t is the outer
scale of the cascade, and l is a scale ratio and d

¼

means equality in a statistical sense (see Eqn. (5.94)).
From this we see that:

hΔTðΔtÞqi ¼ hj
q
ΔtiΔt

qH � ΔtxðqÞ; xðqÞ ¼ qH � KðqÞ

ð10:12Þ

where x(q) is the structure function with exponent
and K(q) is the (multifractal, cascade) intermittency
exponent introduced in Chapter 3. Since the turbulent
flux has the property that it is independent of scale Δt
(<fΔt> is constant), we have K(1) ¼ 0 and x(1) ¼ H.
The physical significance ofH is thus that it determines
the rate at which mean fluctuations grow (H > 0) or
decrease (H < 0) with scale Δt.

The problem is that the mean difference cannot
decrease with increasing Δt, and hence when studying
scaling processes with H < 0 it is clearly inappropri-
ate: the differences simply converge to a spurious
constant depending on the highest frequencies
available in the sample. Similarly, when H > 1, fluc-
tuations defined as differences grow linearly with Δt,
with slope depending on the lowest frequencies pre-
sent in the sample. In both cases, the exponent x(q) is
no longer correctly estimated. The problem is that we
need a definition of fluctuations such that <ΔT(Δt)>
is dominated by frequencies � Δt�1.

As discussed in Section 5.5.1, the need to more
flexibly define fluctuations motivated the development
of wavelets, and the classical difference fluctuation is
only a special case, the “poor man’s wavelet.” In the
weather regime, most geophysical H parameters are
indeed in the range 0–1 (Table 4.6), so that fluctuations
tend to increase with scale and this classical difference
structure function is adequate. However, we saw that
a prime characteristic of the macroweather regime is
precisely that H < 0, so that fluctuations decrease
rather than increase with scale. Hence, for studying
this regime, difference fluctuations are inadequate. To
change the range of H over which fluctuations are
usefully defined one must change the shape of the
defining wavelet. In the usual wavelet framework, this
is done by modifying the wavelet directly, e.g. by
choosing various derivatives of the Gaussian (e.g.
the second derivative “Mexican hat”) or by choosing
them to satisfy some special criterion such as ortho-
gonality. Following this, the fluctuations are calculated
as convolutions with fast Fourier (or equivalent)
numerical techniques.

A problem with this usual wavelet implementation
is that not only are the convolutions numerically
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cumbersome, but the physical interpretation of the fluc-
tuations is largely lost. In contrast, when 0< H< 1, the
difference structure function gives direct information
on the typical difference (q ¼ 1) and typical variations
around this difference (q ¼ 2) and even typical
skewness (q ¼ 3) or typical kurtosis (q ¼ 4) or, if
the probability tail is algebraic, of the divergence of
high-order moments of differences. Similarly, when
�1 < H < 0 one can define the “tendency structure
function” (below), which directly quantifies the fluc-
tuation’s deviation from zero and whose exponent
characterizes the rate at which the deviations decrease
when we average to larger and larger scales. These
poor man’s and tendency fluctuations are also very
easy to directly estimate from series with uniformly
spaced data and –with straightforwardmodifications –
to irregularly spaced data. While the corresponding
wavelets may not be orthogonal, when wavelets are
used for statistical characterizations this is generally
unimportant.

The study of real-space fluctuation statistics over
scale ranges including both the weather and the
macroweather regimes therefore requires a definition
of fluctuations valid at least over the range –1 < H <

1. Before discussing our choice – the Haar wavelet –
let us recall the definitions of the difference and
tendency fluctuations; the corresponding structure
functions are simply the qth moments. The differ-
ence/ poor man’s fluctuation is thus:
�

ΔTðΔtÞ
	

dif f
� jδ

ΔtTj; δΔtT ¼ Tðt þ ΔtÞ � TðtÞ

ð10:13Þ

where δ is the difference operator. Similarly, the “ten-
dency fluctuation” (Section 5.5.1, Appendix 5E) can
be defined using the series with overall mean (TðtÞ)
removed: T 0ðtÞ ¼ TðtÞ � TðtÞ by:

�

ΔTðΔtÞ
	

tend
�

�

�

�

�

1

Δt

X

t�t0�tþΔt

T 0ðt0Þ

�

�

�

�

ð10:14Þ

or, with the help of the summation operator s, equiva-
lently by:

�

ΔTðΔtÞ
	

tend
¼

�

�

�

�

1

Δt
δΔtST

0

�

�

�

�

; ST 0 ¼
X

t0�t

T 0ðt0Þ

ð10:15Þ

We can also use the suggestive notation
�

ΔTðΔtÞ
	

tend
¼ ΔT (see the schematic in Fig. 10.10).

When –1<H< 0,
�

ΔTðΔtÞ
	

tend
has a straightforward

interpretation in terms of the mean tendency of the
data to decrease with averaging, but it is useful only
for –1 < H < 0. It is also easy to implement: simply
remove the overall mean and then take the mean over
intervals Δt: this is equivalent to taking the mean of
the differences of the running sum. Fig. 10.10 shows
schematically the difference and tendency structure
functions.

Figs. 10.11a, 10.11b show the daily and annual
mean structure functions (Fig. 10.11a) and tendency
structure functions (Fig. 10.11b) for the same lati-
tudes and for the global average temperatures (after
detrending). It can be seen that the same basic
regimes can be identified, although the transition
points are (unsurprisingly) somewhat different. In
particular, considering the annually averaged regular
structure functions (Fig. 10.11a), we can begin to see
evidence at all latitudes – except perhaps for 75� N –

of the beginning of a rise for periods Δt > � 5–10
years. In particular, the evidence is clearer that the
global temperature begins a new power law, roughly
of the form as indicated (which corresponds to
βc�1.8), which is very close to the S(Δt) ¼ <ΔT2>1/2

� Δtx(2)/2 � 0.092Δt0.4 and � 0.077Δt0.4 laws found in
hemispheric and global instrumental temperatures
in Lovejoy and Schertzer (1986) corresponding to
βc ¼ 1 þ x(2) ¼ 1.8 (this is discussed at length in
Chapter 11, and see Table 10C.2). Again – signifi-
cantly for the interpretation of the Arctic and Antarc-
tic paleotemperatures – the 75� S structure function
seems to follow the global climate regime relation
whereas the 75� N structure function seems to remain
roughly constant, as expected for the spectral plateau.
Turning our attention to the tendency structure
functions (Fig. 10.11b), we see that even for the
75� N location the predicted βmw � 0.2 regime seems
not to hold much beyond a few years (left graph, daily
resolution), changing to more of a βmw � 0.6 regime
at larger Δt’s. Once again, the 75� S curve is somewhat
anomalous, being fairly flat (as expected if H > 0),
and follows the global curve for roughly a year and
longer periods. In Section 11.1.2 we will see that this
difference between the Arctic and Antarctic locations
is reflected in their ice-core paleotemperatures and
persists until scales of about 2000 years. From the
daily tendencies, we see that the low βmw (� 0.2)
of the higher latitudes compared to the lower
latitudes (βmw � 0.6) implies higher absolute Hmw’s
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Fig. 10.10 The top shows extracts of
the temperature simulation (Fig. 10.2)
at full resolution (the weather regime,
Hw ¼ 0.5), the bottom at 16-day
resolution (the macroweather regime,
Hmw ¼ -0.4). One can clearly see their
differing characters corresponding to
H > 0, H < 0, respectively. These
simulations are used to illustrate the
two different types of structure
function needed when H > 0 (the
usual) and H < 0, the “tendency”
structure function. Whereas the usual
structure function yields typical
differences in T over an interval Δt, so
that the mean is of no consequence,
the tendency structure function uses
the average of the field with the mean
removed. In both cases the q ¼ 2
moment was chosen because it is
directly related to the spectrum.
Taking the square root is useful, since
the result is then a direct measure of
the “typical” fluctuations in units of K.
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Fig. 10.11 (a) Comparison of the
daily (left) and annual (right) RMS
difference temperature structure
functions for various latitudes
indicated just to the right of daily
figure (all at 700 mb; from the 20CR
reanalysis, 1871–2008). The bottom
thick line corresponds to the global
average. On the right, we show a
power-law approximation to the
global structure function (apparently
roughly valid for Δt > 5 years; see
below). In addition, the RMS decadal
and centennial fluctuations are
shown: 0.29 K and 0.68 K, respectively.
(b) Same as Fig. 10.11a except for the
RMS tendency structure functions S�
(Δt) (daily, left, and annual, right, with
exponents x(2)/2; the reference lines
are labelled with β ¼ 1 þ x(2)). The
middle thick line corresponds to the
global average. On the right, we show
the RMS decadal and centennial
tendencies: 0.30 K and 0.17 K,
respectively.
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(–0.4, compared with –0.2) so that the higher-latitude
fluctuations (which are comparatively large at daily
scales) get smoothed out more rapidly by temporal
averaging so that at decadal scales there is not much
difference; they all follow the global βmw � 0.6 (except
75� S). Also shown in Fig. 10.11a, 10.11b are decadal
and centennial differences and tendencies.

10.2.2 Haar fluctuations and structure
functions: a convenient choice for
geophysics
The difference and tendency structure functions are
easy to implement and to interpret but are only useful
over narrow ranges of H. The Haar fluctuation/wave-
let is the basis of the orthogonal Haar decomposition
(Haar, 1910) in the context of modern wavelet theory;
it is a special case of the Daubechies family of
orthogonal wavelets (see e.g. Holschneider, 1995,
for a mathematical introduction to wavelets, and
Torrence and Compo, 1998, for a pedagogical intro-
duction). Haar fluctuations are nearly as simple as the
poor man’s and tendency fluctuations but are useful
over the wider range –1 < H < 1 which encompasses
all of the fields commonly encountered in geophysics.
Although Haar wavelets are frequently mentioned in
the wavelet literature, there have been surprisingly few
applications (although see several papers in Foufoula-
Georgiou and Kumar, 1994, or Ashok et al., 2010, for
recent examples; and for a comparison with the DFA
technique see Koscielny-Bunde et al., 2006).

An easy way to define the (absolute) Haar fluctu-
ation is by taking the mean of second differences of
the running sums:
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From this, we see that the Haar fluctuation at reso-
lution Δt is simply the first difference of the series
degraded to resolution Δt/2. In words: the Haar wave-
let at scale Δt is simply the difference of the means
over the first and second half of the interval. The

constant 2 in the definition was chosen so that the
Haar structure functions are close in value to the
difference and tendency structure functions: see
Appendix 5E. From the definition, we can see that
for data of resolution Δt, the smallest Haar fluctuation
that van be estimated is of resolution 2Δt (and for the
quadratic Haar defined in Appendix 5E, it is 3Δt).
Although this is still a valid wavelet (see Fig. 5.35b),
it is almost trivial to calculate and (thanks to the
summing) the technique is useful for series with
–1 < H < 1. Note also that, strictly speaking, the
Haar wavelet is defined without the division by Δt,
which has been added so that the Haar fluctuations
have the same scaling exponents as the poor man’s
and tendency fluctuations.

Haar structure functions can then be defined as the
various (qth-order) statistical moments of the Haar
fluctuations. The real advantage of these structure
functions is for functions with two or more scaling
regimes, one with H> 0, one with H< 0. We shall see
that, ignoring intermittency, this criterion is the same
as β < 1 or β > 1, and hence Haar fluctuations will be
useful for the data analyzed which straddle – either
at high or low frequencies – the boundaries of the
macroweather regime.

Is it possible to “calibrate” the Haar structure
function so that the amplitude of typical fluctuations
can still be easily interpreted? To answer this,
consider the definition of a “hybrid” fluctuation as
the maximum of the difference and tendency
fluctuations:

ðΔTÞhybrid ¼ max
�

ðΔTÞdif f , ðΔTÞtend

	

ð10:17Þ

The “hybrid structure function” is thus the maximum
of the corresponding difference and tendency struc-
ture functions and therefore has a straightforward
interpretation. The hybrid fluctuation is useful if a
calibration constant C can be found such that:
D

ΔTðΔtÞ
q
hybrid

E

� Cq
D

ΔTðΔtÞ
q
Haar

E

ð10:18Þ

In a pure scaling process with –1 < H < 1, this is
clearly possible since there is a unique scaling expo-
nent. However, in a case with two or more scaling
regimes, this equality cannot be exact, but as we see in
the next section, it can still be quite reasonable.

Now that we have defined the Haar fluctuations
and corresponding structure function, we can use it to
analyse a fundamental climatological series: the global
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mean surface temperature at monthly resolution. At
this resolution, the high-frequency weather variability
is largely filtered out and the statistics are dominated
first by the macroweather regime (H < 0), and then
at low enough frequencies by the climate regime
(H > 0).

Several such series have been constructed. In
Appendix 10C we discuss three in detail: NOAA’s
CDC, NASA’s GISP and the Climate Research Unit’s
HadCRUT3 series. Here we analyze the global aver-
ages obtained by averaging over all the available data
for the common 129-year period 1880–2008 (taking
into account the latitude-dependent map factors).
Before analysis, each series was periodically detrended
to remove the annual cycle – if this is not done, then
the scaling of the structure function near Δt � 1 year
will be artificially degraded. This periodic detrending
was done by setting the amplitudes of the Fourier
components corresponding to annual periods to the
“background” spectral values.

Fig. 10.12 shows the comparison of the difference,
tendency, hybrid and Haar root mean square (RMS)
structure functions <ΔT(Δt)2>1/2, the latter increased
by a “calibration” factor C ¼ 2.2. Before commenting
on the physical implications, let us first make some
technical remarks. It can be seen that the “calibrated”
Haar and hybrid structure functions are very close;
the deviations are � 14% over the entire range of
nearly a factor 103 in Δt. This implies that the indi-
cated amplitude scale of the calibrated Haar structure
function in kelvin (K) is quite accurate, and that at
least in this case, to a good approximation, the Haar
structure function preserves the simple interpretation
of the difference and tendency structure functions:
in regions where the logarithmic slope is between –1
and 0, it approximates the tendency structure func-
tion, whereas in regions where the logarithmic slope
is between 0 and 1, the calibrated Haar structure
function approximates the difference structure func-
tion. For example, from the graph we can see that
global scale temperature fluctuations decrease from
� 0.3 K at monthly scales to � 0.2 K at 10 years and
then increase to � 0.8 K at � 100 years. All of the
numbers have obvious implications, although note
that they indicate the mean overall range of the fluc-
tuations, so that for example the 0.8 K corresponds
to � 0.4 K etc. Since it was found that C ¼ 2 was
generally fairly accurate, unless otherwise indicated,
the Haar analyses presented in this book were system-
atically increased by this factor.

From Fig. 10.12 we also see that the global sur-
face temperatures separate into two regimes at about
tc � 10 years, with negative and positive logarithmic
slopes ¼ x(2)/2 � –0.1, 0.4 for Δt < tc and Δt > tc,
respectively. Since the spectrum is a second-order
moment, theoretically, β ¼ 1 þ x(2), so that β �
0.8, 1.8. We also analysed the first-order structure
function whose exponent x(1) ¼ H; at these scales
the intermittency K(2) � 0.03 so that x(2) � 2H so
that H � –0.1, 0.4, confirming that fluctuations
decrease with scale in the macroweather regime but
increase again at lower frequencies in the climate
regime (see Fig. 11.16a,b,c for more intermittency
analyses). Note that, ignoring intermittency, the crit-
ical value of β discriminating between growing and
decreasing fluctuations (i.e. H < 0, H > 0) is β ¼ 1.

For more discussion of this example, a comparison
with the detrended fluctuation analysis, generalizations
to higher-order Haar fluctuations (valid for larger
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Fig. 10.12 A comparison of the different structure function
analyses (root mean square, RMS) applied to the ensemble of
three monthly surface series discussed in Appendix 10C (NASA GISS,
NOAA CDC, HadCRUT3), each globally and annually averaged, from
1881 to 2008 (1548 dicpoints each). The usual (difference, poor
man’s) structure function is shown (thin, lower left), the tendency
structure function (thin, lower right), the maximum of the two
(“Hybrid”, thick), and the Haar in dark, medium thickness (as
indicated); it has been increased by a factor C ¼ 100.35 ¼ 2.2 and the
RMS deviation with respect to the hybrid is � 14%. Reference slopes
with exponents x(2)/2 � 0.4, –0.1 are also shown (corresponding to
spectral exponents β ¼ 1þx(2) ¼ 1.8, 0.8, respectively). In terms of
difference fluctuations, we can use the global root mean square
hΔTðΔtÞ2i1=2 annual structure functions (fitted for 129 years
> Δt > 10 years), obtaining hΔTðΔtÞ2i1=2 � 0.08Δt0.33 for the
ensemble. In comparison, Lovejoy and Schertzer (1986) found the
very similar hΔTðΔtÞ2i1=2 � 0.077Δt0.4 using northern hemisphere
data (these correspond to βc ¼ 1.66, 1.8 respectively). Reproduced
from Lovejoy and Schertzer (2012b).
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H’s) and for a discussion of the robustness of the
results with respect to nonscaling perturbations
(including linear global warming signals), see Appen-
dix 5E, especially Fig. 5E.6.

10.2.3 Haar structure function analysis of
the temporal variability: latitude, land, ocean
and principal components
The systematic use of Haar fluctuations allows us to
revisit in real space various issues that we have already
discussed in the spectral domain. In this section, we
consider the temporal scaling of the air temperature
as a function of latitude, for air temperature over
land, for sea surface temperatures (SST) and for SST
principal components. In the next section, we con-
sider the structure of the spatial scaling.

Let us first (re)consider the latitudinal dependence
of the grid point scale, daily averaged RMS fluctu-
ations using the RMS Haar structure functions (rather
than the difference or tendency structure functions,
Figs. 10.11a, 10.11b, or spectra, Figs. 10.5a, 10.5b).
Fig. 10.13a shows the result using the same latitude
bands as in Fig. 10.11a,10.11b and the same “calibra-
tion” as in Fig. 10.12. One can see that the Haar
structure functions usefully combine the information
from both the difference and tendency structure func-
tions (cf. Figs. 10.11a, 10.11b) but without the limita-
tions of the latter. The same basic three-scaling-
regime behaviour is also found in Haar structure
function analyses of precipitation (Fig. 10.13b),
although for precipitation and temperature the
weather regime (extreme left) and climate regime
(extreme right) are barely visible since their ranges
do not overlap the data range very much. Since there
have been claims (e.g. Kantelhardt et al., 2006) that at
these scales precipitation is a Gaussian white noise
(which theoretically has H ¼ –0.5 because the stand-
ard deviation increases as Δt0.5, so that its mean
decreases as Δt�0.5), we have included the corres-
ponding reference line as well as the standard devi-
ation of the structure functions indicating their
variation from grid point to grid point. These show
fairly convincingly that H 6¼ –0.5: the estimate –0.42
is reasonably accurate over the range of about 1 month
to 30 years.

For reference, we have added separate analyses of
monthly surface series (Fig. 10.14) separating out air
temperature over land from the sea surface; this is the
real-space analysis corresponding to the spectra in
Fig. 8.6d; the reference lines (slopes –0.4, –0.2, cor-
responding to those in Fig. 8.6d: β ¼ 0.2, 0.6 for land
and SST, respectively), and the ocean transition scale
to is again about a year. We have also included a
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Fig. 10.13 (a) The daily averaged, annually detrended RMS Haar
temperature structure functions averaged for various latitudes
(indicated at left), northern hemisphere (thin), southern (thick) for the
period 1871–2008 (all at resolution 2� � 2�). The reference lines,
slope ¼ x(2)/2, correspond to β ¼ 1 þ x(2) ¼ 0.2, 0.4, 0.8 (top to
bottom, respectively; the absolute slopes are indicated in the figure
itself). The “global” curve is the average over all the pixels, weighted by
the map factors. The rise at the left starting at Δt¼ 2 days (the smallest
lag for daily data for Haar structure functions) is the meteorological
regime (the maximum is at tw � 10 days), the middle is the
macroweather regime with minimum at tc� 10 years, and at the right
we see the beginning of the climate regime. This has been “calibrated”
by boosting the fluctuations by a factor of 2.2 so that the largeΔt part is
close to the tendency structure functions shown in Fig. 10.11b; the
corresponding temperatures are indicated in degrees K. (b) Haar, q¼ 1,
20CR (thick) with 29-year hourly CPC gauges (dots: see Section 4.4.2).
For the CPC we also show the corresponding grid point to grid
point one-standard-deviation limits (thin) with reference lines slopes
H¼ –0.42 (solid) and –0.5 (dashed) corresponding to a Gaussian white
noise process. Reproduced from Lovejoy and Schertzer (2012b).
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comparison with the Ornstein–Uhlenbeck (OU)
process (Appendices 4A, 10B) used in stochastic
linear modelling (SLM), comparing it with the SST
structure functions which is the closest curve (on this
log-log plot, pure OU processes only vary by shifts
left–right or up–down; their shapes are the same). We
see that the OU structure function is only close to the
data over about an octave in scale.

We also added the structure function of the largest
principal component of the Pacific SST (the PDO
discussed in Section 10.1.4). This is significant
because the usual approach to SLM uses a few dozen
principal components to form a vector OU process
(Appendix 10B). While the individual components of
such vector OU processes will not be identical to a
scalar OU process (whose shape is given in the figure
for reference), since the principal component contrib-
utes a large fraction of the overall variance of the
process one would nevertheless expect that its struc-
ture function would be not too far from the pure OU
function shown. It is therefore significant that the
PDO and OU structure functions are very different.

Worthy of note in Fig. 10.14 at large Δt is the
beginning of a rise in the structure functions
corresponding to the climate regime with tc � 10–
25 years. Since the curves are calibrated, their ampli-
tudes are significant. For example, the global average

curve (i.e. from the series of globally averaged surface
temperatures, not to be confused with the global
average over all the 2� � 2� pixel curves shown in
Fig. 10.13a), coincides with the (5� � 5� resolution)
SST curve at about 80–100-year scales. Extrapolating
to longer times, we may speculate that these will join
with the (5� � 5� resolution) land and PDO curves at
200–300 years, so that at these scales the variation of
the entire earth temperature may become dominant
with respect to geographical (regional) variability.

10.3 Spatial variability in
macroweather and climatic zones

10.3.1 Theoretical considerations in
understanding andmodelling climatic zones
A fundamental prediction of the weather/macroweather
model is a dimensional transition leading to the factor-
ization of the energy (and presumably other) cascading
fluxes into a high-frequency space-time weather pro-
cess εw(r,t) and a purely temporal macroweather
process εmw(t): εw,mw(r,t) ¼ εw(r,t) εmw(t) (Eqn.
(10.4)). While εw varies over spatial scales Δx < Le,
and over time scales Δt < tw, εc is variable only
over the range tw < Δt < tc (i.e. in spectral terms εw,
εmw are “band-limited” over the corresponding
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Fig. 10.14 RMS Haar structure function
analyses of various monthly temperature series.
The land (top), SST (middle) and global average
curves are from the NOAACDCdataset described
in Appendix 10C; the land and SST curves are
from the 5� resolution, near-complete 100-year
data analyzed in Fig. 8.6d. The Pacific Decadal
Oscillation (PDO) series is the dominant Pacific
SST principal component described in Section
10.1.4 and analyzed spectrally in Fig. 10.8; we can
see that its RMS fluctuations are very close to
those of the SST but about a factor of 2 larger. For
comparison, the results for 50 simulations of
Ornstein–Uhlenbeck (OU) processes are also
given using simulations with a characteristic time
of 36 days. The theoretical asymptotic slopes
(0.5, –0.5) are added to show the convergence to
theory. For the data, the reference slopes are
x(2)/2 ¼ –0.4, –0.2 orþ0.4, corresponding to
spectral exponents β ¼ 1 þ x(2) ¼ 0.2, 0.6, 1.8,
respectively (cf. the corresponding spectral
reference lines in the figures referred to above; a
flat curve here corresponds to β ¼ 1).
We may note that the OU process is a poor
approximation – not only to the SST curve but
also to the land and PDO curves.
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wavenumber and frequency intervals). Up until now,
we have mainly explored the implications of this in the
time domain, showingmainly (theoretically and empir-
ically) that the transition is fundamentally one between
an H > 0 and an H < 0 process at tw. It is now time to
consider the spatial variability.

If we only consider themodel described above, then
the basic spatial variability is quite simple. Recall that in
the weather domain there is a space-time relation
(Section 8.4). This means that the statistics of the tem-
poral average of εw(r,t) over time scale t < tw are the
same as the statistics of spatial averages over distance
l ¼ V t, where V ¼ Le/tw. In other words, temporally
averaging the weather process flux over scales tw is
equivalent to spatially averaging it over scale Le: it
essentially smooths out all the spatial variability. Since
the macroweather process εmw(t) only has temporal
variability, this simple model predicts that there would
be no significant spatial intermittency in atmospheric
fields averaged over time scales much beyond tw.
Although the fields (with a fractional integration order
H) would still be spatially variable, this is not obviously
comparable with the existence of climatic regions and
zones, i.e. the obvious long-time persistent and strong
spatial (geographical) variability.

This suggests that even in the macroweather
regime, in order to obtain realistic spatial variability,
we must extend the model into the climate domain.
The simplest way to do this while keeping the physical
idea that the energy flux (modulated by the weather/
climate processes) is the dynamical driver, is to
include in Eqn. (10.4) a lower-frequency climate
energy flux εc(r,t):

εw,cð�r , tÞ ¼ εw,mwð�r, tÞεcð�r, tÞ

εw,mwð�r, tÞ � εwð�r, tÞεmwðtÞ ð10:19Þ

where εw,c(r,t) is the overall weather/climate process,
εw,mw(r,t) is the overall weather/macroweather
process (Eqn. (10.4)) and εc(r,t) is the climate process
with long time outer scale tlc where a new “low-
frequency climate” process begins. These processes are
band-limited so as to only have variability at frequencies
tc
�1

< ω < ti
�1, tlc

�1
< ω < tc

�1 respectively (ti is the
inner weather scale). The full model for the observable
(in this case the wind v, since ε represents the energy
flux) is now given by the usual FIF model but with
a modified Green’s function:

vð�r , tÞ ¼ gw,cð�r, tÞ  εw,cð�r, tÞ

gw,cð�r, tÞ ¼ YðtÞ
�

½½ð�r, tÞ


�ðdþ1�HwÞ
w,mw  ½½ð�r, tÞ



�ðdþ1�HcÞ
c

	

ð10:20Þ

where ½½ð�r, tÞ

w,mw and ½½ð�r, tÞ

c are weather/
macroweather and climate-scale functions, band-
limited so that ½½ð�r, tÞ

w,mw has little variability at
frequencies below tc

�1, and ½½ð�r, tÞ

c has little variabil-
ity above tc

�1 (see Eqn. (10.5)), and d is the dimension
of space (we’ll ignore the vertical direction so that
d ¼ 2). Note that no explicit treatment of the macro-
weather regime is needed, since as we saw in Section
10.1, it appeared as a consequence of the dimensional
transition at tw. Let us (as usual) indicate temporal
averaging at scale t with a subscript:

εtð�r, tÞ ¼
1

t

ð

tþt

t

εð�r, t
0Þdt0 ð10:21Þ

If we now average the full weather/climate process
εw,c(r,t) over time scales tw < t < tc, we obtain:

εw, c, tð�r , tÞ ¼ εw, tð�r, tÞεmw, tðtÞεc, tð�r, tÞ

� εmw, tðtÞεc, tcð�rÞ; tw < t < tc

εw, c, tð�r, tÞ � εc, tð�r, tÞ; t > tc ð10:22Þ

where εw, c, tð�r, tÞ, εmw, tðtÞ and εc, tð�r, tÞ indicate
respectively the overall process and the macroweather
and climate processes at resolution t. The top line in
Eqn. (10.22) follows since when t > tw, we average
out the weather process intermittency εw, tð�r, tÞ � 1,
and the second line follows since similarly when t >

tc we average out the macroweather intermittency:
εmw, tðtÞ � 1. However, for t < tc, the climate process
is essentially constant in time, so we suppressed the
time argument.

Eqn. (10.22) shows that for time scales in the
macroweather regime, the fluxes factor into separate
spatial and temporal functions. If we assume that the
climate flux εcð�r, tÞ is statistically independent of the
macroweather flux εmwðtÞ, then we may take qth
powers and ensemble averages to obtain:

hεð�r , tÞ
q
w, c, t, li � hεmw, tðtÞ

qihεc, lð�rÞ
qi

�

�

Le

l

�

lKcðqÞ; tw < t < tc ð10:23Þ
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where εð�r, tÞw, c, t, l is the flux at time-space resolution
t, l, Kc(q) is the moment scaling exponent for the
climate-scale variability, and we have used the fact
that macroweather process has low intermittency
so that hεmw, tðtÞ

qi � 1 (more precisely it is
subexponential, i.e. slowly varying in resolution). This
is confirmed in Fig. 10.16, where we find that over the
entire range 8 days to 44 years it only changes by a
factor 2–3. Note that this quasi-Gaussian behaviour
implies a linear scaling exponent for the temporal
fluctuations (cf. Eqn. (10.9)): we discuss this in the
next section. Following our experience in the weather
regime, where there are several significant fluxes – not
only the energy flux – we expect they will factor in an
analogous way.

Themodel predictions (Eqns. (10.22), (10.23)) canbe
tested in several ways. A fairly fundamentalway is via the
spectrum of the flux averaged over the weather regime
εw, c, twð�r, tÞ; if Eqn. (10.22) is valid, then this factors as
εw, c, twð�r, tÞ ¼ εmw, twðtÞεc, tcð�rÞ. If in addition we
assume that the factors εmw, twðtÞ, εc, tcð�rÞ are statistically
independent, then the spectral density will also factor as
Pw, c, twð�k,ωÞ ¼ Pcð�kÞEmwðωÞ, where we have used the
notation Emw(ω) for the 1D low-frequency weather
density, P for the wavenumber–frequency spectral dens-
ity. If the spectral densities of the fluxes factor in thisway,
then so will the spectral densities of the observables.

To test this, for simplicity we restricted our atten-
tion to the zonal direction (kx) and used the 700 mb
temperatures at 45� N from the 20CR reanalysis at
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Fig. 10.15 (a) A contour plot of the logarithm of the mean spectral
density P(kx,ω) of the 45� N 20CR 700 mb temperatures averaged
over 840 segments each 60 days long (138 years). The resolution was
6 hours in time and 2� in longitude (� 160 km; 28 000 km is the
circumference of the 45� latitude line). With the exception of the low
frequencies between the dashed vertical lines, the spectrum
shows the weather regime. Note the diurnal peak (arrow). According
to the theory developed in Section 8.3, the contours are the same
shapes as the space-time scale function; the asymmetric orientation
is a consequence of a mean wind of � 72 km/h (indicated by the
dashed oblique line): see Eqn. (8.29). The exponent of the isotropic
spectrum estimated from the 2nd to 30th wavenumber cycles is βw
� 1.6, which is close to that of aircraft and other reanalyses (see
Table 8.1). (b) The spectral density of the logarithm P(kx,ω) of the

same reanalysis temperatures as shown in Fig. 10.15a, only over
the macroweather regime (from (138 years)–1 to (1 month)–1, i.e. 1
and 1680 cycles/138 years, respectively). The central spike is due to
cycles 1–7 corresponding to the climate regime (see Fig. 10.15c for a
blow-up), and the other spikes are the annual cycle and its
subharmonics. If the macroweather and climate contribute pure
temporal and pure spatial factors which are statically independent,
then P(kx,ω)¼ E(kx)E(ω) and the contours will be all either horizontal or
vertical (parallel to the axes). We see that this is reasonably accurately
verified. The main exception is the small slope on the inner contour
(affecting the strongest fluctuations), which corresponds to� 100 m/
day, i.e. about 10 000 times smaller than the speed in the weather
regime (Fig. 10.15a) (this is presumably not an advection speed). (c)
A blow-up of the central portion of Fig. 10.15b showing the climate
regime in the centre (the region between the dashed vertical lines
corresponds to scales> 20 years). Although the temporal scale range
is too small, the space-time scaling there appears to be anisotropic,
becoming stratified in the kx direction. This would imply Hc,h > Hc,t, in
agreement with the estimates Hc,h � 1.4, Hc,t � 0.4 (horizontal and
temporal H exponents in the climate regime, Hc,h� 0.7 is for the near
surface T value). The annual cycle (indicated by the arrows) is
noticeably “fat,” a consequence of the average number of days per
year being noninteger. This frequency spread is the source of difficulty
in removing the annual cycle.

Emergent laws of macroweather and transition to climate

358



6-hour resolution. The overall range of time scales
was a factor of 201 616, so in order to clearly see the
behaviour at both high- and low-frequency regimes,
the data were analyzed in two ways. For the high-
frequency weather regime, we broke the data into
60-day segments and calculated the average spectrum
averaged over all the segments (Fig. 10.15a). This
confirms that the space-time spectrum is close to that
of the theory developed in Chapter 8, including with a
mean east–west speed of about 72 km/h (not quite
a displacement speed: see the theory). For the macro-
weather regime, we averaged the data over 15-day
segments (roughly tw) and then calculated the spec-
trum (Figs. 10.15b, 10.15c). The contours are indeed
nearly parallel to the ω and kx axes. The only excep-
tions are the climate regime (see especially the blow-
up in Fig. 10.15c) and the central contour of
Fig. 10.15b, whose slight diamond shape implies a
low speed of � 100 m/day – more than 104 times
smaller than the speed in the weather regime. Overall
we see that the approximation Pw, c, twðkx,ωÞ ¼
EcðkxÞEmwðωÞ is quite well respected except for
roughly the first seven periods (corresponding to
138/7 � 20 years) where the climate variability begins
(Fig. 10.15c). Similar behaviour was found at other
latitudes, although near the equator factorization only
holds for frequencies below (1 year)�1, presumably
due to the influence of the ocean (recall tlo 	 1 year).

Figs. 10.15b and 10.15c test both the factorization
hypothesis (Eqn. (10.19)) and the statistical independ-
ence of the factors. However, Eqn. (10.19) does not
require statistical independence, and for t < tc, it
predicts not only factorization but also that the spatial
factor is due to the slowly varying stochastic climate
process εc(r,t). This means that over scales < tc, εc(r,t)
� εc(r) (roughly independent of time: Eqn. (10.19)),
so we expect that the spatial statistics will show signs of
converging to the statistics of those of the single real-
ization of the random process εc(r). Since according to
the FIF model, gTðkÞ ¼ gjðkÞk�H , considering the com-
pensated T or (its flux) j spectra are equivalent; the
T spectrum is shown in Fig. 10.16. We can see that as
the temporal averaging varies over the range 16 days
to 44 years (24 to 214 days, a factor 1024) the compen-
sated spectrum only changes by a factor 2–3 (solid
lines); indeed, that it seems to converge to a random
(but roughly k�2.2) spectrum as the averaging
increases to tc. The spectral exponent βc � 2.2 implies
that Hc � 0.7 (using βc ¼ 1 þ 2Hc – Kc(2)). There is
even some hint that the 89-year spectrum (dashed

bottom curve in the beginning of the climate regime)
is becoming variable because of the beginning of the
climate regime. We conclude that this initial data
analysis gives reasonable support to the model (Eqn.
(10.19)); in the next section we give it further support
by showing that the temporal and spatial fluctuation
statistics are indeed multiplicative and independent.

We have verified to a reasonable degree that the
fluxes factor into statistically independent temporal
and spatial components (Fig. 10.15b) and that the
latter has only low-frequency climate-scale variations
(Fig. 10.16). We have already checked that the macro-
weather process is roughly quasi-Gaussian in the time
domain; let us now check that on the contrary it is
multifractal, intermittent in the spatial domain (the
climate factor): let us test Eqn. (10.23). The easiest
way to check this is via the trace moments using
various temporal averaging periods on the same
20CR reanalysis data. This is shown in Fig. 10.17,
where the data were divided up into segments of
duration t as indicated. The top line shows typical
weather-regime trace moments (6 hours, 1 day)
whereas the next three (30 days, 1 year, 27 years) are
in the macroweather regime, and are somewhat more
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Fig. 10.16 The spatial spectrum of the near-surface time-averaged
20CR temperatures at 45� N compensated by dividing by the
theoretical scaling spectrum k�β (with βc ¼ 2.2). The top dashed
lines are in the weather regime (6 hours to 8 days, increasing
downwards by factors of 2); the middle solid lines are the spectra of
the temperatures averaged over the low frequency weather scales
(16 days to 44 years), and the bottom dashed line is the climate scale
spectrum at 89 years (215 days). The straight lines are flat reference
lines indicating E(k) � k�2.2 behaviour. The high variability at the
extreme right (largest factor � 2) in k are presumably finite size
effects. The apparently thick line is actually the convergence of the
macroweather regime to a well-defined spatial spectrum of a
random εc(r) at � 44 years.
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intermittent, with somewhat larger external scales
(this is quantified in Table 10.2). Finally (lower right),
we show the remarkably similar climate-regime trace
moments at 89-year resolution.

In Fig. 10.17 it is noticeable that as the duration
of the averaging increases there is a tendency for the

intermittency (as quantified for example by C1: see
Table 10.2) to increase rather than decrease, an effect
somewhat augmented by a small but systematic
increase in the effective outer scale. The (limited)
climate-regime results are very similar but if anything
even stronger: see the 89-year graph and parameters.
This strong spatial intermittency in both macro-
weather and the climate regime is a quantitative
expression of the fact that at climate scales different
“climates” exist in different geographical regions. We
return to this in Section 11.1.4. Table 10.2 shows that,
as predicted by Eqn. (10.23), there is very little change
in the spatial statistics over the entire macroweather
regime, indeed into the beginning of the climate
regime (which for these data at 45� N starts at about
40 years: see Fig. 11.5b).

10.3.2 Space-time relations in
macroweather: joint space-time
fluctuation analysis
In the previous section we theoretically showed that
in the macroweather regime the spatial variability
must be a consequence of a new very-low-frequency

Table 10.2 The horizontal parameter estimates the 45� N
700 mb on 20CR temperatures averaged over various temporal
resolutions as indicated. C1, α, Leff are from the trace moment
analysis in Fig. 10.16. Over the macroweather regime (between
16 days and 27 years), regression analysis from the trace moment
analyses gives the following means and one-standard-deviation
spreads in values: C1 ¼ 0.115 � 0.018, α ¼ 1.71 � 0.07; the mean
outer scale is 9400 km. The values for the surface (0.995 sigma
level) 20CR temperatures are very close with Leff ¼ 15 000 km,
C1 ¼ 0.098 � 0.005, α ¼ 1.38 � 0.09.

C1 α Leff

6 hours 0.095 1.65 6400 km

1 day 0.091 1.71 6400 km

30 days 0.093 1.81 10 000 km

1 years 0.118 1.75 10 000 km

27 years 0.136 1.67 10 000 km

89 years 0.130 1.63 13 000 km
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Fig. 10.17 The horizontal trace
moment analyses of the 45� N 700 mb
on 20CR temperatures averaged over
various temporal resolutions as
indicated. The scale ratio l is with
respect to a reference scale of 14 000 km
(half the earth’s circumference at this
latitude). It can be seen that the scaling
in the macroweather regime (30 days,
1 year, 27 years) and climate regime is
excellent out to the largest scales and
that the intermittency is fairly constant
(see Table 10.2). This used two
somewhat overlapping 89-year
segments from the beginning and end
of the series.
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space-time climate process, and we gave evidence that
a simple multiplicative model for the turbulent fluxes
which included a climate factor was indeed valid.
Indeed, if we stick to the range tw < t < tc, then we
found theoretically that the flux at temporal reso-
lution t factors into independent spatial and temporal
factors εtð�r, tÞ � εmw, tðtÞεc, tcð�rÞ where εmw, tðtÞ has
low intermittency and εc, tcð�rÞ on the contrary has
fairly high intermittency. By considering the spatial
flux moments and spatial spectra we gave support to
this multiplicative model. In this section we consider
the implications for the fluctuations ΔT(Δx,Δt).

Due to the factorization (Eqn. (10.22)) into low-
frequency temporal and spatial factors, the behaviour
of the fluctuations ΔT(Δx,Δt) is quite simple; it is
just the product of the corresponding 1D fluctuation
statistics, so that we expect structure functions to
behave as:

SqðΔx,ΔtÞ�ðsq,mwÞ
q

 

Δx

Le

!xcðqÞ
 

Δt

tw

!xmwðqÞ

; Δx<Le ; tc>Δt>tw

xcðqÞ�qHc�KcðqÞ; Hc�0:7
xmwðqÞ�qHmw; Hmw��0:4

ð10:24Þ

where Sq is the qth-order (joint) structure function
and sq,mw is a proportionality constant with dimen-
sions K. The exponent Hmw � –0.4 was estimated
earlier from the temporal Haar structure function
(theoretically, Eqn. (10.9), or empirically, Fig.
10.13a, although the corresponding 45� N curve was
not shown). Hc � 0.7 was deduced from the analyses
of the previous section, βc � 2.2 with Kc(2) � 0.2,
(Table 10.2), using the formula βc ¼ 1 þ 2Hc – Kc(2).
In the above we have used an external scale Le* rather
than the usual Le ¼ 20 000 km in anticipation of the
fact that we expect there to be latitudinal variations
in the outer scale, and also that the actual outer scale
is somewhat less than Le (in these analyses, at 45� N,
the half circumference � 14 000 km and we find
Le*� 5000 km).

We can now test Eqn. (10.24) directly by system-
atically using Haar fluctuations to determine the stat-
istical variation of the fluctuations at joint space-time
intervals (Δx, Δt). Using the same 45� N 20CR near-
surface temperature dataset, we can first calculate the
temporal Haar fluctuation and then analyze it using
spatial Haar fluctuations. In order to more clearly
bring out the behaviour, we compensated the spatial
fluctuations by multiplying them by Δt0.4 so that the

curves for various Δt’s collapse on top of each other
whenever they satisfy the theoretical temporal scaling
(Eqn. (10.24)). When this is done for every factor of 2
in time scales from days to 138 years, we obtain Fig.
10.18. The compensated macroweather curves (16
days to 44 years, solid lines) are indeed tightly
bunched over this macroweather range, but are
noticeably dispersed for the smaller meteorological
scales and the longer climatological scales. In addition
to the theoretically predicted bunching, the fluctu-
ations are roughly power law in space up to ~5000
km with the predicted spatial scaling exponents xc (2)/
2 � Hc – Kc(2)/2 � 0.6 (see the reference lines). After
Le* � 5000 km the fluctuations apparently “saturate”
but nevertheless remain tightly bunched (so that the
temporal scaling still approximately holds even at
these larger spatial scales). The calibrations used in
the figures and in the estimates of the constants s2,mw,
s1,mw were determined such that at the scale of the
maximum (Le*) the Haar fluctuations were equal to
the corresponding differences.

Also shown in Fig. 10.18 are the structure func-
tions corresponding to the weather regime (2 days to
8 days, bottom) and the climate regime (44 years to
138 years, top): these are indicated by the dashing;
they are dispersed because they both have H 6¼ –0.4.
The weather-regime structure functions have clear
maxima: this is because of the space-time relation
already observed in Fig. 10.15a. On the large Δx side
of the maximum, the weather curves approximately
follow the form of Eqn. (10.24) but with Hw,h � �0.5,
Hw,t � 0.6 (weather regime, horizontal and temporal
exponents).

Finally, for the climate curves (Fig. 10.18, top), we
see that the compensated structure functions for 89
and 138 years clearly separate from the macroweather
functions, and it is significant that, as predicted by
Eqns. (10.22) and (10.23), over both macroweather
and climate scales the basic shape of the spatial struc-
ture function is unchanged. Indeed, we expect that the
main change in the climate regime is that the tem-
poral Hmw < 0 is replaced by a temporal Hc,t > 0, i.e.
with the same power-law spatial prefactor (in Chapter
11 we give evidence that for the temperature in time,
Hc,t � 0.4).

Rather than viewing structure functions of Δx for
fixed Δt, we can instead view the structure functions
for fixed Δx and varying Δt (Fig. 10.19). Here the
dashed lines have slopes �0.4 and are spaced in the
vertical corresponding to x(2)/2 ¼ 0.6. The main
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deviation from the theoretical behaviour is for the
finest (4� longitude) spatial resolution at annual
scales, this is an artefact of the imperfect detrending
of the strong annual cycle. This can be compared with
Fig. 10.13a.

Combining the information from Figs. 10.18 and
10.19, we conclude that Eqn. (10.24) is roughly valid
for Δx < Le* ¼ 5000 km and for tw < Δt < 44 years
with Hmw ¼ –0.4, Hc ¼ 0.7, C1 � 0.11, α � 1.75, Leff �
10 000 km. Since Δt > te and Hmw < 0 and Δx < Le
and Hc > 0, we see that the maximum possible value
of Sq(Δx,Δt) ¼ Sq(Le

*,te) ¼ (sq,mw)
q, and hence sq,mw is

the maximum (mean) fluctuation. Considering the q¼
2 moments, we find empirically that s2,mw � 6 K, s1,mw

� 5 K (for the RMS and q ¼ 1 moments respectively).
Eqn. (10.24) is thus a fundamental law of the

macroweather regime; it describes how temperature
fluctuations decrease with temporal scale and increase
with spatial scale. As was done in the weather regime,
the structure functions can again be used to define
space-time relations: for a given temperature fluctu-
ation Sq, what are the corresponding possible Δx, Δt?

Here, according to Eqn. (10.24), the relation Sq(Δx,Δt)¼
constant implies (generalized) hyperbolic contours:
considering the q ¼ 1 case, this yields:

Δx¼Le

 

S1

s1,mw

!1=Hc
 

Δt

tw

!�Hmw=Hc

; tc>Δt>tw; S1< s1,mw

ð10:25Þ

where since Hmw/Hc � –0.6, we obtain Δx � Δt0.6.
Note that this is quite unlike the (generally ellipsoidal)
structure functions that we found in the meteoro-
logical regime (see the contours in Fig. 10.15a and
Eqns. (8.15), (8.16)).

By linking spatial and temporal variability, Eqns.
(10.24), (10.25) suggest several applications. For
example, if our objective is to model temperature
fluctuations to an accuracy of S1¼0.1 K at time scales
at the beginning of the macroweather regime (Δt ¼
tw), then, using the above estimates for the param-
eters, Eqn. (10.25) tells us that we must have a spatial
resolution of roughly 20 km. However, if we seek

Fig. 10.18 The compensated spatial RMS Haar structure functions using the 20CR near-surface temperature fluctuation fields (0.995 sigma)
defined by usual (linear) Haar wavelets at temporal resolutions varying from 12 hours to 138 years at 45� N. The reference lines have
slopes xc(2)/2 ¼ 0.6 (a bit smaller than Hc since C1 � 0.1). The original data had 2� longitudinal and 1-day temporal resolutions so that the
highest-resolution time-space fluctuations were 2 � 1 ¼ 2 days and 2 � 2� ¼ 4� ¼ 470 km. Each curve shows the analysis for temporal Haar
fluctuations with resolutions varying from 2 to 215 days (� 89 years) indicated on the graph (the 138-year curve is only 215.6 days). Each
curve has been compensated by dividing by the theoretical behaviour Δt-xt(2)/2 ¼ Δt�0.4 (the units of Δt here are the number of 2-day periods).
The thick curves are from 32 days to 44 years and correspond to the macroweather regime, and we can see that with the exception of
the single lowest factor of two in scale (finite size effects) these are all tightly bunched together near the thick reference line (slope
xh(2)/2 ¼ 0.6), indicating that they follow closely the behaviour in Eqn. (10.22) up to about 5000 km. The weather-regime (2 days to
16 days, bottom) and climate-regime (89 years to 138 years, top) curves are all indicated by dashing and separate out quite clearly from the
macroweather curves since they both have H 6¼ –0.4.
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this accuracy only at scales Δt ¼ 1 year, and taking
Δt/tw ¼ 36, we find that the much coarser resolution
� 150 km is adequate. Alternatively, when analyzing
regional data (e.g. Δx ¼ 5000 km) at annual scales
(Δt ¼ 1 year) for signs of climate change (anthropo-
genic or otherwise), Eqn. (10.24) tells us that one
expects natural fluctuations of � � 1 K so that only
larger fluctuations would be statistically significant.
To make proper statistical tests in order to determine
confidence limits and the like, we could simply exploit
the fact that the moments in Eqn. (10.24) implicitly
define the probabilities (quasi-Gaussian in time,
multifractal in space). It would be interesting to verify
this directly with numerical climate models. (Note
that these values are for the 20CR at the surface; the
numbers for 700 mb are somewhat different.)

10.4 Summary of emergent
laws in Chapter 10
In this chapter we investigated the consequences of
the FIF model for Δt >> tw, where tw is the weather
time scale identified with the lifetime (eddy turnover
time) of planetary-sized structures (� 10 days). If we
assume that the outer time scale of the cascade is tc
>> tw, then due to the finite size of the earth there

will be a “dimensional transition” at tw. Nondimen-
sionalizing space by Le, and time by tw, so that Λc ¼
tc/tw and Λw ¼ Le/Li (“i” for “inner scale”), we may
the write the cascade generator G as a sum of a
weather and macroweather component:

Gw,mw¼GwþGmw

εw,mw¼ εwεmw; εw,mw¼ eGw,mw ; εw¼ eGw ; εmw¼ eGmw

ð10:26Þ

with:
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where Bw is the dissipation-scale “ball” (i.e. a circle
radius Λw

�1 in d ¼ 2 spatial dimensions), B1 is the
corresponding (planetary)-scale ball (recall that the
nondimensional x ¼ 1 corresponds to planetary scales
Le) and Ndþ1 is a normalization constant (¼ p in one
spatial dimension plus time, 2p in two spatial dimen-
sions plus time). The corresponding second charac-
teristic functions of the bare processes at a scale ratio
l from the outer scale of the weather process (¼ 1)
and at the same scale ratio from the outer scale of the
macroweather process (which is also the inner scale of
the climate process ¼ Λc) are:

KwðqÞ ¼ Loghε
q
w,li ¼

C1q
α

α� 1
N�1
dþ1

ð

1

l�1

ð

B1
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l

d�rdt
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KmwðqÞ ¼ Loghε
q
mw,li �

C1q
α

α� 1
N�1
dþ1

ð

Λc

Λc=l

dt

tðdþ1Þ
ð10:28Þ

These second characteristic functions are to base e,
not base l, so that the exponent in the integrand in
the top (weather) equation gives a logl behaviour
(as required for multifractal weather processes).
Whenever d > 0, the kernel for Kmw falls off too
quickly: there will instead be a l-d fall-off. The
consequences of this are that (a) the above bare

Fig. 10.19 The same structure function analysis of joint space-time
fluctuations as in Fig. 10.18, but here each curve corresponds to a
different spatial fluctuation scale, with the thick curves roughly in the
spatial scaling part of Fig. 10.18 (32� corresponds to � 3500 km). The
equally spaced straight dashed lines have slopes Hmw ¼ –0.4 and
vertical interline spacings corresponding xc(2)/2 ¼ 0.6: the same
exponents as in Fig. 10.15 and Eqn. (10.24). Although the data were
detrended (annually), there is a residual variation which perturbs the
temporal scaling, strongly for the smallest spatial scales (see the
bump in the 4� , 8� curves near 1 year).
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and dressed statistics are quite different from each
other, with the latter approaching the usual Gauss-
ian limit although with (b) long-range correlations:
the autocorrelation function has an asymptotic
(large Δt) behaviour R(Δt) � Δt�1, but the conver-
gence requires very wide ranges of scale; (c) the
spectrum is the Fourier transform of R, so that it
has a low-frequency divergence leading to “pseudo-
scaling,” i.e. near power-law scaling but with expo-
nents that depend on the outer scale Λc (not on C1

or H and only weakly on α).
With Λc in the empirically relevant range (e.g.

30 years < tc < 2000 years, corresponding to 210 < Λc

< 216), we find that the macroweather spectral expo-
nent βmw is in the range 0.4 < βmw < 0.2, which is
roughly the same as the empirically measured expo-
nents. These values of βmw correspond to exponents
following the usual macroweather exponent Hmw:

Hmw � �ð1� βmwÞ=2; �0:4 < Hmw < �0:3

ð10:29Þ

(the dressed process is nearly nonintermittent, so that
unlike the weather scales, which generally have H > 0,
the macroweather regime generally has H < 0).
A coupled atmosphere–ocean model leads to βmw �
0.6 for frequencies in the low-frequency ocean regime
ω < ωlo � (1 year)–1.

The pure weather/macroweather model does a
very good job at predicting the temporal statistics up
to a scale � tc, where a new climate regime begins.
However, we pointed out that its predictions for the
spatial statistics of temporal averages of time scales
t > tw are completely unrealistic; it predicts only very
mild variability, which is contradicted by the strong
spatial heterogeneity associated with climatic zones.
We were therefore led – if only in order to understand
the macroweather regime – to introduce a lower-
frequency climate factor, the (multifractal) process
εcð�r, tÞ.

εw, cð�r, tÞ ¼ εw, lqð�r, tÞεcð�r, tÞ � εwð�r, tÞεmwðtÞεcð�r, tÞ

ð10:30Þ

Using space-time spectra, structure functions and
spatial trace moments, we showed empirically that
this was reasonably compatible with 20CR tempera-
ture reanalyses, including the hypothesis that εcð�r, tÞ
is statistically independent of the other factors. Using
the fact that εmwðtÞ is quasi-Gaussian and assuming
that εcð�r, tÞ is multifractal, this predicts the form of

the joint space-time fluctuations. Combining this
with the simplified form for the weather-scale fluctu-
ations, we have the following structure functions:

Sq,wðΔr,ΔtÞ¼ðsq,wÞ
q½½ðΔr,ΔtÞ



qHw�Kw ðqÞ

w ; ti<Δt<tw

½½ðΔx,0,0,ΔtÞ

w,can¼

�

Δx

Le

�2

þ

�

Δt

tw

�2
0

@

1

A

1=2

Sq,mwðΔr,ΔtÞ¼ðsq,mwÞ
qkΔrk

qHc�Kc ðqÞ

c

�

Δt

tw

�qHmw

; tc>Δt>tw

kðΔx,0,0Þkc,can¼
�

�

�

Δx

Le

�

�

� ð10:31Þ

all valid for Δx < Le*, where Le* is the effective outer
scale estimated at 45� N to be about 5000 km (com-
pared to the half-circumference of ~14 000 km),
although the small spatial scale limit of the climate
factor may be several hundred kilometres: see Section
11.2.4. The sq’s are proportionality constants with
dimensions K discussed below. In Eqn. (10.31), we
have first given the expected general form of the
structure functions SqðΔr,ΔtÞ¼hΔTðΔr,ΔtÞqi for gen-
eral space-time vectors (Δr,Δt), in terms of space-time
scale and space functions (½½ðΔr,ΔtÞ

,kΔrk respect-
ively). For illustration purposes, just below Sq, we
have given the example of the simple (canonical) scale
function of a single spatial lag Δx. For simplicity, the
weather-regime equation (subscript w) canonical-
scale function ignores overall advection; for tempera-
ture, we found Hw� 0.5, C1w¼ 0.087, αw¼ 1.61 (we
used Eqn. (8.16) with a zero mean advection velocity
in the matrix B. For the exponent estimates, see
Chapter 8, Table 8.1. The macroweather structure
function (subscript mw, defined by Haar wavelets) is
discussed above; we estimated Hc � 0.7, Hmw � –0.4
and C1 � 0.11, α � 1.75 (Table 10.2). In the Chapter
11 we extend this to the climate regime.

The constants sq,w, sq,mw are constrained so that the
structure functions are continuous at the boundaries
between the weather and macroweather regimes.
Taking Δx ¼ Le* (or almost equivalently considering
the structure functions of the global averages), and for
simplicity considering only q ¼ 1, we have:

hΔTðLe , twÞiw ¼ hΔTðLe , twÞimw; s1,w � s1,mw

ð10:32Þ

Using the 45� N data, we find that these equations
work remarkably well. For example we verify
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s1,w � s1mw � 5 K (e.g. Fig. 10.19 for slightly larger
s2 values). For the spectra corresponding to Eqn. (10.31),
see Section 11.1.5.

The macroweather result implies that although the
temporal intermittency is small, nevertheless the
spatial intermittency is moderately large through the
macroweather regime right into the climate regime, a
subject to which we return in the next chapter. For a
somewhat different approach, using the temporal
evolution of the universal multifractal parameters α

and C1, as well as the resulting evolution of the
extremes, (see Royer et al., 2008, 2009, Schertzer

et al., 2012). Indeed, if the high-quality space-time
data existed at those scales, we could test the predic-
tion that the main change in the climate regime is that
the temporal macroweather exponent Hmw < 0 is
replaced by a temporal climate exponent Ht,c > 0.
By fixing the mean fluctuation (say S1), Eqn. (10.28)
can be used to define space-time relations in the
macroweather regime. These may help for example
to determine the necessary spatial resolution of
models once the size (S1) and temporal resolutions
(Δt) are specified, or to construct statistical tests to
detect regional climate change.
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Appendix 10A: The dimensional transition

asymptotic scaling of cascades in the

macroweather regime

10A.1 The basic bare and dressed statistical

behaviour in the macroweather regime

In Chapter 8 we saw empirically, and in Chapter
10 we saw theoretically, that beyond the weather
scale tw there is a drastic “dimensional transition”;
for time scales < tw we obtain the usual turbulent
statistics, while for scales tw> the spectrum
becomes fairly flat, often with β � 0.2–0.4, and
this for all the fields irrespective of their β at
scales < tw (e.g. Fig. 10.5a, 10.5b). In Section
10.2 we saw that if we assume that the temporal
outer scale tc>> tw then we can extrapolate the
turbulent model well beyond weather scales,
indeed, perhaps to t� 10–100 years (see Sections
8.1.2 and 10.1.2). In this appendix, we discuss a
surprising consequence: that although the statis-
tical properties are indeed asymptotically scaling
(power laws), the actual “effective” exponent can
depend on the cascade scale range – and yet
nevertheless be fairly accurately scaling over 2–3
orders of magnitude, i.e. physically, from 10 days
to 10 years or more.

We have already seen in Section 10.1.2 that the
generator for the flux separates into the sum of a
weather and macroweather contribution corres-
ponding to the multiplicative modulation of the
weather flux by a macroweather flux. If we nondi-
mensionalize time by the weather scale tw we find
that for nondimensional times t ¼ l >> 1, we can
ignore the spatial degrees of freedom and the second
characteristic function of the bare flux climate εl is
given by:

εmw ¼ eGmw ; Gmw ¼

�

C1

α� 1
N�1
dþ1

�1=α

gα  g

KmwðqÞ ¼ loghεqmw, li ¼
C1q

α

α� 1
N�1

dþ1

ð

Λc

Λc=l

dt

tð1þdÞ

¼
C1q

α

Ndþ1dðα� 1Þ
Λ
�d
c ðld � 1Þ ð10:33Þ

where we have used the propagator
gð�r, tÞ ¼ YðtÞðj�rj

2 þ t2Þ�ð1þdÞ=ð2αÞ (see Eqn. (10.5)),
Y is the Heaviside function needed to maintain
causality, d is the number of spatial dimensions.
Ignoring the vertical, this gives gð0, tÞα ¼ YðtÞt�2

(d¼ 1 spatial dimension), gð0, 0, tÞα ¼ YðtÞt�3 (d¼ 2
spatial dimensions). Ndþ1 is the causal normalization
constant in d þ 1 dimensions: ¼ 2p/2 in d ¼ 1, 4p/2
in d ¼ 2 (see Appendix 5B; the factor 2 is due to the
Heaviside function). Note that the logarithms are
taken to the base e rather than the base l as in the
usual cascade regime (which is recovered if we take
d¼ 0 in the above and replace the power laws by
logarithms on the right). The above bare nonnorma-
lized K(q) functions can be normalized in the usual
way by taking K(q)! K(q) – qK(1q) (see Eqn. (5.87)),
i.e. we replace qα by qα – q in Eqn. (10.33). Since C1 <

d þ 1, the exponent Kmw(q) is typically quite small so
that the exponentiation needed to obtain hε

q
mw, li

yields:

hε
q
mw,li � 1þKmwðqÞ ¼ 1þ

C1ðq
α � qÞ

Ndþ1dðα� 1Þ
Λ
�d
c ðld � 1Þ

ð10:34Þ
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We thus see that the moments depend only weakly on
C1, q, l. In any case, as usual, it is the dressed proper-
ties that are most important, and because of the weak
correlations (studied explicitly below) we in fact (pre-
sumably) obtain central limit theorem convergence;
this can be seen visually in the example in Fig. 10A.1,
where we compare a bare and dressed realization of
such a process with Λc ¼ 216 which has been averaged
over a scale ratio of 26.

10A.2 Autocorrelations: asymptotic Δt
�1 scaling

In order to better understand the scale dependence of
the macroweather-regime cascades, let us determine
the autocorrelation function, from which the spec-
trum can be found by Fourier transformation (the
Wiener–Khinchin theorem, Eqn. (3.31)). In this
case, we can follow the development of Appendix
5B, where we calculated the generator of the auto-
correlation function. In particular (see Eqn.
(5.139)), considering just the climate regime, in
nondimensional coordinates, after integrating
out the small-scale spatial degrees of freedom we
obtain:

SðΔtÞ�

ð

Λc

1

�

gðtÞþgðt�ΔtÞ
	α

dt; gðtÞ¼ t�ðdþ1Þ=α; t�1
gðtÞ¼0; t<1

ð10:35Þ

S is the temporal part of the second characteristic
function of the autocorrelation (not to be confused
with the structure function). Eqn. (10.35) takes

into account causality and is only the climate contri-
bution (it ignores the weather scales 0 < t < 1).
Recall that the normalized autocorrelation function
Rn(Δt) is:

RnðΔtÞ ¼ RðΔtÞ=RðΛcÞ; RðΔtÞ ¼ e

C1
α�1N

�1
d

SðΔtÞ

ð10:36Þ

Considering just the d ¼ 1 case for the moment, this
yields:

SðΔtÞ �

ð

Δt�1

1

dt

t2
þ

ð

Λc

Δtþ1

1

t2=α
þ

1

ðt � ΔtÞ2=α

 !α

dt

ð10:37Þ

The first term yields 1 – Δt�1, while the second
yields:

SðΔtÞ � 1� Δt�1 þ Δt�1

ðð1þΔt=ΛcÞ
�1

ð1þΔtÞ�1

dr

r2
ð1þ r2=αÞαdr

ð10:38Þ

where we have used the transformation of variables:

r ¼
t � Δt

t
;

dt

t2
¼

dr

Δt ð10:39Þ

Since there is no singularity at r ¼ 1, we can take Λc

large so that to high accuracy, we can take the upper
bound r ¼ 1 and rewrite the integral as:

SðΔtÞ�1�Δt�1þΔt�1

ð1

0

dr

r2

�

ð1þr2=αÞα�1
	

dr

�

ð

Δt�1

0

dr

r2

�

ð1þr2=αÞα�1
	

drþ

ð1

Δt�1

dr

r2

2

6

6
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6
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5

ð10:40Þ

For α < 2, the first term in the brackets is a simple
α-dependent constant:

A ¼

ð1

0

dr

r2

�

ð1þ r2=αÞα � 1
	

dr ð10:41Þ

(e.g. A ¼ 16.379 for α ¼ 1.8), while the third term in
brackets is simply Δt – 1. The second term in the
brackets can be evaluated by using the binomial
expansion:

ð

Δt�1

0

dr

r2

�

ð1þ r2=αÞα�1
	

dr¼
α

2=α�1
Δt1�2=αþOðΔt1�4=αÞ

ð10:42Þ

200 400 600 800 1000

0.5

1.0

1.5

2.0

2.5

ε

t

Fig. 10A.1 A realization of a bare climate cascade with l ¼ 210

(thin line) and the corresponding dressed process (thick line, offset
by one unit for clarity) at the same resolution obtained by
continuing the cascade to Λc ¼ 216 and then averaging over
a scale ratio of 26.
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Therefore, we finally obtain:

SðΔtÞ � 2þðA� 2ÞΔt�1�
α

2=α� 1
Δt�2=α�OðΔt�4=αÞ

ð10:43Þ

Just the first two Δt-dependent terms yield an excel-
lent approximation.

Turning to the more realistic case d ¼ 2 (two
horizontal dimensions), the same technique yields:

SðΔtÞ �
1

2
ð1� Δt�2Þ

þΔt�2

ðð1þΔt=ΛcÞ
�1

ð1þΔtÞ�1

dr

r3
ð1� rÞð1þ r3=αÞαdr ð10:44Þ

Although the full analysis is more complex, we can see
from Eqn. (10.38) that the main contribution for large
Δt will come from the 1/r2 singularity, which once
again yields a dominant Δt�1 term so that S(Δt)
asymptotes to the value 1/2. Note that again the upper
limit of integration in Eqn. (10.38) can with high
accuracy be replaced by 1 (i.e. Λc ! 1). Once again,
since S << 1, we may use the approximation:

RðΔtÞ ¼ e
C1
α�1N

�1
dþ1SðΔtÞ � 1þ

C1

α� 1
N�1
dþ1SðΔtÞ ð10:45Þ

We may thus numerically determine the range of Δt�1

behaviour by using the autocorrelation function nor-
malized by the limiting value as Δt ! 1, i.e. using
the relation: RðΔtÞ=Rð1Þ � 1 � C1

α�1N
�1
dþ1

�

SðΔtÞ � Sð1Þ
	

/ Δt�1. This relation (compensated by multiplying it
by Δt) is confirmed in Fig. 10A.2 (thick lines) using
direct numerical integration of Eqn. (10.38). It can be
seen that convergence to the theoretical asymptotic
behaviour is very slow, especially for the larger α

values. However, the situation is actually worse than
this slow convergence indicates, since for finite Λc it is
not the autocorrelation function normalized by R(1)
that is important, but rather (as in Eqn. (10.36)) by
R(Λc), the largest in the cascade regime, and due to the
extremely slow fall-off implied by the Δt�1 behaviour,
this significantly modifies the large Δt behaviour as
shown by the thin lines in Fig. 10A.2. Because of this
additional large Δt effect, the pure Δt�1 scaling only
occurs at very large Δt (recall that even being generous,
empirically Λc � < 212 (� 100 years/10 days)).

10A.3 Spectra, pseudo-scaling

We have seen that the asymptotic autocorrelation
function has rather slow convergence to a Δt�1 form;
from the point of view of the spectrum (the Fourier

transform), this is particularly problematic since the
spectrum of a pure Δt�1 function diverges at both low
wavenumbers (also in fact at high wavenumbers, but
this is not relevant here). We may therefore anticipate
that the actual spectrum will be quite sensitive to the
outer scale limit Λc. To investigate this, we studied
both Monte Carlo simulations (40 realizations of a
multifractal in one spatial dimension and time), and
the corresponding ensemble spectrum E(ω) obtained
numerically for a simulation length Λc ¼ 212 (Fig.
10A.3). From the figure, there are three key points
to note. First, note that the simulation and theoretical
ensemble average spectrum calculated numerically
from Eqn. (10.38) agree extremely well. Second, that
over a remarkably wide range – over a factor � 100–
1000 – the spectrum is nearly linear on a log-log plot,
i.e. it is “nearly” a power law; it is easy to see that this
behaviour could easily be mistaken for a real scaling
regime. Third, that this d ¼ 1 exponent is low (here,
β � 0.4) and close to the values found empirically
(β � 0.2–0.4, see Sections 8.1.2 and 10.1.5, Table 10.1).

Returning to two spatial dimensions and calculat-
ing the ensemble averaged spectra directly from
Eqn. (10.38) for various Λc, we obtain Fig. 10A.4.
We can see that for the example given with α ¼ 1.8,
the apparently scaling low-frequency regime is again
of length varying by a factor of 100–1000 depending

1 2 3 4

–2.0

–1.5

–1.0

–0.5

α=2

α=1.1

log10Δt

Log10(Δt(1–Rn))

α=1.5

Fig.10A.2 The log of the compensated by Δt�1, normalized
autocorrelation function in two spatial dimensions for C1 ¼ 0.4. The
thick lines are when Rn is estimated using RnðΔtÞ ¼ RðΔtÞ=Rð1Þ,
the thin lines are for RnðΔtÞ ¼ RðΔtÞ=RðΛcÞ (important for the
power spectrum over a finite range) Λc ¼ 216, showing the extreme
sensitivity of the large scales to the length of the series (Λc). The
dashed black lines are flat reference lines corresponding to the
asymptotic Δt�1 behaviour. Each curve is for a different α value,
increasing from 2 (bottom) to 1.1 (top) at intervals of 0.1.
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on how stringent we are about the linearity of the
log-log spectrum (since S is small, virtually identical
spectra are found for other values of C1: see Eqn.
(10.45)). Since the scaling regime is only approximate,
it could be called “pseudo-scaling.”

In the figure we also see that the pseudo-scaling of
the first factor 100–1000 depends to some extent on
Λc as well as the maximum frequency (ωmax) used for
the regression. In order to quantify this, we show in
Fig. 10A.5 the regression β estimates as functions of
ωmax for various Λc, and for α ¼ 1.5, 1.8 (the main
empirical range). It can be seen that for ωmax between
4 and 512, the slopes are typically constant to � 0.05
and the standard deviations of the residuals of the fits
are all < 0.019. At the same time, β is a weak function
of Λc; β changes by roughly 0.1 for every factor of 16
in Λc. We also note that taking Λc � 100–300 years/10
days � 212–214, so that β is in the range 0.2–0.4.

The final piece in the puzzle is to consider the
plateau for the observables, the fractionally integrated
fields. It turns out that the climatological contribution
to the fractional integration (i.e. the contribution for
t > 1) is totally unimportant; Fig. 10A.6 shows that
the low-frequency spectra of the flux and the observ-
ables are the same, and hence the results above on the
spectral plateau apply. The reason is that fractional
integration order H for the observable Imw:
ImwðtÞ ¼ YðtÞεmwðtÞ  t

�ðdþ1�HÞ has essentially no
effect on the spectrum since when d – H > 0, the

one-dimensional Fourier transform of t�(dþ 1�H)

does not converge at small t so that t�(dþ 1�H) trun-
cated at t¼ 1 is completely dominated by the truncation
scale details.

In summary, we obtain spectra which are very
nearly scaling over 2–3 orders of magnitude in scale
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–0.5

Log10E(ω)

Log10ω

Fig 10A.3 Comparison of Monte Carlo results for 40 realizations
α ¼ 1.8, C1 ¼ 0.1, 214 � 26 (time, space) with the corresponding
theory (solid line) for one spatial dimension. For ω > 214/26 ¼ 28

(i.e. the transition is expected at log10ω � 2.4), there is some
disagreement since the spatial degrees of freedom (neglected for
the solid line) begin to be important at high frequencies. The solid
reference line has a slope –0.4 which holds well for a factor of
100 or so in scale.

Fig 10A.4 The theoretical plateau power spectrum for α ¼ 1.8,
two spatial dimensions (d ¼ 2) for outer scales of 28, 210, 212, 214, 216

(top to bottom). The lines have root mean square slopes fit up for
ω � 512, with values –0.45, –0.38, –0.32, –0.27 (the 28 line is not
given since the corresponding simulation isn’t long enough;
see the next graph for a quantification).
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Fig. 10A.5 The regression estimates of the spectral exponent β
(the absolute logarithmic slope) with fits from ω ¼ 4 to ω ¼ ωmax,
the latter increasing from left to right in two spatial dimensions
(d ¼ 2). The lines from top to bottom are for outer scales Λc
increasing from 210, 212, 214, 216. The solid lines are for α ¼ 1.8,
the dashed lines for α ¼ 1.5, all for two spatial dimensions. Over
all the regression ranges, the standard deviations of the residuals
are between � 0.008 and � 0.014 (α ¼ 1.8) and � 0.011 to � 0.019
(α ¼ 1.5).
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whose exponents are independent of C1, H, only
weakly dependent on α and weakly dependent on
the overall range of scales of the regime (Λc).

10A.4 Further comparison with the data using

structure functions

In Section 10.1.3 we gave some spectral and (x,t)
cascade comparison between the low-frequency

regime of the FIF model and 20CR 700 mb tem-
peratures at 75� N. We briefly return to this now
using both usual (difference) and tendency struc-
ture functions. In order to apply either of these
structure functions to the data, it is first necessary
to remove (“detrend”) the strong periodicities at
1 year and 6 months. There are various ways of
doing this; here we simply removed the corres-
ponding individual Fourier modes and decreased
them to the average level of the background
spectrum. Fig. 10A.7 shows the resulting two
structure functions. At small time scales, we see
that the usual structure function increases with
the theoretically expected exponent but that it
levels off as expected in the spectral plateau
regime where H < 0. By contrast, the tendency
structure function (right-hand side) is constant
over the small Δt weather regime where H > 0,
but decreases systematically at longer and longer
time scales, accurately following the theoretical
climate regime exponent (Eqn. (10.8)). As can
be seen, the agreement is excellent, especially
considering that no parameter adjustments were
made beyond the calibration by the overall stand-
ard deviation of the reanalysis temperatures at
75� N; the model is completely based on 1 Hz
aircraft data. The tendency structure function
directly shows the strong effect of temporal
averaging/resolution on smoothing out the
fluctuations.

1 2 3

0.2

0.4

0.6

0.8

1.0

2H=1

Log10E
T
(ω)/Eε(ω)

Log10ω

Fig. 10A.6 Using the same MonteCarlo realizations as in Fig. 10A.3,
we show the ratio of the spectra of the fractionally integrated
temperature field (ET) (which was obtained by fractionally
integrating, order H ¼ 1/2) the spectrum Eε of the corresponding
flux ε over 40 realization. Since the (single) spatial dimension was 26

(compared to 214 for time), the transition scale is ωw � 28

(note, log102
8 ¼ 2.4). We see that for the low frequencies, the

fractional integration is totally ineffective; the spectra are the same
to within a constant factor.
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Fig. 10A.7 Comparison of the simulation (top)
and data (bottom) for both the root mean square
of the usual structure function, S (left) and of
the tendency structure function, S� (right); the
analysis uses the daily data. The reference lines
have the theoretical slopes indicated.
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Appendix 10B: Stochastic linear forcing paradigm

versus the fractionally integrated flux model

The stochastic scaling approach presented here turns
out to be similar in many ways to another stochastic
approach called the “stochastic linear forcing” (SLF)
paradigm developed by Hasselmann (1976), Penland
(1996), Newman et al. (2003), Sardeshmukh and Sura
(2009) and others. The idea of the SLF approach is to
use the weather/macroweather scale separation at tw
to define rapidly varying fluctuations with respect to
lower-frequency (e.g. weekly, monthly) averages and
to exploit the short-range correlations of the resulting
fluctuations, and the macroweather spectral “plateau”
region with small βmw (Hasselmann, 1976; Penland,
1996). SLF models, when interpreted as providing the
most probable forecast, assume the plateau statistics to
be nearly Gaussian white noise; however, Gaussianity
is not required for most of SLF’s diagnostic products,
as long as the dynamical description is well approxi-
mated as linear. Today, for many purposes – including
SST anomalies, diabatic heating rates and El Niño –

SLF techniques are among the best available for
forecasting (Penland and Sardeshmuhk, 1995; New-
man et al., 2003; Sardeshmuhk et al., 2000). At present,
the impact on SLF techniques of possible long-range
correlations in the spectral plateau region, or devi-
ations from Gaussian distributions, are not clear.

In Section 9.2 we recalled that inhomogeneous
space-time partial differential equations can be
solved by finding a propagator and convolving it
with the forcing, and showed how to rewrite the FIF
model as a solution to an inhomogeneous partial
differential equation. Although the result was essen-
tially formal (not directly useful in applications), this
rewriting of the model is helpful in understanding the
similarities and differences between the FIF and SLF
approaches.

There are various ways to introduce the SLF
approach. Perhaps the simplest is to first consider a

scalar process f (t) evolving in time according to the
simple linear equation:

df

dt
¼ �af þ sZ ð10:46Þ

where Z is a unit white “δ” correlated Gaussian noise:

hZðtÞZðt0Þi ¼ δðt � t0Þ ð10:47Þ

and s is the amplitude. Taking a as a constant, f is
then an Ornstein–Uhlenbeck process. The discrete
time analogues are the popular AutoRegressive (AR)
processes. Fourier transforming, we see that:

ef ðωÞ ¼
s

ðiωþ aÞ
eZðωÞ ð10:48Þ

The spectrum is obtained by multiplying the above by
its complex conjugate and then ensemble averaging:

hef ðωÞef ðω
0

Þi ¼ δðωþ ω
0

ÞEf ðωÞ; Ef ðωÞ ¼
s2

ðω2 þ a2Þ

ð10:49Þ

where for the forcing we have used EZ(ω) ¼ 1.
From Eqn. (10.49) we see that if a ¼ 1/tw is the
characteristic frequency associated with the weather/
macroweather transition, then theOrnstein–Uhlenbeck
process has a spectrum fairly close to that of the atmos-
pheric variables (see the fit to SST and air temperature
spectra in Fig. 8.6d with βlo � 0.6, βmw � 0.2). In
particular, for ω << 1/ tw the spectrum is close to
the roughly constant spectral plateau: Ef ðωÞ � s2

a2
, i.e.

βmw ¼ 0, whereas for ω >> 1/ tw it is a power law
Ef ðωÞ � s2

ω
�β, i.e. with βw ¼ 2, which is indeed

close to that observed for T, h spectral exponents
(see Table 8.1). Although it is not quite right for the
wind (βw � 5/3) and other variables, this can be easily
remedied by considering the fractional extension of
the original equation:
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�

aþ
d

dt

�β=2

f ¼ sZ; Ef ðωÞ ¼
s2

ðω2 þ a2Þβ=2

ð10:50Þ

(we define the fractional differential operator via the
inverse Fourier transform of (a þ iω)β/2. This is still
linear in f and retains the flat plateau for ω << a but
which modifies the exponent of the high-frequency
regime so that β can be essentially arbitrary. Note that
a less flattering comparison with data is obtained by
considering the principal component of the SST
whose spectrum for the Pacific Ocean (the Pacific
Decadal Oscillation, PDO) is shown in Fig. 10.8 and
which is quite far from this form (this is confirmed in
the real-space analysis: Fig. 10.14). Perhaps even more
difficult to account for in the SLF framework is the
spectrum of the SOI index (the El Niño surrogate:
Fig. 10.8), which makes a transition from β � 1 to
β � –0.3 at around 1–2 years (i.e. at the critical ocean
scale to, not the weather scale tw).

The key feature of the linear stochastic differential
equations (10.46), (10.50) is the separation of scales at
a ¼ 1/tw. SLF approaches exploit the spectral plateau
in order to model El Niño and other low-frequency
phenomena. They generalize the scalar Ornstein–
Uhlenbeck process by considering an N component
state vector I(t) which is the solution of the vector
extension of Eqn. (10.38):

�

A þ
d

dt

�HSLM

�I ¼ �BZ; HSLM ¼ 1 ð10:51Þ

where the characteristic frequency a has been
replaced by a characteristic matrix A(t). In the sim-
plest case, B is an N component vector and Z is a
scalar white noise. If needed, B could be an N � M
component matrix and Z an M component vector
of white noises and an external forcing vector
could also be added. We have written the equation
in a slightly more general fractional form in order
to compare it with the FIF approach. The state vector
I is quite general; in practical applications, it is
most efficient to take its components as the principal
empirical orthogonal functions (EOFs) of sea-surface
temperature, diabatic heating and possibly other fields
(see e.g. Penland and Sardeshmuhk, 1995).

From the partial differential equation form of the
FIF model (Eqns. (9.30), (9.31)) let us now write the

FIF equations for a single Fourier component k of the
generator:

j�kj þ
d

dt

� �Hα

Gð�k, tÞ ¼ gαð�k, tÞ ð10:52Þ

and of the observable:

j�kj þ
d

dt

� �HI

Ið�k, tÞ ¼ εð�k, tÞ ð10:53Þ

with ε ¼ eG as usual.

If we keep only a finite number of the wavevector
components we can write I(k,t) in vector form:
�

�IðtÞ
�

�k
¼ Ið�k, tÞ, we can write the flux as:

�

εðtÞ
�

�k
¼ εð�k, tÞ and we can write the (diagonal)

matrix A:
�

AðtÞ
�

kk
¼ j�kj so that:

A þ
d

dt

� �HI

�IðtÞ ¼ εðtÞ ð10:54Þ

The form of the FIF model (Eqn. (9.31)) and
Eqn. (10.53) is the same as the fractional extension
of the SLF model (Eqn. (10.51)) with the exception
that the driving force is a highly intermittent
(multifractal) turbulent flux ε rather than a (calm)
Gaussian Z.

In the weather regime, due to the scaling, fluctu-
ations at time scale t are dominated by spatial struc-
tures of scale l ¼ t3/2ε1/2 (i.e. t is the lifetime of size l
structures). However, in forecasting there will be an
inverse cascade of error growth (Section 9.3) so that
an essential feature is that without a scale break,
forecasts involve a wide range of spatial scales. If the
whole continuum of wavenumbers is important then
there is little to be gained by the SLF approach, but at
low frequencies we can hope to exploit the weather/
macroweather transition where the scaling is broken
thanks to the finite size of the earth.

Specifically, we see that for frequencies < 1/tw we
expect that only wavenumbers j�kj � 1=Lw will be
important, so that if the FIF is valid, then the matrix
A will be composed of elements of order 1=Lw
(depending on the exact choice of state vector
components).

The SLF model presented in Eqn. (10.50) is based
on correlated additive noise. Extensions to correlated
additive and multiplicative (CAM) noise are straight-
forward and notably yield power-law probabilities for

Emergent laws of macroweather and transition to climate
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the components I (even though the forcing is still
Gaussian; Sardeshmukh and Sura, 2009). For example
if a ¼ a(t) and s ¼ s(t) then the simple CAM model
for scalar f is:

df

dt
¼ aþ sZ f ð10:55Þ

where again Z is a white noise. This is equivalent
to the additive equation for the CAM generator:

dGf

dt
¼ aþ sZ; f ¼ eGf ð10:56Þ

Which is very similar to Eqn. (10.51) for the FIF
generator (if the latter hasHα¼ 1). Due to the similar-
ities of the FIF and SLF approaches, and the proven
ability of the latter to make useful climate forecasts,
one may reasonably hope that FIF-based models could
be used advantageously for the same purpose.

Appendix 10B
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Appendix 10C: A comparison of monthly surface

temperature series

We have extensively used the Twentieth Century
Reanalysis (20CR) products at 700 mb in order to
characterize various atmospheric fields; the 700 mb
level was chosen so as to be fairly representative of the
free atmosphere, i.e. without the sensitivity of the
surface fields to topography or coastal discontinuities.
The 20CR dataset has several interesting characteris-
tics including its coverage of a range of scales from
6 hours to 138 years (a factor > 2 � 105), with no
missing data and characteristics that are are relatively
homogeneous over time. However, this advantage
comes at a price: it is based purely on surface
pressure and monthly sea surface temperature data,
thus raising the question of how representative is it of
the real atmosphere. Compo et al. (2011) give a partial
answer by making specific comparisons with the
National Centers for Environmental Prediction
(NCEP) reanalysis products, but systematic statistical
studies have not yet been made (see, however, Fergu-
son and Villarini, 2012). In order to further answer
this question, in this appendix we will compare it to
three surface temperature datasets, each with their
own advantages and disadvantages.

The three we have chosen are the NOAA NCDC
(National Climatic Data Center) merged land, air and
sea surface temperature dataset (abbreviated NOAA
NCDC below), from 1880 on a 5� � 5� grid (see
Smith et al., 2008, for details), the NASA GISS (God-
dard Institute for Space Studies) dataset (from 1880
on a 2� � 2� (Hansen et al., 2010) and the HadCRUT3
dataset (from 1850 to 2010 on a 5� � 5� grid). Had-
CRUT3 is a merged product created out of the
HadSST2 (Rayner et al., 2006) Sea Surface
Temperature (SST) dataset and its companion dataset
of atmospheric temperatures over land, CRUTEM3
(Brohan et al., 2006). Both the NOAA NCDC and the
NASA GISS data were taken from http://www.esrl.
noaa.gov/psd/; the others from http://www.cru.uea.

ac.uk/cru/data/temperature/. The NOAA NCDC and
NASA GISS are both heavily based on the Global
Historical Climatology Network (Peterson and Vose,
1997), and have many similarities including the use
of sophisticated statistical methods to smooth and
reduce noise. In contrast, the HadCRUT3 data are
less processed, with corresponding advantages and
disadvantages. (Note added in proof: Haar analysis
of the space-time densities of the HadCRUT3
measurements shows that they are sparse in both
space and time with fractal codimensions of � 0.25,
0.2 respectively.)

To avoid the problem of missing data (each pixel
in each dataset suffered from this problem), in this
appendix we only consider the globally averaged
series obtained by averaging over all the available data
over the common 129-year period 1880–2008 (taking
into account the latitude-dependent map factors; see
Section 8.1.4 for further characterizations, especially
for the land–SST differences). The resulting series are
shown in Fig. 10C.1a; we can see that – as expected –

the series are quite similar, and the 20CR series is not
much different from the others. Before looking at the
similarities and differences scale by scale, we can
consider the “bulk” statistical characterizations of
the series (with their means removed) (Table 10C.1).
Along the diagonal we see that the series have quite
similar characteristics: the amplitudes of the variation
around a zero mean are � � 0.3 K with the 20CR a
little higher – this is not surprising: the atmosphere at
700 mb is a bit more variable than at the surface.
Along the off-diagonals we see the typical inter-series
differences; for the surface series, these are all around
� 0.1 K, noticeably smaller than for the surface–20CR
differences, which are around � 0.27 K. Since the
20CR series are not at the surface the larger difference
is not surprising; however, the differences between the
surface series is surprisingly large given that there has
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been a huge amount of spatial and temporal aver-
aging. A slightly different comparison is given in
Fig. 10C.1b, which shows the annual averages of the
previous. Here, the three surface series have been used
to estimate the standard deviation at 1-month reso-
lutions; the shaded area shows the annual mean one-
standard-deviation limits. We can see that the 20CR
series is mostly within or close to the bounds, with the
notable exception of the period~1920–1945 (where it is
mostly below) and 1945–1970 (where it is above).

Let us now consider the scale by scale properties;
Fig. 10C.2 shows the spectra. These are quite similar,
showing roughly βmw � 0.6 up to � 10 years, and for
ω < (10 years)–1, roughly βc ¼ 1.7, although clearly
there is too much scatter at these low frequencies for
precise exponent estimates. It is now interesting to
consider both the signed and absolute difference
spectra; for both the surface series (Fig. 10C.3a)
and between the 20CR and the surface series

Table 10C.1 Some of the bulk statistical characteristics of the series after their means have been removed.
The off-diagonal elements are the standard deviations of differences and the diagonal elements are the standard
deviations of the corresponding series. These are for monthly, global values; units ¼ K.

NOAA NCDC NASA GISS HadCRUT3 20CR

NOAA NCDC 0.328 0.107 0.083 0.275

NASA GISS 0.107 0.284 0.099 0.262

HadCRUT3 0.083 0.099 0.304 0.275

20CR 0.275 0.262 0.275 0.382

1900 1920 1940 1960 1980 2000
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(a)

Date

1900 1920 1940 1960 1980 2000

–0.4
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0.6

(b)

T (K)

Date

Fig. 10C.1 (a) The monthly series over the common part of their
domains: 1880–2008 (129 years), bottom to top: NOAA NCDC,
NASA GISS, HadCRUT3, 20CR. Each series had its mean removed and
then was displaced by 0.6 K for clarity; the dashed lines are the
displaced axes. (b) Annual averages from Fig 10C.1a. The grey line of
variable thickness indicates the mean of the monthly resolution
one-standard-deviation spreads of the three surface series; the thin
dark line is the 20CR series.

0.5 1.0 1.5 2.0 2.5
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–4.5
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–3.5

–3.0

–2.5
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Log10E(ω)

βmw = 0.6

βc = 1.7

Fig. 10C.2 The spectra (averaged over logarithmically spaced
bins, 10 per order of magnitude). The units are such that ω ¼ 1
corresponds to (129 yrs)–1; note the annual spike, (1 year)–1 is at 2.11
on the log10ω axis).

Appendix 10C

375



(Fig. 10C.3b). In both cases, the differences are
not flat white noises, they are themselves scaling
with nearly the same exponents as for the original
series themselves: see Table 10C.2 for exponents
and outer scale of the differences. The absolute
differences which characterize the “flux of
differences” are a little flatter (lower β), but they are
still not white noises. This indicates that there are
long-range dependencies in differences between the
series; it is hard to avoid the conclusion that there
must therefore be long-range dependencies in the
biases between the series (both the surface and 20CR
series). This implies spurious tendencies at all scales.

Finally, we can consider the trace moment analysis
of the series (Fig. 10C.4). Since the meteorological
variability has been filtered out by the monthly and
global averaging, as discussed in Section 8.1.4, up to
1–2 years this reflects the ocean variability with crit-
ical transition time to �1 year. Again, the results are
very similar from one series to another, with the
20CR series being typical although with a slightly
smaller outer scale (as expected, since it is less influ-
enced by the SST cascade). Quantitative comparisons
can be found in Table 10C.2. We can see that the
multifractal parameters are remarkably stable – with
for example C1 varying by less than 0.01 for all four

0.5 1.0 1.5 2.0 2.5
Log10ω

Log10E(ω)

–6.0

–5.5

–5.0

–4.5

–4.0

–3.5

–3.0

(a)

βmw = 0.6

0.5

0.2

βc = 1.7

0.5

0.2

βc = 1.7

βmw = 0.6

0.5 1.0 1.5 2.0 2.5 Log10ω

Log10E(ω)

–5

–4

–3

–2

(b)

Fig. 10C.3 (a) Ensemble spectra for the three surface series (top);
the ensemble spectra of the same series of the three (signed)
differences (middle) and the ensemble spectra of the same series
using the three absolute differences (bottom). Notice that the

Table 10C.2 Comparison of the parameters for the monthly global averages (fits up to 1 year), along with the global annual
structure functions (fitted for Δt > 10 years).

C1 α H β Outer scale

(years)

Annual RMS structure

(Δt > 10 years)

NOAA NCDC 0.116 1.72 �0.12 0.69 1.6 0:10Δt0:29

NASA GISS 0.123 1.66 �0.13 0.62 1.0 0:05Δt0:47

HadCRUT3 0.124 1.71 �0.13 0.61 1.6 0:12Δt0:21

20CR 0.116 1.58 �0.07 0.66 0.8 0:09Δt0:38

Ensemble surface 0.114 1.71 �0.13 0.64 1.6 0:08Δt0:33

Ensemble surface differences 0.108 1.66 �0.16 0.50 1.3

differences are not white noise (flat), but are themselves scaling with
exponents only a little lower than for the series themselves. (b)
Analogous to Fig. 10C.3a, but for the 20CR spectrum (top) and the
spectrum of the ensemble of differences with respect to the three
surface spectra (middle), and absolute differences (bottom). The
basic behaviours are the same as for the three surface series
although the differences are larger.
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products – and H varying only over a range of 0.06.
Interestingly, the differences also display nearly iden-
tical cascade structures as the series themselves; the
bottom line in Table 10C.2 indicates the parameters.
Also shown in the table are the root mean square
structure functions (i.e. the square root of the q ¼ 2

structure functions); these were estimated for periods
Δt > 10 years, i.e. the climate regime (see Section
10.2.3); again, although there is a lot of scatter, the
20CR regression is quite close to the others, support-
ing its use in understanding the climate-scale
variability.
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Fig. 10C.4 Trace moments based on the
absolute second differences of the globally
averaged monthly series. The corresponding
parameters are in Table 10C.2. The thick curves
indicate the q ¼ 2 envelopes of quasi-Gaussian
processes (Appendix 4A). We can see that the
20CR data are close to quasi-Gaussian (although
the scaling seems quite good at high l,
presumably due to the ocean cascade), the
HadCRUT3 data are reasonably more variable, and
the other datasets are in between.
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Appendix 10D: Coupled ocean–atmosphere modelling

10D.1 A coupled ocean–atmosphere interface model

and the ocean plateau

From the analysis of sea surface and land tempera-
tures at 5� � 5� and 1-month resolution (Fig. 8.3d,
Section 8.1.4, Fig. 10.14) we have seen that the ocean
is very similar to the atmosphere (including for T
roughly the same parameters: α � 1.8, C1 � 0.1,
H � 0.5), the major difference being that the ocean
velocities are about 30 times lower, corresponding to
energy fluxes about 105 times lower and an outer time
scale to about 30 times larger. Although the ocean
and atmosphere both show spectral plateaus at the
expected time scales, the low-frequency ocean expo-
nent βlo was 0.6, i.e. a bit steeper than the correspond-
ing atmospheric βmw, which was typically in the range
0.2–0.4. Following the analysis in Appendix 10A we
should perhaps not be surprised, since βmw was not a
true asymptotic scaling exponent but only a “pseudo-
scaling” exponent depending on the overall scale
range and perhaps other low-frequency details. Since
the range of scales between tc and to is about 30 times
smaller than between tc and tw, we expect that βlo is
somewhat higher than βmw; according to Fig. 10A.6, it
could easily be 0.5–0.6. However, there is another
effect which tends to increase the ocean surface vari-
ability and hence βlo – the fact that the latter is
coupled to the atmosphere. However, it turns out to
be fairly simple to make a model that approximates to
this coupling and resultant variability. In this section
we outline a simple coupled ocean–atmosphere model
that reproduces this somewhat steeper spectral ocean
plateau as a consequence of the double ocean and
atmosphere dimensional transitions.

For motivation, recall that the currents and winds
are physically coupled, and hence it is natural to
suppose that the flux controlling the sea surface tem-
perature depends on both; the simplest model is the
product of an uncoupled atmospheric flux ja with an
uncoupled (i.e. statistically independent) oceanic flux
jo. The idea is that these primarily represent the

result of internal atmospheric and oceanic dynamics,
but that the surface flux relevant for the temperature
at the interface is the product of the two:

js ¼ jajo ð10:57Þ

Using the product flux js, the surface temperature Ts

is given by the usual FIF model:

Ts ¼ js  ½½ΔR


�ðd�HÞ ð10:58Þ

where R ¼ (x,y,t), d ¼ 3, H � 0.5. In order to roughly
reproduce the empirical trace moments and spectra,
we used the values α ¼ 1.8, C1 ¼ 0.1, H ¼ 0.5, in
accord with the analyses in Chapter 8 for both ja and
jo (see Figs. 8.6d, 8.6e and Table 8.2). In this simple
model, we assume that the oceanic and atmospheric
circulations and hence ja, jo are statistically inde-
pendent; however, both modulate the flux relevant
to the surface temperatures so that the latter is never-
theless “coupled” to both.

If the cascades controlling each of the fluxes acted
over identical scale ranges l, then the statistical
moments would yield hj

q
s i ¼ hj

q
aihj

q
oi, which would

imply lKsðqÞ ¼ lKaðqÞlKoðqÞ and hence Ks(q) ¼ Ka(q) þ
Ko(q). In the example considered, with αa ¼ αo ¼ α,
C1a ¼ C1o ¼ C1, we would obtain C1s ¼ 2 C1, αs ¼ α,
which would imply that the intermittency over the
ocean had double the C1 of that over land – whereas
according to Table 8.2 it is almost unchanged.
More generally, if the ocean and atmosphere high-
frequency (“weather”) regimes operated over scale
ranges that overlap significantly, then the correspond-
ing intermittency would be too high to be compatible
with the observations. However, this is only true if the
overlap occurs over scale ranges which are unaffected
by the dimensional transitions, and because of the
large difference in planetary scale velocities lwo ¼
Vw/Vo � 30 (see Section 8.1.4) this must be carefully
considered. In particular, the observed difference in
velocities implies that at the weather scale tw – cor-
responding to atmospheric structures of planetary
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extent (Le ¼ 20 000 km) – the ocean cascade has
developed over a range to/tw ¼ lw � 30, i.e. down
to structures/eddies of size Le/lw ¼ 670 km.

Although the cascade presumably starts at tc >>

to > tw, the conclusion of Section 10.1.2 on the
dimensional transition and the spectral plateau is
that the cascade only fully develops its intermittency
over ranges where both temporal and spatial degrees
of freedom contribute to the generator G (Eqns.
(10.1), (10.2)). Therefore, we need only avoid over-
lapping cascade ranges that give these full contribu-
tions to the intermittency. A simple model that
ensures that the overlap is only over these weakly
intermittent ranges is to simulate jo, ja from time
scales tc down to tw and over spatial scales from Le
down to Le/lw and then to couple jo and ja at that
scale; Ts is then obtained by fractional integration as
in Eqn. (10.58). The physical significance of coupling
the fluxes in this way is that the ocean surface
temperature is effectively modulated by the mean
atmospheric flux, averaged both globally and over
the lifetime of the planetary-scale atmospheric
structures.

Fig. 10D.1 shows the spectrum of the resulting
coupled model; we see that it fits the observations
very well. At the high frequencies, it follows the
theoretical spectrum β ¼ 1 þ 2H – K(2) � 1.82
(i.e. with K(2) ¼ 0.18; an overlap of the cascade
range would increase K(2) to 0.37 and hence
β �1.63), whereas at the lower frequencies it follows
βlo � 0.6 reasonably well. Presumably, it is a variant
on the pseudo-scaling discussed in Appendix 10 A,
although in this case the consequence of the weak
intermittency associated with both the ocean and
atmospheric dimensional transitions, both acting at
frequencies < ωo � (1 year)–1. We might also note
that a trace moment analysis yields C1 � 0.13, α �
1.95, teff � 5 years, which is quite close to the data
(Table 8.2) but with C1 and α a little larger than the
theoretical values. The outer scale is also somewhat
too large (recall to ¼ 1 year), but we have already
noted a tendency for the spectral break scale to be a
somewhat shorter period than the estimated outer
cascade scales. As for the pure FIF dimensional tran-
sition model in Section 10.1.3, no attempt has been
made to obtain optimum parameter estimates or to
introduce ad hoc changes to improve the fit with the
data. The key point is that the “double dimensional
transition,” i.e. both ocean and atmosphere, can
potentially explain the value βlo � 0.6.

10D.2 A simple model of maritime and continental

temperature regimes

When averaged over scales of a month, the sea surface
temperature model discussed in the preceding section
yielded both a realistic spectrum (Fig. 10D.1) and a
realistic cascade structure with outer scale corres-
ponding to to, i.e. to the ocean cascade. However,
all meteorological (e.g. daily) resolution data show
evidence for the meteorological scale cascades,
i.e. with outer scales of the order of at most a few
times tw (see Sections 8.1.5, 8.1.6), and this for all
latitudes (although with some variation: see Fig. 8.8c).
The presence of this high-frequency cascade intermit-
tency – even over latitudes strongly dominated by
oceans – can be understood if there is always a
purely atmospheric contribution to the temperature
variability. Similarly, the statistics of monthly aver-
aged temperatures – even over land – show cascades
with outer scales of the order of to (Fig. 8.6 e, Table
8.2), indicating the ubiquitous influence of oceanic-
induced intermittency. In this section, we show that a
simple model can yield the observed behaviours –

even when only fairly small oceanic or land compon-
ents are present (i.e. maritime or continental
regimes).

lw

o

Fig. 10D.1 A comparison of SST and land surface temperatures
(from the monthly NOAA NCDC data discussed in Section 8.1.4) with
multifractal simulations in time and in one horizontal spatial
dimension. The far right spectrum (grey) is the result of 10
simulations of an atmospheric model with tw ¼ 11 days, α ¼ 1.8,
C1 ¼ 0.1, H ¼ 0.5 simulated over the range 4 years/211 � 1 day
and Lw/2

4 � 1000 km (more precisely, this is the a ¼ 5/6 land
model described in the text; i.e. the top curve from Fig. 10D.2a). The
thick spectrum (lower left) is from 10 realizations of the coupled
ocean–atmosphere model described in the text with the same
exponents, and with to ¼ 1 year, simulated over grids with
temporal resolution 64 years/213 � 3 days and spatial resolution
Lw/2

2 � 5000 km. The high-frequency reference slopes are
roughly the theory value:
β ¼ 1 þ 2H – K(2) ¼ 1.82.
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Consider a linear combination of a nondimen-
sional temperature Ts from the ocean cascade model
of the previous section and Ta from a classical pure
atmospheric cascade (FIF model); each can be nor-
malized to have the same variability at the highest
resolution: hΔT2

ai ¼ hΔT2
s i. We now combine them

with a weight a:

Tðx, y, tÞ ¼ aTaðx, y, tÞ þ ð1� aÞTsðx, y, tÞ ð10:59Þ

When a is zero, the spectrum is of the maritime
shape, e.g. as in the simulation in Fig. 10D.1. When

a ¼ 1, it is the pure atmosphere model, and
Fig. 10D.2a shows the result. Fig. 10D.2b shows a
comparison of the model with data when the 5� N
20CR spectrum is used as a proxy for pure maritime
spectra (see Fig. 8.8a; about 70% ocean, 15% land,
15% “coastal”) and when the 45� N spectrum is used
as a proxy for continental spectrum (40% land, 30%
ocean, 30% “coast”). In order to compare the statis-
tical properties of this mixed maritime–continent
model with the empirical spectra, we can multiply
the nondimensional T by an empirical amplitude

lo

(a)

(b)

Fig. 10D.2 (a) Spectra from 10 realizations of
the linear combination of ocean and
atmosphere models, with the latter weighted
by the coefficient a indicated next to the
spectra. a � 5/6 is close to the land, SST
observations in Fig. 8.6 d. (b) Comparison of the
20CR spectra of the 700 mb temperature field
(daily resolution to 138 years) at 5� N (thick
grey, bottom) and at 45�N (thick grey, top),
both averaged over 10 bins per order of
magnitude in frequency with the mixed
maritime–continental model discussed in the
text, with weights a ¼ 0.6 (thin, bottom right)
and a ¼ 0.9, (thin, top right).
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(e.g. the typical empirical standard deviation of fluc-
tuations at the smallest data resolution); this is
equivalent to moving the spectra up and down on a
log-log plot. We see that the model does a reasonable
job of reproducing the different spectra shapes over
the entire range of 1 day to the external model scale
(however, from the previous sections,we know that at
lower frequencies the model will continue to follow
the βmw � 0.2 and βlo � 0.6 curves; there was no need
for larger-scale simulations). In the figure, the coeffi-
cient a was estimated by hand; the aim was simply to
demonstrate that the shape of the observed spectra
falls in between the pure coupled ocean– atmosphere
model (Section 10.3.1) and a pure atmosphere model
(Section 10.1.3) and can be reasonably modelled by a
combination of the two.

The final test of this mixed model is to show that
we at least roughly recover the cascade structure and
parameters of both the atmosphere and ocean using
daily and monthly averaged data, i.e. that at daily
resolution the oceanic intermittency is negligible
whereas at monthly resolution atmospheric intermit-
tency is sufficiently averaged out so that the ocean
cascade structure can be recovered. Fig. 10D.3 illus-
trates this on the simulations and Table 10D.1 shows
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Fig. 10D.3 Trace moment analyses of the linear
ocean–atmosphere models with coefficient a
increasing from a ¼ 1/6 (top) to a ¼ 1/2 (middle)
to a ¼ 5/6 (bottom). The left column shows the
analysis at the full (	 daily) resolution, the right at
the equivalent of monthly resolution (degraded
by a factor of 32 in time). The parameters for the
regressions are given in Table 10D.1, where it can
be seen that the intermittency parameters and
outer scales of the ocean and atmosphere can be
reasonably well estimated from the analyses at
the different resolutions.

Table 10D.1 Parameters for the linear combination of (x, t)
space ocean and atmosphere models from the analyses in
Fig. 10D.3. Both have C1 ¼ 0.1, α ¼ 1.8, H ¼ 0.5. The ocean
model had 211 (time) � 29 (space) pixels with outer simulation
scale ¼ 4to ¼ 4 years, inner simulation time scale 4 years/211

� 0.7 days; in space the outer scale is Le ¼ 20000 km, the
minimum scale is Le/2

9� 40 km. The atmospheric model was 211

(time) � 24 (space) pixels; the duration was the same (¼ 4 years)
with tw ¼ to/32 � 11 days, the spatial resolution was Le/2

4 �
1250 km. The spatial resolution of the ocean model was then
degraded by factor 25 so that the two models would have the
same resolutions. The parameter a is the weight of the
atmosphere model, i.e. the temperature is T ¼ aTa þ ð1� aÞTs .
As the table shows, as long as the parameter a is not too small,
the basic parameters of the system at full resolution and
degraded by 32 resolution are roughly correct, although the
outer scales are a little too big (they should be 11 days and 1 year
for tw, to respectively).

a C1 α Outer time scales

1/6 Daily 0.11 1.92 tw ¼ 58 days

Monthly 0.11 2.01 to ¼ 5 years

1/2 Daily 0.10 1.93 tw ¼ 46 days

Monthly 0.085 1.98 to ¼ 1.6 years

5/6 Daily 0.12 1.80 tw ¼ 36 days

Monthly 0.09 1.94 to ¼ 1 year

Appendix 10D
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the parameter estimates. Consider first the daily reso-
lution data (left column): in the top graph (a ¼ 1/6)
we see that the range of atmospheric cascades is
somewhat limited due to the strong oceanic intermit-
tency, but it becomes more dominant as a increases to
5/6 (bottom). These graphs should be compared to
those at monthly scales (Fig. 8.6e, bottom row), and at
daily scales (e.g. Figs. 8.7a, 8.7b). At 1-month reso-
lution (Fig. 10D.3, right column), we see the converse:
that the cascade with roughly yearly outer scale
is diminished in strength as a increases from 1/6 to

5/6. These qualitative changes are confirmed quanti-
tatively in Table 10D.1, which shows that the basic
exponents C1, α only suffer from a small bias,
although the outer scales tw, to are more sensitive to
a. Presumably, this mixed maritime–continent model
is only an approximation to the real atmosphere;
however, it does show that simple mixtures of this
type can go a long way not only towards explaining
the variability over wide ranges of time scales, but also
in explaining geographical variations in parameters
(see e.g. Section 8.1.6).

Emergent laws of macroweather and transition to climate

382



Chapter

11
The climate

11.1 Multidecadal to multimillennial
scaling: instruments and multiproxies

11.1.1 A diversity of approaches
to climate dynamics
Over the last 50 years, climate science has evolved from
a largely descriptive branch of geography into a vibrant
and quantitative atmospheric science. At first, this
evolution was driven by new paleo- and satellite data
and by the development of climate models of various
types. The data from ice and ocean cores in particular
showed unequivocally that over the last 2–3 million
years – the Pleistocene – there had been numerous
quasi-periodic glacial/interglacial transitions – the ice
ages – while satellite data from other planets under-
lined climate diversity and complexity. While the ori-
ginal “General Circulation Models” (GCMs) were too
crude to be very realistic, even early on they were used
to test the notion of anthropogenic global warming
(Manabe and Wetherald, 1975).

More important for this chapter were the first
long ice cores (Dansgaard et al., 1969; Hays et al.,
1976). These demonstrated that climate variations
were anything but smooth and regular. As the reso-
lutions of the paleodata improved, it became increas-
ingly clear that the climate involved fluctuations over
huge ranges of scale and included drastic and sudden
(“abrupt”) transitions (see Figs. 11.11, 11.12 and
Dansgaard, 2004, for a historical account). It is there-
fore not surprising that in the early 1980s, in the
midst of the nonlinear revolution, highly simplified,
low-dimensional chaotic energy balance and other
climate models were developed (including the famous
“Daisyworld”: Watson and Lovelock, 1983) that
graphically demonstrated how the evolution of life
itself can alter the climate through negative
feedback). This was the beginning of the (initially)
deterministic Dynamical Systems approach to climate
modelling (e.g. Ghil, 1981). Although this approach

continues, it has recently begun to mutate into a rather
different (stochastic) Random Dynamical Systems
approach (e.g. Chekroun et al., 2010). As discussed in
Chapter 2, the early 1980s also saw the development of
scaling, fractal and multifractal approaches to the
atmosphere, and this included an early attempt to put
weather and climate variability into a scaling frame-
work (Lovejoy and Schertzer, 1984; 1986).

But in the last 30 years the real driver of climate
science has undoubtedly been social and political: the
spectre of global warming and the implications of
climate change – whether anthropogenic or other-
wise. In order to understand and to assess the extent
of the warming, and to predict future trends, massive
resources were committed to the development of ever
more complex GCMs: a term which over time has
come to mean “global climate models.” In order to be
able to feed the models with the requisite large quan-
tities of data, increasingly sophisticated statistical
treatments were required, but these were typically
single-scale techniques – such as 3D or 4D variational
data assimilation techniques or principal component
analyses. They were rarely accompanied by even trad-
itional spectral techniques that would have provided
knowledge of the wide dynamically significant range
of scales and the corresponding statistics. In any case,
even in the relatively rare instances when scaling
analyses have been used, they often had quite limited
objectives – such as demonstrating the efficacy of
novel analysis techniques – and they consequently
generally led to isolated results. This was well illus-
trated in Chapter 10 where – with one or two partial
exceptions – the application of scaling analyses failed
to even lead to a clear recognition of the fundamental
distinction between macroweather and the climate.
Below, this same tendency is apparent in the analysis
of ice-core data, where even the existence of several
scaling analyses has been insufficient to generate a
coherent picture of the corresponding climate
scaling.
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For the reasons outlined in Chapters 1, 2 and 10,
here we explore the scaling approach to the climate
regime while recognizing at the outset the frustrating
paucity of our knowledge. Yet today this poverty is
not so much a consequence of lack of data or of
computer or even human resources, but rather a
consequence of the nearly exclusive focus on trad-
itional GCMmodels. Whereas massive resources have
been devoted to GCMs, scaling approaches to climate –
including those described below – have in general
been virtually unfunded. Their current underdevel-
oped status is therefore hardly surprising, yet, as we
show, their implications are quite exciting and prom-
ise to put climate science on stronger empirical and
theoretical basis and to provide new – more rigorous
since physically and more directly empirically based –

statistical means for assessing anthropogenic effects
(e.g. by using knowledge of the statistical structure to
construct classical statistical tests).

Whereas in weather – and even macroweather –

there was a theoretical connection (however imper-
fect) with the usual dynamical equations, in the
climate regime – by (our) definition – new forcings
and/or new slow dynamics are important and this
connection is weaker. However, it is still reasonable
to assume that certain basic aspects of the weather/
macroweather dynamics carry over to the climate: for
example, that climate dynamics involve large (not
small) numbers of degrees of freedom – hence
justifying stochastic approaches – but also that what-
ever the exact dynamics are, they are strongly non-
linear, acting over a wide range of scales, and hence
presumably scaling. In addition, they are quite pos-
sibly most efficient when acting between structures
of neighbouring scales – and hence have cascade
phenomenologies with multifractal statistics. Indeed,
in Section 10.3 we showed how the spatial structure of
the macroweather regime could be understood and
modelled by generalizing the multiplicative scaling
flux approach into the climate regime. Therefore, in
exploring the climate regime we still have a plausible
theoretical framework, even if it is less solid.

11.1.2 The relation between
macroweather and the climate
In Chapter 10, we argued that it is misleading to con-
sider that there is a direct transition from weather to
climate at τw � 10 days, that the real transition is to
an intermediate qualitatively different lower-frequency

“macroweather” regime and that what should prop-
erly be called the “climate” only begins at a critical
scale of τc � 10–30 years. Whereas for scales either
below τw or beyond τc fluctuations tend to grow with
scale (H > 0), in macroweather, for scales between τw

and τc, they decrease with scale (H < 0). Based on our
discussion of the qualitatively comparable (H > 0)
weather regime, the natural explanation is the exist-
ence of a new mechanism of internal variability
involving nonlinearly coupled spatial degreees of
freedom, each with a lifetime that grows with scale.
Possible candidate mechanisms which are not cur-
rently part of GCM systems or are poorly modeled
are land ice and deep ocean currents, whose spatial
extents fluctuate over wide ranges of spatial scales,
and perhaps over the necessary range of time scales.

If the basic cascade model which reproduces the
weather-regime statistics is assumed to hold up to the
climate scale τc, then the basic consequence – which
we verified in Chapter 10 – is that there is a drastic
weather/macroweather change (“dimensional transi-
tion”) in the temporal statistics at τw: as a consequence,
the weather cascade fluxes approximately factorize into
separate and statistically independent weather and
macroweather processes: ew,mwð�r, tÞ ¼ ewðr , tÞemwðtÞ
(Eqn. (10.4)). In Chapter 10, the predictions of this
equation in the temporal domain were given copious
support, yet consideration of the spatial statistical
structure led us rapidly to the conclusion that this
equation cannot be the full story. This is because it
predicts that if we temporally average ew,mwð�r, tÞ (and
hence the observables) over scales > τw this would
completely smooth out the spatial variability as well –
and this contradicts the strong spatial multifractal vari-
ability observed as climate zones.

A model with realistic spatial statistics was,
however, easy to achieve. All we needed was to
include a further lower-frequency space-time factor
ecð�r, tÞ so that the full weather/climate model becomes
ew, c ð�r, tÞ ¼ ewð�r, tÞemwðtÞecð�r, tÞ. The implication of
this augmented model for the macroweather regime
is that the latter will inherit the strong (multifractal)
climate-scale spatial variability of ecð�r, tÞ – and this in
spite of the fact that temporal intermittency of
macroweather is small. Using this simple model of
space-time atmospheric variability we were therefore
able to predict the statistics of fluctuations as well as
the power spectra (Section 10.3). Finally, we indicated
how the model could be used to define a climate state
as the average of meteorological variables over scales
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up to τc (climate “normals”). “Climate change” then
has a precise meaning as the variation of this mini-
mally variable state at still longer time scales. The
model predicts that this state varies strongly in both
space and at (longer) times.

In this chapter, we focus on the “climate” defined as
the variability at scales greater than τc up to a critical
“low-frequency climate” scale τlc � 100 kyr, where we
find that the pattern repeats with H again apparently
becoming negative at longer times. Since instrumental
records only cover the beginning of this climate regime,
we are forced to rely heavily on various surrogates.While
these are problematic, they are detailed enough to give us
a fairly coherent (if incomplete) picture of the temporal
statistics of the climate regime (the spatial statistics
require large numbers of geographically distributed
paleotemperatures, and this is challenging). However,
if we attempt to go further into the low-frequency
climate regime at scales of several hundred thousand
years, the quantity and quality of the relevant surro-
gates is very small: the low-frequency climate regime is
therefore out of our scope. (Note added in proof: the
800 kyr EPICA Antarctic core yields Hlc � �0.8.)

The chapter is organized as follows. We first con-
sider the relevant instrumental data, even though they
do not allow us to go much beyond multidecadal
variability. To understand the multicentennial
variability, we require “multiproxy” surrogates, and
these are discussed in Section 11.1.5, where the
fluctuation statistics are analyzed primarily using
(Haar) structure functions. Multimillennial and
longer-period variability requires ice and ocean core
paleotemperatures; these combined with all the other
analyses (including over the weather scales) allow us
to construct a convincing three-scaling-regime com-
posite picture of atmospheric variability spanning the
(turbulent) weather regime out to � 100 kyr and a
more general model for the corresponding space-time
variability (Section 11.2). In Section 11.3, we discuss
possible causes of the climate variability, and examine
the variability of external forcings (solar, volcanic and
orbital), focusing on their (neglected) scale dependence
and implied (stochastic) scaling climate sensitivities.
This allows us to consider the variability of unforced
and forced GCMs and to attempt to answer the ques-
tion as to whether current GCMs predict the climate
or rather macroweather. In Section 11.4 we conclude
with a summary and a statement of the fundamental
space-time atmospheric statistics covering the weather,
macroweather and climate regimes.

11.1.3 Epoch-to-epoch climate
variability and the Holocene exception
Study of the climate regime requires indirect longer-
time-scale sources of data so as to clearly discern
the multidecadal, multicentennial and multimillennial
variability. The problem is complex for several
reasons. First, because beyond the strong spatial mul-
tifractal geographical variability associated with cli-
mate zones (Section 10.3), the climate state and the
critical transition scale τc also have significant epoch-
to-epoch variability; second, because proxy data
sources have nontrivial problems of interpretation;
and third, because during the last century or so the
natural variability has been perturbed by anthropo-
genic effects, and this can bias our results. In the next
two subsections we consider the epoch-to-epoch vari-
ations and then revisit the geographic variations.
The problems of interpretation and anthropogenic
effects are discussed in Section 11.1.5.

Consider the long stretch of relatively mild and
stable conditions since the retreat of the last ice sheets
about 11.5 kyr ago, the “Holocene.” This epoch has
been claimed to be exceptionally “stable”; it has even
been suggested that such stability is a precondition for
the invention of farming and thus for civilization
itself (Petit et al., 1999). It is therefore possible that
the statistics from paleodata such as ice cores sampled
over 100 kyr or longer periods may not be as pertin-
ent as we would like for understanding the current
epoch. Although we return in more detail to the ice-
core data in Section 11.2, let us briefly consider the
high-resolution GRIP core, which shows striking dif-
ferences between the Holocene and previous epochs
in central Greenland (Fig. 11.1). Even a cursory visual
inspection of the figure confirms the relative absence
of low-frequency variability in the current 10 kyr
section as compared to previous 10 kyr sections.

To quantify this epoch-to-epoch variability we
can turn to Fig. 11.2, which compares the RMS
Haar structure functions for both GRIP (Arctic) and
Vostok (Antarctic) cores for both the Holocene 10 kyr
section for the mean and spread of the eight earlier
10 kyr sections. The GRIP Holocene curve is clearly
exceptional, with the fluctuations decreasing with
scale out to τc � 2 kyr in scale and with ξ(2)/2 � –0.3.
This implies a spectral exponent near the macroweather
value β � 0.4, although it seems that for large Δt we
have ξ(2)/2 � 0.4 (β � 1.8). It is therefore plausible
that the main difference is that τc is much larger than
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for the other series (see Table 11.2 for quantitative
comparisons). The Greenland Holocene
exceptionalism is quantified by noting that the cor-
responding RMS fluctuation function (S(Δt)) is sev-
eral standard deviations below the average of the
previous eight 10 kyr sections. In comparison (to
the right in the figure) the Holocene period of the
Vostok core is also somewhat exceptional, although
less so: up to τc � 1 kyr it has ξ(2)/2 � –0.3 (β � 0.4)
and it is more or less within one standard deviation
limits of its mean, although τc is still large. Beyond
scales of � 1 kyr its fluctuations start to increase;
Table 11.1 quantifies the differences. We corroborated
this conclusion by an analysis of the 2 kyr (yearly
resolution) series from other (nearby) Greenland
cores (as described in Vinther et al., 2008), where
Blender et al. (2006) also obtained β � 0.2–0.4 and
similar low β estimates for the Greenland GRIP,
GISP2 cores over the last 3 kyr (see Table 10D.1).

We can also compare the intermittency of the
Greenland Holocene with that of the other 10 kyr
periods and with that of Antarctica. Fig. 11.3 shows
the cascade analyses, which show remarkably similar
cascade structures: it would seem that – contrary to
the spectrum and structure functions which depend
on H – the temporal intermittency in the Holocene is
relatively “typical.” This conclusion is supported by
the detailed consideration of the corresponding

exponents for the Holocene: we find C1 ¼ 0.078,
0.060 (GRIP, Vostok), compared to the mean of the
preceding 10 kyr periods (0.081 � 0.008, 0.12 � 0.02)
and the outer scales (for the Holocene: teff ¼ 250, 300
years and for the other 10 kyr sections 380 � 140 and
2500 � 1000 years, GRIP and Vostok respectively).
The a’s do not vary much; for this and the other
parameters, see Table 11.2, where we also compare
the exponents with those of other paleo series. Note
that Fig. 11.3 also shows the comparison with quasi-
Gaussian processes indicating that the paleotempera-
tures are not much more variable. In themselves these
cascade analyses are not therefore so conclusive, but
the results – at least for C1 – are roughly supported by
the structure function analyses of intermittency in
Section 11.2.3.

The fluctuation analyses (Fig. 11.2) convincingly
demonstrate that the Holocene was exceptionally
stable at the GRIP site in Summit Greenland. Never-
theless, the significance of this for our understanding
of the natural variations of northern hemisphere
temperatures is doubtful. Indeed, on the basis of
paleo-SST reconstructions just 1500 km southeast of
Greenland (Andersen et al., 2004; see also Berner
et al., 2008) it was concluded that the latter was on
the contrary “highly unstable.” Using several ocean
cores as proxies, a Holocene SST reconstruction was
produced (see Fig. 11.1, bottom) which includes a
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Fig. 11.1 The top part shows four
successive 10 kyr sections of the
5.2-year resolution GRIP data, the most
recent to the oldest from bottom to
top. Each series is separated by 10 mils
in the vertical for clarity (vertical units:
mils – i.e. parts per thousand of
isotope excess). For reference, a
5 K corresponding temperature spread
is also shown using a calibration
constant of 0.5 K/mil. We see that the
bottom Holocene GRIP series is indeed
relatively devoid of low-frequency
variability compared to the previous
10 kyr sections, a fact confirmed by
statistical analysis discussed in the text
and shown in Fig. 11.2. In contrast, the
bottom curve shows the (much lower
resolution but on the same scale)
paleo-SST curve from ocean core
LO09–14 (Berner et al., 2008), taken
from a location only 1500 km distant
and displaying far larger variability: see
Fig. 11.2. Adapted from Lovejoy and
Schertzer (2012a).
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difference between maximum and minimum of
roughly 6 K and “typical variations” of 1–3 K. Indeed,
although at lower resolution the variability of this Holo-
cene SST series visually resembles the pre-Holocene
GRIP series, in Fig. 11.2 we show this quantitatively:
the mean SST structure function is very close to that of
the mean GRIP function over the previous eight 10 kyr
sections, including the amplitude of the millennium
scale fluctuations of � 1–2 K, which is about the
amount needed to explain the glacial/interglacial tem-
perature swings. In comparison, the mean Holocene
RMS temperature fluctuations deduced from the GRIP
core in the last 10 kyr are roughly � 0.2 K.

These apparently conflicting results are presum-
ably consequences of the geographical/spatial climate
intermittency discussed in Section 10.3. The juxtapos-
ition of the radically different neighbouring SST and
ice-core Holocene experiences thus lends support to
statistical conclusions based on the variability over
longer periods (e.g. the spectra and structure func-
tions averaged over the whole cores). In the next
section, we further examine the question of geograph-
ical variability which confirms (among other things)
that the region a little to the east of Greenland is
indeed much more unstable (β>1, H>0).

11.1.4 Geographic climate variability,
spatial intermittency, τc, βmw, βc
The high spatial climate intermittency implied in
Section 10.3 and the contrast between the Greenland
and the near-Greenland sea surface paleotempera-
tures highlights the need to better understand the
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Fig. 11.2 A comparison of the RMS Haar structure function (S(Δt))
for both Vostok and GRIP high-resolution cores (resolutions 5.2 and
50 years respectively over the last 90 kyr). The Haar fluctuations were
calibrated and are accurate to � � 20%. For Vostok we used the
Petit et al. (1999) calibration, for GRIP, 0.5 K/mil. These series were
broken into 10 kyr sections. The thick dashed lines show the most
recent of these (roughly the Holocene). The top thick dashed line is
the (Berner et al., 2008) paleo-SST series; the middle thick dashed line
is from Vostok; the bottom thick dashed line is from GRIP. The thick
continuous lines are the S(Δt) of the ensemble of eight 10–90 kyr
GRIP (longest) and Vostok (shorter). The one-standard-deviation
variations about the mean are indicated by dotted lines. Also shown
are reference lines with slopes ξ(2)/2 ¼ –0.3, 0.2, 0.4, corresponding
to β ¼ 0.4, 1.4, 1.8 respectively. Although the Holocene is
exceptional for the GRIP and Vostok series, for GRIP it is exceptional
by many standard deviations. However, the paleo-SST curve (from
only � 1500 km away) is quite different and is very close to the pre-
Holocene GRIP results, presumably a consequence of the strong
spatial intermittency (see Table 11.4 for a comparison). For the
Holocene we can see that τc � 1 kyr for Vostok, and � 2 kyr for GRIP,
although for the previous 80 kyr we find τc � 100 years for both.
Adapted from Lovejoy and Schertzer (2012a).

Table 11.1 Comparison of various paleo exponents estimated using the Haar structure function over successive 10 kyr periods: Vostok
at 50-year resolution, GRIP at 5.2 year resolution, all regressions over the scale ranges indicated. The Holocene is the most recent period
(0–10 kyr). Note that while the Holocene exponents are estimates from individual series, the 10–90 kyr exponents are the means of the
estimates from each 10 kyr section and (to the right), the exponent of the ensemble mean of the latter. Note that the mean of the
exponents is a bit below the exponent of the mean, indicating that a few highly variable 10 kyr sections can strongly affect the ensemble
averages. For the Holocene, the separate ranges < 2 kyr and Δt > 2 kyr were chosen because according to Fig. 11.2, τc �1- 2 kyr.
For comparison, the (Berner et al., 2008) paleo-SST data have τc � 500 years and H � 0.2, β � 1.4.

H β

Holocene 10–90 kyr Holocene 10–90 kyr

Range of

regressions

100 yr –

kyr

2 kyr –

10 kyr

100 yr –

10 kyr

100 yr –

10 kyr

ensemble

100 yr –

2 kyr

2 kyr –

10 kyr

100 yr –

10 kyr

100 yr –

10 kyr

ensemble

GRIP –0.25 0.21 0.14 � 0.18 0.17 0.43 1.33 1.14 � 0.33 1.20

Vostok –0.40 0.38 0.19 � 0.28 0.31 0.18 1.76 1.29 � 0.51 1.49
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geographical variability of the climate regime. In
Section 10.1.4 and in Table 10.1 we considered vari-
ous data analyses primarily in the macroweather
regime. A limitation of these analyses is that they
made little attempt to distinguish macroweather from
the lower-frequency climate regime which even in
local temperatures starts to be apparent at ωc �
(10 years)–1 – (30 years)–1 (see Figs. 10.12, 10.13). In

order to clarify this, let us consider the geographical
distribution of the scaling exponents in more detail,
using the 20CR reanalysis and comparing exponents
estimated in low- (ω<(25 years)–1) and high-
((3 years)–1 < ω < (3 months)–1) frequency regions
(chosen to avoid the anticipated transition at around
ωc � (10 years)–1). The 138-year-long monthly aver-
aged 20CR 700 mb temperature data were again used
to estimate both low- and high-frequency exponents:
2� � 2� data were sampled every 8� in latitude and
every 10� in longitude. The geographical distribu-
tions are shown in Fig. 11.4 (top row). Whereas at
the high frequencies the main pattern visible is the
latitudinal variation (with the mean in the expected
range of 0.2 < β < 0.6 for land and ocean (i.e. H � (β
– 1)/2 in the range –0.4 to –0.2), at the low frequen-
cies we see a rather different picture, with both a
strong north–south exponent gradient and hints that
the low β values are concentrated over land and the
high ones over oceans. In particular, we can see that
Greenland is in a particularly low β regime, consist-
ent with its anomalous Holocene paleotemperature
behaviour. The latitudinal variation of the β’s is
shown in Fig. 11.5a (top row). The high-frequency
curve is nearly symmetric about the equator and is
almost identical to that of Huybers and Curry
(2006), who used regressions from (2 months)–1 to
(30 years)–1, but the low-frequency curve shows an

Table 11.2 The parameter estimates for the four datasets
shown in Fig. 11.18 interpolated or averaged to 50-year
resolutions, all over the last 90 kyr only. For reference we have
given the mean resolutions from which the 50-year series were
generated; the values are over the period 0–90 kyr BP.

Location Resolution

(mean)

(years)

C1 α τeff

(years)

GRIP high

resolution,

Greenland

5.2 0.108 1.68 900

GRIP 55 cm,

Greenland

18 0.122 1.50 2260

NGRIP 50 0.101 1.70 1800

Vostok,

Antartica

72 0.108 1.68 5600

Ensemble 50 0.12 1.62 2800
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Fig. 11.3 GRIP high resolution.
The first four sections of 10 kyr high
resolution (same axes); the upper
left is the most recent (Holocene) 10 kyr
section. Moving left to right, top to
bottom we display the moments q ¼ 0
to q ¼ 2 (intervals 0.2) for the next
10 kyr periods, up to 30–40 kyr
(bottom right). The reference scale
(corresponding to l¼ 1 in the figure) is
10 kyr, the mean outerscale teff ¼ 380
� 140 years. The superposed curves are
the envelopes of the trace moments of
the quasi-Gaussian processes as
discussed in Appendix 4A. It can be
seen that the data are not far from
quasi-Gaussian, so the cascade
parameter estimates are not too
reliable, although the C1 estimates are
supported by the fluctuation analyses
in Section 11.2.3.
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anomaly north of � 30� N. Also shown (bottom
row) is a comparison with the (quite different)
output of a 500-year GCM control run (discussed
in Secton 11.3.2).

Rather than divide the frequency domain into
predefined regimes and estimate the corresponding
exponents, we can do the opposite: find the statistic-
ally optimum transition scale between two different

Box 11.1 Using paleoclimate data to statistically constrain models

The traditional way of comparing paleoclimate data and climate models is to take the most realistic models and
then drive them with the most realistic “reconstructed” climate forcings (e.g. the Last Millennium project). The
model outputs are then compared with paleo series. Ignoring for simplicity the spatial coordinate, consider a paleo
reconstruction Tp(t) and a model series Tm(t). We are used to considering Tp(t) as a constraint on Tm(t) in a direct
manner: perfect models and data satisfy TmðtÞ ¼ TpðtÞ. A consequence is that the fluctuations ΔT of perfect models
and data satisfy:

DTmðDtÞ ¼ DTpðDtÞ ð11:1Þ

where the fluctuations can be defined via absolute differences: DTðDtÞ ¼ jTðt þ DtÞ � TðDtÞj, or – as we discussed
in Chapter 10 – often more advantageously by Haar wavelets.

There are several reasons why exact data–model comparisons are overly ambitious. Some of these are: (a) the
different space-time resolutions of the data and models, (b) nontrivial paleo “calibration” and measurement noise
issues, (c) because of sensitive dependence on initial conditions (the “butterfly effect”), the model reconstructions
are not really expected to be realistic in a deterministic sense. As a consequence, the best we can expect is
TmðtÞ � TpðtÞ and often instead, comparisons are often achieved with the help of low-pass filtered series. Alterna-
tively, the trends in the models and data are compared at various significant times t over durations Δt; these can be
defined either by linear regressions of T(t) over intervals Δt or more simply by fluctuation gradients ΔT(Δt)/Δt.

Using data to directly constrain the models in this deterministic way is often too demanding. One simple
solution is to replace the deterministic Eqn. (11.1) by its statistical version:

DTmðDtÞ¼
d
DTpðDtÞ ð11:2Þ

where the ¼d sign indicates equality in probability distribution, i.e. a¼d b if and only if Prða > sÞ ¼ Prðb > sÞ, where s

is an arbitrary threshold and Pr indicates probability. Although Eqn. (11.2) is a consequence of Eqn. (11.1) it is much
weaker, since two series Tm, Tp whose fluctuations respect Eqn. (11.2) may not even be statistically correlated with
each other.

A useful way to exploit Eqn. (11.2) is to calculate statistical averages over various powers. The qth-order
“structure function” Sq is particularly convenient:

Sq,mðDtÞ ¼ Sq, pðDtÞ; SqðDtÞ ¼ hDTðDtÞqi ð11:3Þ

Since the power spectrum E(ω) is essentially the Fourier transform of S2(Δt), taking q ¼ 2 implies that the latter
are also equal: EpðoÞ ¼ EmðoÞ (Box 2.2). If the fluctuations are quasi-Gaussian then this fully specifies the fluctuation
statistics; however, they are generally far from Gaussian. When this is important, the full statistics can be studied by
considering higher and higher values of q which allows us to characterize the intermittency and the extremes. It is
this flexibility and ease of interpretation that makes the study of fluctuations superior to the use of power spectra.

Eqns. (11.2) and (11.3) are necessary consequences of Eqn. (11.1), yet they may be true even if ΔTm and ΔTp are
not even statistically correlated with each other; they provide necessary but not sufficient constraints on the models.
Another way to look at this is that since Eqns. (11.2) and Eqns. (11.2) are functions of the time lag Δt, the way the
fluctuations vary with Δt characterizes the type of corresponding dynamics (and this can conveniently be quantified
by using exponents, i.e. the type of scaling).

Using Eqns. (11.2) and (11.3) in place of Eqn. (11.1) has several advantages. For example, (statistically independ-
ent) measurement noises would simply add their noise variance s2 to the paleodata variance hDTpðDtÞ

2i,
which would thus mostly affect the small lags, and different linear calibration constants correspond to vertical
shifts in log-log plots of hDTpðDtÞ

2i1=2 against Δt. Since the type of statistical variability (i.e. the exponents, the type
of scaling) is expected to be robust, the use of statistical constraints has the further advantage that exact
geographical co-locations of Tp and Tm are not required, nor do we need perfect paleochronologies (although they
should be fairly linear).

11.1 Multidecadal to multimillennial scaling
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regimes, each defined with different fixed exponents.
Taking the low-frequency regime to have ξ(1) ¼ H ¼
–0.4 (β � 0.2) and the high-frequency regime to have
ξ(1) ¼ H ¼ 0.4 (β � 1.8), regression analysis on the
20CR data yields an estimate of the optimum transition
scale τc (Fig. 11.5b). First-orderHaar structure functions
(rather than spectra) were used since they had better
scale resolution at the corresponding low frequencies.
We could note that the τc estimates were quite insen-
sitive to the exact choices of H for the high- and low-
frequency regimes. These analyses are thus consistent
with the idea that the main geographical variation is the
macroweather climate transition scale τc and that the
apparent variations in low-frequency β (estimated for
time scales longer than 25 years: i.e. below τc formuch of
the northern hemisphere) may be biased by using
regressions which straddle the transition scale.
Also shown are the analogous estimates for the 20CR
precipitation field. We see that, except at very high
latitudes, the precipitation τc are somewhat higher than
the temperature τc and are more north–south sym-
metric. However, they are within roughly factors of
two of each other over the whole range.

Although clearly the low-frequency β estimates are
“noisy,” being based on only five discrete frequencies
(a scale range of factor 138/25), the resulting mean
behaviour turns out to be quite close to the variability
required to explain the interglacials (see Fig. 1.9c, 11.10
and Section 11.2.2), so that the results are quite reason-
able. If this analysis is correct then it implies that the
regions where the most intensive empirical analyses

have been made – Greenland and the northern hemi-
sphere – are precisely regions where there are spectral
plateaus which are anomalously long (large τc’s) with
consequently anomalously low β’s. Since the surface
series show that the spectra of the mean northern and
mean southern hemisphere temperatures are not too
different (see the error bars in Fig. 11.5b), the main
difference is in the longitude-to-longitude variability
(which is higher in the northern hemisphere; the mean
β is significantly lower than the β of the mean).

Further information about the macroweather/
climate transition is given in Fig. 11.6, which com-
pares the 20CR estimates from Fig. 11.5a with those
of various longer “multiproxy” series discussed in the
next section as well as those of the GRIP and Vostok
cores already discussed in Fig. 11.1, 11.2. We can see
that generally the more recent multiproxy series have
higher β’s which are in accord with the conclusion
that the low variability of the Greenland proxies is
exceptional and that a value of β > 1 (probably in
the range 1.4–2) is more realistic. This is discussed in
the next section.

11.1.5 Multiproxy temperature data,
centennial-scale variability and
twentieth-century warming
Although there is consensus that the interglacial
Holocene period is warmer than the preceding glacial
period, we have noted the conflicting claims of
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β = 0.82±0.62

β = 0.33±0.37 β = 1.72±1.28

β = 0.18±0.52

Fig. 11.4 The spatial distribution of
the spectral exponents for the
reanalyses (top row) and the IPSL
control run (bottom row). The left-
hand side shows the distribution of
the high-frequency exponents, the
right-hand side, the low-frequency
β’s. In all cases the contour lines
were at β ¼ 0.5 (dark blue), 1, 1.5, 2
(white). One can see that Greenland
has exceptionally small low-
frequency β’s (< 0.5) although about
20� to the east the values are quite
high (> 1.5: the white area to the
right of Greenland). The mean β’s
and one-standard-deviation spreads
are also indicated. The high-
frequency 20CR β map is very similar
to that of Huybers and Curry (2006)
(although they determined β from
NCEP reanalyses from 2 months to
30 years). See colour plate section.
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Holocene stability or instability based on Greenland
and near Greenland data: this has hindered the devel-
opment of a clear idea of the type of variability (i.e.
whether H > 0 or H < 0) during the last 10 kyr.
Similarly, the recent instrumental period – especially
with the help of the 20CR reanalysis (Figs. 11.5a, 11.5b,
11.6) – has shown that it is dangerous to geographic-
ally generalize from the Greenland Holocene.

The key to linking the long but geographically
limited ice-core series with the short but global-scale
instrumental series is the intermediate category of
“multiproxy temperature reconstructions.” These
series, pioneered by Mann et al. (1998, 1999), have
the potential of capturing “multicentennial” variabil-
ity over at least the (data-rich) northern hemisphere.
Multiproxies are typically at annual resolutions and
combine a variety of different data types ranging from
tree rings, ice cores, lake varves, boreholes, ice melt
stratigraphy, pollen, Mg/Ca variation in shells, 18O in
foraminifera, diatoms, stalagmites (in caves), biota
and historical records. In what follows, we analyze
eight of the longest of these; see Fig. 11.7a for the
series and Table 11.3 for some of statistical character-
istics and descriptions.

Before reviewing the results, let us discuss some
of the technical issues that continue to drive the
development of new series. Consideration of the
original series (Mann et al., 1998; extended back to
AD 1000 in Mann et al., 1999 and updated in Mann
et al., 2008) illustrates both the technique and its
attendant problems. A basic difficulty is in getting
long series that are both temporally uniform and
spatially representative. For example, the original
six-century-long multiproxy series presented in Mann
et al. (1998) had 112 indicators going back to 1820, 74
to 1700, 57 to 1600 and only 22 to 1400. Since only a
small number of the series go back more than two or
three centuries, the series’ “multicentennial” variabil-
ity depends critically on how one takes into account
the loss of data at longer and longer time intervals.
When it first appeared, the Mann et al. series created a
sensation by depicting a “hockey-stick”-shaped graph
of temperature, with the fairly flat “handle”
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Fig. 11.5 (a) Comparison of the latitude dependence of the
monthly averaged pixel-scale reanalysis spectral exponents β (top)
with the corresponding exponents of a control run of the IPSL GCM,
discussed in Section 11.3.2 (bottom). The top curve (20CR) and
bottom curve (IPSL) show the low-frequency estimates (ω < 25
(years)–1; for the reanalysis this is over the lowest available five
frequencies), and the bottom curve (20CR) and top curve (IPSL)
show the estimates over the high frequencies ((3 years)–1

< ω < (3 months)–1). The error bars indicate the one-standard-
deviation spreads over all the estimates at the given longitude; the
high-frequency spreads are about � 0.3 whereas the low frequency
spreads are about� 0.6,� 0.2 (20CR, IPSL, respectively, reflecting the
greater length of the IPSL estimates, 500 years). A key point to note is
that the relative positions of the of high- and low-frequency curves
are inverted: whereas the 20CR low-frequency β’s are much larger
than the corresponding IPSL β’s, the opposite is true for the high-
frequency β’s. For reference, we have also shown on the graph as
lines the values of the exponents of the globally averaged
temperatures from Fig. 10.12. The Greenland paleotemperatures are
at roughly 75� N, where we note particularly low β values. (b)
Latitudinal dependence (mean thick, one standard deviation thin
dashed) of the critical climate transition time τc for 20CR 700 mb
temperature (bottom) and surface precipitation (top). This is
estimated from bilinear regression of slopes ξ(1)¼ H¼ –0.4,þ0.4 on

the q ¼ 1 Haar structure functions. One can see that the
precipitation τc’s are generally somewhat larger and roughly north–
south symmetric whereas the temperature τc’s are somewhat
asymmetric, qualitatively the same as the variation in low-frequency
β’s (top row, Fig. 11.5a). This figure can be compared with Fig. 8.5c,
which shows the corresponding 20CR estimates of τw.
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continuing from AD 1000 until a rapid twentieth-
century increase. This led to the famous conclusion –

echoed in the IPPC AR3 (Houghton et al., 2001) –

that the twentieth century was the warmest century of
the millennium, that the 1990s was the warmest
decade, and that 1998 was the warmest year. This
success encouraged the development of new series
using larger quantities of more geographically repre-
sentative proxies (Jones et al., 1998), the introduction
of new types of data (Crowley and Lowery, 2000), in
some cases the more intensive use of pure
dendrochronology (Briffa et al., 2001), or the latter
combined with an improved methodology (Esper
et al., 2002).

However, the interest generated by reconstruc-
tions also attracted criticism. In particular, McIntyre
and McKitrick (2003) claimed there were several flaws
in the Mann et al. (1998) data collection and in the
application of the principal component analysis
technique which it had borrowed from intelligence

testing and econometrics. After reprocessing, the
same proxies were claimed to yield series with signifi-
cantly larger low-frequency variability, including the
reappearance of the famous “medieval warming”
period at around AD 1400, which had been attenu-
ated in the original. Later, an additional comment
underlined the sensitivity of the methodology to
low-frequency red noise variability present in the
calibration data (McIntyre and McKitrick, 2005). This
was modelled with Markov (exponentially decorrelat-
ing) processes, so its low frequency effect is presum-
ably smaller than that which would have been found
using the more appropriate scaling noises. Other
work in this period, notably by von Storch et al.
(2004) using “pseudo-proxies” (i.e. the simulation of
the whole calibration process with the help of GCMs),
similarly underlined the nontrivial issues involved in
extrapolating multiproxy calibrations into the past
(see also Hegerl et al., 2007). After many exchanges
in the literature, it now seems that the original Mann
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Fig. 11.6 The spectral exponent as a function of latitude for the 138-year monthly averaged 20CR temperature at 700 mb and various other
proxy estimates discussed in Section 11.1.4. The thick and thin continuous lines are the mean exponents for frequencies ω < (25 years)–1, and
for (3 months)–1 < ω < (3 years)–1 respectively (from Fig. 11.5a). The dashed lines indicate the one-standard-deviation longitude-to-longitude
variations (corresponding to the map in Fig. 11.4). The vertical bars marked “NH, SH” are the exponents of the mean northern and mean
southern hemisphere. Each of the three surface series (1880–2008) was used; the centre of the bar is the mean exponent for ω < (25 years)–1

and the length of the bar indicates the series-to-series variation. The dashed line indicating “global” is the mean over all the latitudes of the pixel-
by-pixel exponents (spread� 1.28, not shown). On the right are indicated the regression estimates for the eight annual reconstructions discussed
in the text and Table 11.3. The regressions for the reconstructions are for (480 years)–1< ω< (25 years)–1 (the period 1500–1979). The rough range
of latitudes where almost all the proxies are situated is indicated. Also indicated by circles are the Holocene (last 10 kyr) GRIP (at 5.2-year resolution,
72.57� N) and Vostok (at 300-year resolution, 78.45� S) β’s; the vertical bars are the one-standard-deviation variations of β for the 8� 10 kyr periods
10–90 kyr (GRIP) and the previous 41 � 10 kyr period 10 – 420 kyr (Vostok). Finally, the multiproxy estimates of South American annual
temperatures (at 0.5� resolution; Neukom et al., 2010) are shown, both high and low frequency (respectively the short bottom and top curves
between 20� and 60� S), as well as the overall average values (horizontal dashed lines). The high-frequency 20CR β distribution with latitude
is almost the same as that of Huybers and Curry (2006), who fit NCEP reanalysis β’s from 2 months to 30 years. The near convergence of the
high- and low-frequency β’s over part of the northern hemisphere is probably mostly due to a larger and highly variable transition scale τc.
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et al. (1998) results are reasonably robust: see Wahl
and Ammann (2007).

Beyond the potential social and political implica-
tions of the debate, the scientific upshot was that
increasing attention had to be paid to the preservation
of the low frequencies. One way to do this is to use
borehole data which, when combined with the use
of the equation of heat diffusion, have essentially no
calibration issues whatsoever. Huang (2004) used 696
boreholes (only back to AD 1500, roughly the limit
of this approach) to augment the original (Mann
et al., 1998) proxies so as to obtain more realistic
low-frequency variability. Similarly, in order to give
proper weight to proxies with decadal and lower
resolutions (especially lake and ocean sediments),
Moberg et al. (2005) used wavelets to separately
calibrate the low- and high-frequency proxies.
Once again the result was a series with increased
low-frequency variability. Finally, Ljundqvist (2010)
used a more up-to-date and more diverse collection of
proxies to produce a decadal-resolution series going
back to AD 1. The low-frequency variability of the
new series was sufficiently large that it even included a
third-century “Roman warm period” as the warmest
century on record and permitted the conclusion that
“the controversial question whether Medieval Warm
Period peak temperatures exceeded present temper-
atures remains unanswered” (Ljundqvist, 2010).

In this context, let us quantitatively analyse the eight
series cited above using the Haar structure function.

We concentrate here on the period 1500–1979 for
several reasons: (a) because it is common to all eight
reconstructions; (b) being relatively recent, it is more
reliable (it has lower uncertainties); and (c) it avoids the
medieval warm “anomaly” and thus the possibility that
the low-frequency variability is artificially augmented
by the possibly unusual warming in earlier centuries.
The resulting series are shown in Fig. 11.7a and theHaar
structure functions in Fig. 11.7b, where we have
grouped the structure functions into the five pre-2003
and three post-2003 reconstructions. Up to about 200
years the basic shapes of the curves are quite similar to
each other – and indeed to the surface temperature
S(Δt) curves back to 1881 (Fig. 10.12: the ensemble of
the CDC, GISS and HadCRUT3 series discussed
earlier). However, quite noticeable for the pre-2003
constructions is the systematic drop in RMS fluctu-
ations for Δt > ~200 years, which contrasts with their
continued rise in the post-2003 reconstructions. This
difference is also clearly visible in the low-pass filtered
series shown in Fig. 11.7a. This confirms the above
analysis to the effect that the post-2003 analyses were
apparently more careful in their treatments of
multicentennial variability. To both quantify this and
put it into perspective, wemay return to Fig. 11.6, which
indicates the low-frequency (ω < (25 years)–1) regres-
sion exponents on a graph of β as a function of latitude.
It can be seen that the post-2003 β’s are roughly the
same as the 20CR exponents, especially when it is
recalled that almost all the series contributing to the

Table 11.3 Comparison of parameters estimated from the multiproxy data from 1500–1979 (480 years). The Ljundqvist high-frequency
numbers are not given, since the series has decadal resolution. Note that the β for several of these series was estimated in Rybski et al.
(2006) but no distinction was made between macroweather and climate, so the entire series were used, resulting in generally lower β’s. Also
shown (bottom line) is a South American estimate.

b (high freq

(4–10

years)–1)

b (lower freq

than (25

years)–1)

Hhigh

(4–10

years)

Hlow

(>25

years)

C1 α τeff

(years)

Jones et al., 1998 0.52 0.99 –0.27 0.063 0.104 1.64 15

Mann et al., 1998, 1999 0.57 0.53 –0.22 –0.13 0.100 1.67 30

Crowley and Lowery, 2000 2.28 1.61 0.72 0.31 0.105 1.65 15

Briffa et al., 2001 1.19 1.18 0.15 0.13 0.092 1.64 20

Esper et al., 2002 0.88 1.36 0.01 0.22 0.092 1.72 15

Huang, 2004 0.94 2.08 0.02 0.61 0.090 1.70 20

Moberg et al., 2005 1.15 1.56 0.09 0.32 0.094 1.69 15

Ljundqvist, 2010 _ 1.84 _ 0.53 0.098 1.67 95

Neukom et al., 2010 0.34 � 0.37 1.23 � 0.18 –0.24 0.12 0.096 1.85 22
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multiproxies come from data between latitudes 30� and
80� N. (Note added in proof: we recently analysed the
Mann et al. (2008) reconstruction but only managed to
include it in Fig. 11.7b, where it is in rough accord with
the other post-2003 reconstructions.)

As usual, a more complete characterization of
the series requires going beyond the spectral β or
conservation exponent H, to also characterize the
intermittency. Fig. 11.8 shows the corresponding
cascade structures and Table 11.3 gives the corres-
ponding parameter estimates. The intermittency is
generally low for Δt > ~30 years (although Mann
et al. (1998) and Huang (2004) are partial exceptions),
and we also note that the C1, a parameters are very
similar to each other and also to those of the surface
temperatures (see Table 10C.2, Fig. 10C.4). The com-
parison with the envelope of the quasi-Gaussian trace
moments shows that cascade conculsions are not
strong. This may partly explain why the outer scales
have τeff � 15–30 years, which is significantly larger
than for the surface series (cf. τeff � 3 years, Table
10C.2), the main exception is the low-resolution series
(Ljundqvist, 2010). In this case, the Haar structure
function is perhaps better suited to studying the inter-
mittency (see Section 11.2.3).

In order to improve the statistics, we can make
ensemble averages of the pre- and post-2003 structure
functions and compare them with the ensemble
average of the instrumental global surface series
(Fig. 11.9). This figure confirms that the basic behav-
iour: small Δt scaling with β � 0.8 followed by large
Δt scaling with β � 1.8 is displayed by all the data,
and the pre-2003 structure function drops off pre-
cipitously for Δt > ~200 years (see also Fig. 11.7b).
Notable are: (a) the transition scale in the global
instrumental temperature, at τc � 10 years, is some-
what smaller than that found in the reconstructions
(τc � 40–100 years); and (b) the amplitudes of the
reconstruction RMS fluctuations are about a factor
of two lower than for the global instrumental series.
The reason for the amplitude difference is not at
all clear, since the monthly and annually averaged
Haar structure functions of the instrumental series
are virtually identical (the temporal resolution is not
an issue), and similarly the difference between
the northern and the southern hemisphere instru-
mental S(Δt) functions is much smaller than this
(only about 15%).

Before continuing, let us attempt to address the
other exception discussed earlier: that of the twentieth
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Fig. 11.7 (a) Northern hemisphere multiproxy temperature
anomaly series, analysed here from 1500 to 1980, with a 30-year
(� τc) running average filter to bring out the climate-scale variability;
the anomalies series were adjusted so that the 1960–1980 averages
coincide. The thick curves are the post-2003 series, the thin curves,
the pre-2003 series, each identified by the lead author indicated on
the left. Note that the running average is not accurate at the
extreme (beginning and end) 30-year parts of the graph. (b) RMS
temperature fluctuations (S(Δt) with exponent ξ(2)/2) as estimated
using Haar wavelets for the eight multiproxy temperature series for
the northern hemisphere discussed in Table 11.3. The ninth (Mann)
was added in proof but is not discussed further. The fluctuation
temperature scale has been calibrated using usual (difference), “poor
man’s” wavelets for ξ(2) > 0, and tendency structure functions for
ξ(2) < 0 and is accurate to within � � 20%. The structure functions
have been divided into two groups corresponding to pre-2003 and
post-2003 analyses (note that the Ljundqvist (2010) series had
decadal resolution and is not shown for Δt < 10 years). For clarity
the pre-2003 group was displaced downwards by 0.3,
corresponding to a factor of 2 in fluctuations. Reference lines
corresponding to β ¼ 1.8 (ξ(2) ¼ 0.4) and β ¼ 0.8 (ξ(2) ¼ –0.1) have
been added. With the exception of the Crowley and Lowery (2000)
series – whose high frequencies are not reliable – the shape
exponents are very similar between 2 years (the shortest lag) and
nearly 200 years, diverging for longer lags with the variability of the
older series decreasing rapidly in contrast to the newer series, whose
variability continues to increase roughly with the same power law,
exponent ξ(2)/2 ¼ 0.4.
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century, which – especially since 1970 – is somewhat
warmer than the nineteenth. It has been recognized
that this warming causes problems for the calibration
of the proxies (e.g. Ljundqvist, 2010), and it will
clearly contribute to the RMS multicennial variability
in Fig. 11.7b. In order to demonstrate that the basic
type of statistical viability is not an artefact of the
inclusion of exceptional twentieth-century tempera-
tures in Fig. 11.9, we also show the corresponding
Haar structure functions for the period 1500–1900.
Truncating the instrumental series at 1900 would
result in a series only 20 years long, so the closest
equivalent for the surface series was to remove overall
linear trends, and then redo the analysis. As expected,
the figure shows that all the large Δt fluctuations are
reduced, but that the basic scaling behaviours are
apparently not affected. We conclude that the type
of variability as characterized by the scaling exponents is
a robust – if difficult to accurately determine – statistic.

Another assessment of the low-frequency variabil-
ity can be made by comparing typical instrumental,
multiproxy and ice-core paleotemperature data
(Fig. 11.10). In this figure, we have superposed the
calibrated Vostok deuterium-based RMS temperature
fluctuations with RMS multiproxy and RMS surface
series fluctuations. We see that extrapolating the latter
out to 30–50 kyr is quite compatible with the Vostok
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series, omitted for reasons of space):
J ¼ Jones, Ma ¼ Mann 1998, B ¼ Briffa,
C ¼ Crowley, Mo ¼ Moberg, H ¼
Huang. The parameters are quite
similar to each other and are given in
Table 11.3. Note that the intermittency
ends near the cascade outer scales
(� 30 years) except for the Mann and
to a lesser extent the Huang series,
where it is significant even at the
largest scales. The superposed curves
are the envelopes of the trace
moments of the quasi-Gaussian
processes as discussed in Appendix 4A.
It can be seen that with the probable
exception of the Mann proxy (upper
right), that the data are not far from
quasi-Gaussian, so the cascade
parameter estimates are not reliable.
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Fig. 11.9 The RMS Haar fluctuation for the mean of the pre- and
post-2003 series from 1500 to 1979 (bottom and middle solid lines
respectively and excluding the Crowley series because of its poor
resolution), along with the mean of the globally averaged monthly
resolution surface series (NOAA CDC, NASA GISS, HadCRUT3) (solid,
top). In order to assess the effect of the twentieth-century warming,
the structure functions for the multiproxy data were recalculated
from 1500–1900 only (the dashed lines that join the solid lines at
small lags) and for the instrumental surface series with their linear
trends from 1880–2008 removed (the data from 1880–1899 are too
short to yield a meaningful S(Δt) estimate for the lower frequencies
of interest). Although in all cases the large Δt variability is reduced,
the basic power-law trend seems to remain, although the transition
scale τc increases (especially for the post-2003 reconstructions). Note
that the decrease in S(Δt) for the linearly detrended surface series
over the last factor of 2 or so in lag Δt is a pure artefact of the
detrending. Reference lines corresponding to β ¼ 0.8 and 1.8 have
been added. Reproduced from Lovejoy and Schertzer (2012a).
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core and with the “interglacial window.”This “window”
frames the rough amplitude and quasi period of the
glacial/interglacial transition that one expects on the
basis of a wide variety of proxy indicators (Lovejoy
and Schertzer, 1986). One way to estimate this is to
consider the change in temperature since the Last
Glacial Maximum (LGM), 19–23 kyr BP. For changes
in the global mean, Schmittner et al. (2011) find 3 K,
and J. Annan (personal communication) finds 4.5 K.
Since the variations are about 1.5–2 times larger at
high latitudes, these new results are compatible with
the indicated window. Although the Vostok S(Δt)
curve is from the entire 420 kyr record (not just the
Holocene), this certainly makes it plausible that the
low-frequency variability displayed in the post-2003
reconstructions is indeed more realistic than the
contrasting relative lack of variability in the pre-2003
reconstructions.

11.2 Scaling up to 100 kyr:
a composite overall scaling picture
of atmospheric variability

11.2.1 Ice-core paleotemperatures
Beyond scales of one or two centuries, there are
very few direct instrumental series; the longest is the
Central England series from 1659 onwards (Manley,

1974), whose spectrum follows reasonably well the
“maritime” macroweather exponent βmw � 0.5–0.6
up to � 100 years (see Lovejoy and Schertzer, 1986;
Pelletier, 1998, for scaling analyses of the monthly
series). As a consequence, virtually all our multicen-
tennial and longer-time-scale information comes
from various surrogates. The most reliable are the
paleotemperatures, especially those from isotope
records obtained from ice cores (ocean core records
are also pertinent but their resolutions are lower and
they are less directly related to the temperature).

Ice cores can be used as proxies because heavy
water – especially molecules containing 18O or deu-
terium (D) – evaporate with more difficulty than the
lighter “normal” H2O molecules (containing only
16O and 1H), and this differential evaporation rate is
itself temperature-dependent. Accordingly, the deficit
in parts per thousand, or “mils” of 18O or D in snow,
and hence in ice cores, is calibrated by linear regres-
sions of the latter on modern-day temperature
records in the regions where the cores are taken.
Today, thanks to several ambitious international pro-
jects, many cores exist, particularly in the Greenland
and Antarctic ice caps. The most famous are probably
the GRIP (Greenland Ice Core Project) and Vostok
(Antarctica) cores (which we briefly considered in
Section 11.1.2), each of which is over 3 km long
(limited by the underlying bedrock) and goes back
240 and 420 kyr, respectively. Near the top of the
cores, individual annual cycles can be discerned
(in some cases going back over 10 000 years); below
that the shearing of ice layers and diffusion between
the increasingly thin annual layers makes such direct
dating impossible, and models of the ice flow and
compression are required. Various “markers” (such
as dust layers from volcanic eruptions) are also used
to help fix the core chronologies. The result is a highly
variable relation between depth and chronology: for
a detailed discussion, see Box 11.3; and see Fig. 5.21
for probability distributions of fluctuations and its
implications for abrupt climate changes including
the “Dansgaard–Oeschger” events, some of which
are shown in Fig. 11.11.

Consider the GRIP (summit) location d18O rela-
tively high-resolution (5.2-year) data in Fig. 11.11.
The dataset is 17 551 points long and spans the period
from the present to 91 kyr BP (BP ¼ “before
present”). We can see that the present interglacial
warming (the “Holocene”) corresponds to the par-
ticularly high d18O values around –36 to –34 mils.
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Fig. 11.10 RMS Haar fluctuations for the mean monthly global
surface series (left), the mean pre-2003 and mean post-2003 proxies
(bottom and middle left, respectively) as well as the mean Vostok
S(Δt) function over the last 420 kyr interpolated to 300-year
resolution and using the Petit et al. (1999) calibration (upper right).
Also shown is the “interglacial window,” the probable typical range
of fluctuations and quasi periods of the glacial/interglacials.
Reproduced from Lovejoy and Schertzer (2012a).
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At around 10–12 kyr BP, the signal does drop, but
hardly in a step-function-like way. Indeed, the pre-
ceding glacial period (further to the right in the
graph) is far from being a constant low value; there
are several 50–100-year intervals (Dansgaard–Oeschger
events) where the signal varies by 3–4 mil, i.e. by as
much as the glacial/interglacial transition itself
(cf. Steffensen et al., 2008); some changes are claimed
to be as much as 2–4 K in one year). Due to their
hyperbolic probability tails, these abrupt changes are

expected in scaling processes (see Fig. 5.21). To con-
sider longer periods we can turn to Fig. 11.12 from
the Antarctic Vostok core. From this, we see that the
signal is pseudo-periodic, i.e. with a broad spectral
maximum with a period of about 100 kyr.

With these caveats concerning the variable-
resolution chronologies, we can move on to studying
the spectra themselves. Fig. 11.13a shows the GRIP
high-resolution spectrum over the last 91 kyr, “com-
pensated” by dividing by ω�1.4 so that a E(ω) � ω

�1.4
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Fig. 11.11 GRIP (summit) high-resolution
d18O series (in parts per thousand) for the last
91 kyr (time axis ¼ kyr before present, which is
the origin). The sharp spikes are “Dansgaard
events” (often called “Dansgaard–Oeschger
events”): although of decadal scale, they
can be comparable in magnitude to the
glacial/interglacial variation in temperature.
See Fig. 5.21 for the probability distribution of
changes: these events roughly correspond to
the hyperbolic tail of the distribution (see
Box 11.3) A temperature scale is indicated using
a 0.5 K/mil calibration. Data courtesy of
P. Ditlevsen, University of Copenhagen.
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Fig. 11.12 Vostok paleotemperature
reconstruction from dD measurements
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(time axis ¼ kyr before present). See Fig. 5.21
for probabilities.
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form would appear as a horizontal line. Starting at the
highest frequencies (about (10 years)–1 in this case), we
see that down to ω � (300 years)–1, the spectrum rises
above the line corresponding roughly to a ω

�0.2

scaling form. From (300 years)–1 to about (10 kyr)–1

the spectrum follows roughly the ω
�1.4 form (as

pointed out by Schmitt et al., 1995, for a lower-

resolution GRIP spectrum using a somewhat earlier
chronology; see Table 11.4 for similar spectral esti-
mates and Fig. 1.9a for an uncompensated graph).
Interestingly, for the slightly longer periods corres-
ponding to the three main astronomical (Milankovitch,
1941) forcings at 19, 23 kyr (precessional) and 41 kyr
(obliquity), we see that the signal retreats below the
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Fig. 11.13 (a) GRIP high-resolution
power spectrum compensated by ω1.4.
The slope of the black line is þ1.2,
corresponding to βmw ¼ 0.2; the
arrows show the principal
astronomical (Milankovitch) forcing
frequencies (19, 23 kyr are the centres
of the two precessional bands, 41 kyr is
the centre of the obliquity band). Note
that these cycles are a bit below the
background (indicated by the dashed
line). (b) The power spectrum of the
Vostok paleotemperature series
interpolated to 50 years and
compensated by ω1.7, with arrows
showing the principal astronomical
(Milankovitch) forcing frequencies. In
this case they are a little above the
background (dashed) line.
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background. These are the main periodicities in the
top of the atmosphere solar forcing. This 91 kyr series
is clearly too short to obtain good estimates of the
spectrum at theses frequencies; we can therefore turn
to Fig. 11.13b from the Vostok core. Here, the com-
pensation is by ω

�1.7, which does a fairly good job at
flattening the spectrum. The main exceptions are: (a) at
the high frequencies, which are polluted by the reso-
lution issues discussed above (the mean Vostok reso-
lution over the entire length is � 127 years, but the
oldest sections have resolutions of about 400 years: see
Fig. 11.14); and (b) at the low frequencies, which have a
genuine fall-off below about (100 kyr)–1 as confirmed

for example by longer ocean-core paleo series, which
can go back more than 1000 kyr. The difference in
exponents (β � 1.7 rather than 1.4) may be a conse-
quence of the greatly changing altitude of the GRIP ice
sheet surface as the glacials/interglacials came and
went.

In the compensated Vostok spectrum, we see that
the astronomical cycles are indeed visible – but only
barely – above the scaling “background.” We also see
evidence for the much weaker earth orbit eccentricity
fluctuations with characteristic frequency of about
(100 kyr)–1, but again this is barely visible above the
background; see Section 11.3.1 for a discussion

Table 11.4 A comparison of various estimates of the spectral exponents βc of the climate regime and series lengths and resolutions. The
last four rows are for the (anomalous) Holocene only (see Section 11.1.2, Fig. 11.2, and Section 11.3 for GCMs).

Series Authors Series length (kyr) Resolution

(yr)

βc

Composite ice cores, instrumental Lovejoy and Schertzer, 1986 Composite: minutes

to 106 years

1000 1.8

δ 18O from GRIP, Greenland Schmitt et al., 1995 123 200 1.4

δ18O from GRIP, Greenland Ditlevsen et al., 1996 91 5 1.6

Composite, Vostok, Antarctica

(ice core, instrumental)

Pelletier, 1998 10�5 to 1000 0.1 to 500 2

δ18O from GRIP, Greenland Wunsch, 2003 100 100 1.8

Planktonic d18O ODP677,

Panama basin

Wunsch, 2003 1000 300 2.3

CO2, Vostok, Antarctica Wunsch, 2003 420 300 1.5

δ18O from GISP, Greenland Ashkenazy et al., 2003 110 100 1.3

δ18O from GRIP, Greenland Ashkenazy et al., 2003 225 100 1.4

δ18O from Taylor, Antarctica Ashkenazy et al., 2003 103 100 1.8

δ18O from Vostok Ashkenazy et al., 2003 420 100 2.1

Composite, mid-latitude Huybers and Curry, 2006 10�4 to 1000 0.1 to 103 1.6

Composite tropics Huybers and Curry, 2006 10�4 to 1000 0.1 to 103 1.3

δ18O from GRIP, Greenland This book 91 5 1.4

δ18O from Vostok, Antarctica This book 420 300 1.7

δ18O from GRIP, Greenland Blender et al., 2006 3 3 0.4

δ18O from GISP2, Greenland Blender et al., 2006 3 3 0.7

δ18O from GRIP, Greenland

(last 10 kyr only)

This book 10 5 0.2

Paleo-SST near Greenland

(last 11 kyr only)

Berner et al., 2008, analysed in

this book

10.6 40 1.4

11.2 Scaling up to 100 kyr

399



of these anomalies in the Milankovitch theory. The
predominance of this background was noted from the
1980s onwards. The case for their relative dynamical
insignificance was particularly strongly made by
Wunsch (2003), who performed scaling analyses of
various paleo spectra, and who specifically attempted
to determine the portion of the variance which
could be accounted for by spectral bands near the
three main Milankovitch frequencies. He concluded
that even with a liberal account of these bands, they
represent no more than 10% of the total. Wunsch
went on to propose various (nonscaling) Markov
processes as models of the temperature. Certainly,
the compensated spectra support the view that while
traces of astronomical forcings are indeed discernible,
they are barely so, and in any case it is not obvious
how they could explain the key features, which are
(a) the variance-containing scaling “backgrounds”
and (b) the fairly broad, not narrow (100 kyr)–1

maximum. The basic picture has now been supported
by several empirical studies (see Table 11.4 for a
summary). Athough it is natural to suppose that
the background is associated with nonlinear internal
climate variability, the more usual assumption is that
it is on the contrary due to external climate forcings
(see Section 11.3.1 for further discussion).

Of course, in principle, even very narrow band
forcing could lead to a broad turbulent-like spectrum:
this is indeed the standard paradigm for isotropic
turbulence that we discussed in Chapter 2. However,
just as in the atmosphere, where the actual solar forcing
is modulated by cloud cover and other scaling pro-
cesses resulting in a forcing with wide-range scaling,
so we expect that narrow-band forcing is also an
unrealistic idealization; in Section 11.3.1, this is con-
firmed for solar and volcanic forcings. In any event, no
matter what the forcing, the fact that the background is
scaling and dominates any narrow-band contributions
as described above underlines the importance of this
presumably internal scaling variability.

Finally, we could mention another scaling analysis
technique which has been applied to various climate
and paleoclimate series: the rescaled range technique
(Mandelbrot and Wallis, 1969). While this method
may have certain advantages over traditional second-
order structure function (variance) analysis, for multi-
fractals its relationship to the usual exponents (ξ(q),
K(q)) is still unclear. Therefore, while the analyses
of Bodri (1994) and King (2005) confirm the scaling
of a variety of series over various scale ranges, their

exponents could not be directly compared with those
discussed here.

11.2.2 The multiple scaling regime
model: an empirical composite of temporal
temperature variability from seconds
to 100 kyr
To clarify our ideas about the variability, it is useful to
combine data over huge ranges of scale into a single
composite analysis (such as the spectra shown in
Fig. 1.9c). In this section we discuss the variability
only in the time domain; in Section 11.2.4 we extend
this to space-time.

The best-known – and apparently the first – attempt
to produce a wide-scale-range picture of atmospheric
variability was that by Mitchell (1976). He produced
what is still the most ambitious single composite spec-
trum of atmospheric variability to date: it ranged from
hours to the age of the earth (� 10�4 to 1010 years).
Given the rudimentary quality of the data at that
time, he admitted that his composite was mostly an
“educated guess.” In order to accommodate the wide
range of scales it was “necessary to resort to logarith-
mic coordinates”; however, there was no implication
that any of the underlying physical processes might be
scaling. In Mitchell’s classical framework, in addition
to several periodic processes (many of which have
since fallen from favour), over a succession of fairly
narrow scale ranges, the climate was dominated by
numerous distinct physical processes. These were each
considered to be stochastic with fixed time constants.
He explained his idea as follows:

As we scan the spectrum from the short-wave end
toward the longer wave regions, at each point where
we pass through a region of the spectrum corresponding
to the time constant of a process that adds variance to
the climate, the amplitude of the spectrum increases
by a constant increment across all substantially longer
wavelengths. In other words, each stochastic process
adds a shelf to the spectrum at an appropriate
wavelength. (Mitchell, 1976)

The mathematical model that Mitchell presumably
had in mind was thus a hierarchy of Ornstein–
Uhlenbeck processes yielding “shelves,” not scaling
processes (see Appendix 10C).

The first attempt at constructing a composite
model based on scaling symmetries was Lovejoy and

400

The climate



Schertzer (1984, 1986), whose analyses clarified the
following points: (a) the distinction between the vari-
ability of regional- and global-scale temperatures,
with the latter having particularly long scaling

regimes; (b) that there was a scaling range for global
averages between scales of about 3 years (τc in the
notation here) and 40–50 kyr with an exponent bc �
1.8; (c) that a scaling regime with this exponent could

Box 11.2 Emergent laws and global climate change: natural variability, climate forecasting, anthropogenic
warming and model structural uncertainty

Thanks to its social, economic and political implications, the term “climate change” has increasingly become
synonymous with anthropogenic causation, with legislators regularly passing laws to “prevent climate change.”
Even in scientific discourse, there is a regrettable tendency to forget that the climate has been changing for billions
of years, that irrespective of the fate of our species, it will continue to change.

The idea that the natural state of the climate is unchanging is an unfortunate conceptual side effect of the
dominant deterministic atmospheric paradigm. We have seen that out to millennia – and presumably out to their
long time limits – GCM outputs remain nontrivially variable (scaling). However, at least their control run variability is
of the weak macroweather type (Fig. 1.9d, Section 11.4) so that fluctuations tend to cancel out, diminishing with
scale (H < 0), yielding the appearance of unchanging stability. As we move to scales beyond a few years (the outer
limit of the H > 0 “ocean weather” regime associated notably with the El Niño phenomenon) and notwithstanding
possible quasi-periodic multidecadal, centennial and even millennial oscillations (e.g. Mann et al. 1995; Isono et al.,
2009), changes are increasingly attributed to external “climate forcings” rather than to internal nonlinear variability.
This is because, for GCMs, the climate is essentially a boundary value problem (Bryson, 1997) whereas the
boundaries are in fact part of a coupled slow dynamics (Pielke, 1998).

Yet the need to properly understand the natural variability is becoming urgent. This is because in principle
predictions of anthropogenic warming must be verified via rigorous statistical testing of the observations against
the null hypothesis. This means that we must make a specific hypothesis about the probability that the atmosphere
would naturally behave in the way that is observed. Only if the probability is low enough should we reject the
hypothesis that the observed changes are natural in origin. In addition, the systematic comparison of model and
natural variability in the preindustrial era is the best way to fully address the issue of “model structural uncertainty,”
to be sure that the models are not missing important slow processes (see Section 11.4).

The current lack of such statistical testing is the nugget of legitimate criticism often inarticulately expressed by
many of the “climate sceptics” when they refer to the need for “empirically based approaches” or hold up events such
as “medieval warming” as evidence that the current warming is of natural origin. Of course, the main response to this
scepticism has been to argue (a) that the warming is so strong and evident that it could not be natural (i.e. that
statistical hypothesis testing is superfluous), and (b) that the model warming predictions are robust (i.e. “certain”
enough to be trusted – even though the quantification of the degree of certainty is itself a model product). While we
agree with the first point, this does not obviate the need for testing, and even without GCMs, the second can be at
least be plausibly argued on physical grounds using simplified greenhouse arguments going back to Arrhenius (1896).

A consequence is a malaise in the community that was embarrassingly exposed in the “climategate” burglary.
Even if we agree that there is warming and that we are its cause, there is the uneasy feeling that the scientific issues
are not completely settled. Both within the scientific community and in scientists’ public pronouncements, the
failure to satisfactorily address the issue of natural variability has constant repercussions. How to explain that the
earth can sometimes have prolonged periods of cooling in the midst of anthropogenic warming? Was this winter’s
record mild temperature evidence for anthropogenic influence – or was it simply a natural occurrence? What should
we tell the press about yesterday’s catastrophic flood?

As should by now be clear, the theme of this book – emergent stochastic laws – could provide precisely the tools
needed to address this issue. In the absence of anthropogenic influences the natural variability is identified with the
dynamics, it is directly statistically quantified, climate is not reduced to a boundary value problem. The variability is
characterized either by probability distributions or by statistical moments, and these are specified as functions of the
space-time scale. In principle, this can be used to perform stochastic climate forecasts. Compared with the relatively
massive (albeit inadequate) societal investment in deterministic approaches, the research effort into natural
variability has been small, yet it could settle the issue of climate change in a scientifically more satisfactory manner.
And we would know with confidence whether anthropogenic effects are worse – or better – than they are currently
believed to be.

11.2 Scaling up to 100 kyr
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Box 11.3 The variable resolution of paleotemperatures and its implications

In Fig. 11.12 we showed the Vostok deuterium proxy at a fixed depth resolution of 1 m. Moving from left to right one
can clearly see the effect of the reduced temporal resolution: the curve becomes progressively smoother. This is an
artefact of the compression of the ice column; in this case, the publicly available data shown were taken at 1 m
intervals and the age of each was dated by the nontrivial techniques mentioned above. Interestingly, analysis of the
d18O or D anomaly as a function of depth (rather than time) gives a series with statistical characteristics (i.e. H, C1, a)
which are more or less independent of depth.

In order to see how important this resolution effect is, we can turn to Fig. 11.14, which shows the temporal
resolution Δt (as determined by the official chronology) as a function of the age of the sample. We have included the
publicly available GRIP data at constant 55 cm depth resolution (from which the GRIP high-resolution data were
obtained by subsampling). From the figure we see that the resolutions vary over several orders of magnitude yet in a
highly intermittent manner. This type of variability is reminiscent of that of the dropsondes (Chapter 6). In fact, spectral
analysis shows that the resolution function Δt(z) ¼ t(zþΔz) – t(z) (where z is the depth, Δz is the depth increment) is
itself roughly scaling (with spectral exponents β� 1 (GRIP55) and β� 2 (Vostok)). In addition – as with the dropsondes –
the resolution is highly intermittent, being roughly multifractal with C1 � 0.07, 0.03 respectively (Fig. 11.15).
A significant difference from the dropsonde case is that the resolution decreases relatively monotonically with depth.

In order to study the effect of variable resolutions, we performed multifractal simulations of the effect of this
intermittent resolution variability; we conclude that the main consequence is that the intermittency of the series is
increased: C1 by about 0.02–0.04. As concerns the spectrum, if the series are interpolated, then there is not much
bias unless we go to scales directly affected by the poor resolution (although it is important to use linear, not higher-
order interpolation techniques). Our conclusion is that overall, for scales smaller than roughly twice the mean
resolution, we get artificially low spectral densities corresponding to the overly smoothed series. There have been
several other attempts to take the variable paleoclimate resolutions into account. For example, Witt and Schumann
(2005) used wavelets, Davidsen and Griffin (2010) used (monofractal) fractional Brownian Motion as a model, and
Karimova et al. (2007) used (mono)fractal interpolation. However, if we consider the extremes, then the effect of the
interpolation is important. The problem is the treatment of the abrupt transitions (e.g. the Dansgaard–Oeschger
events in Fig. 11.11). In the uninterpolated series (isotope ratios as functions of depth), these are associated with
“fat” power-law probability tails (Fig. 5.21). However, the interpolation and uniform resampling in time may smooth
out these abrupt changes enough so as to replace the fat tails by “long tails,” i.e. roughly lognormal, log-Lévy tails,
but still extreme compared to classical (exponential) “thin tails.” From our viewpoint, the abrupt transitions in the
climate record are prima facie evidence for the prevalence of fat-tailed fluctuation distributions in climate records.

Other proxy data can also be used to get a better idea of the climate variability: see Table 11.5 for more
examples.
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Fig. 11.14 A comparison of the resolutions as functions of age
using the published age models. The oldest parts of the cores are:
GRIP55: 247 618 yr BP, Vostok: 420 888 yr BP, GRIPhigh¼ 91 139 yr BP.
Δt¼ t(zþΔz) – t(z), where z is the depth at intervals of Δz¼ 0.55 m for
GRIP55 and 1 m for Vostok variable for GRIPhigh.
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Fig. 11.15 Trace moment analysis of the temporal resolution
dependence of the Vostok 1 m resolution core (length 3312 m).
The variable analysed is the sequence of inter-layer time intervals Δt.
The parameters are: C1 ¼ 0.026, α ¼ 2, the outer scale ¼ 4170 m.
Note that the scaling is reasonable for scales above � 10 m. Also
shown (thick curve) is the envelope of the q ¼ 2 quasi-Gaussian
processes (Appendix 4A); the data are quite far from this.
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Table 11.5 A comparison of scaling exponents and scales for various paleoclimate datasets. Unless otherwise stated, β is for the low frequencies and a, C1 for the high-frequency regimes.

Location Type of data Period

(kyr BP)

No. of

points

Resolution

(years)

βc
a

Η
b C1

c αc τeff (years)
c

GRIP high

resolution,

Greenlandd

δ18O 0–91 17551 5 1.38 � 0.22 0.20 � 0.12 0.079 � 0.01 1.85 � 0.16 380 � 180

GRIP 55cm,

Greenlande
δ18O 0–247 5426 45 1.46 � 0.33 0.24 � 0.17 0.13 � 0.06 1.81 � 0.04 2200 � 1500

NGRIPf δ18O 0–123 4918 50 1.4 0.21 0.095 1.85 2000

NGRIP, gas

bubblesg
Using δ15N, CH4 in bubbles

for reconstruction

30–80 1 1.5 _ 0.06 1.2 200

Renland,

Greenlandh
δ18O � 0–59 946 20 1.5 0.26 0.13 1.5 930

Vostok, Antarticai Paleotemperature (dD) 0–420 3312 125 1.71 � 0.25 0.37 � 0.13 0.075 � 0.024 1.82 � 0.15 3200 � 800

Dome C, Antarcticaj 100 kHz conductivity �0- 45 38419 1 0.6 -0.18 0.12 1.94 50

a The β’s are estimated over the range (250 years)–1 and lower, C1’s, α’s and τeff over (400 years)
�1 and higher. The only data with reliable β’s over this range are from the GRIP high-resolution set, which

yields βmw ¼ 0.55 � 0.32 from � 5 years to 400 years (using only last 50 kyr for reliable resolutions).
b The H’s are estimated from the low-frequency β’s (the previous column) using H ¼ ( β�1 þ K(2))/2, and K(2) is estimated from the C1 and α, also at low frequencies; these were all in range
0.01–0.02 and 1.9–2 respectively are not given in the table (the C1, α, Teff values are for the high-frequency range only). Using the high-frequency β estimate (see note a), with C1, α over the same range
we can estimate H ¼ –0.15 � 0.13.

c These are estimated from the high-frequency trace moment (cascade) analyses for time scales < 400 years.
d The Greenland Ice Core Project (GRIP) ice core at Summit. The dating (transforming a depth in the ice to an age) is done by annual layer counting in the top and ice-flow modelling
further down. The way the ice was processed is to cut it in 55 cm pieces ¼ “1 bag.” Then for the measurements it was cut into 1, 2, 4 or 8 pieces (more further down) in order to get an approximately
even temporal resolution down through the core. This record dates back 91 kyr, which is not all the way to the bottom, but the part below this point is now known to be corrupted. We thank
P. Ditlevsen, University of Copenhagen, for kindly supplying this dataset; this is the same data he analyzed in Ditlevsen et al., 1996 (see also Ditlevsen, 2004). The β, H exponent estimates are
from the eight older 10 kyr sections since the most recent had anomalously low values (Fig. 11.2). The uncertainties are the spreads (one standard deviation).

e From the Centre for Ice and Climate, University of Copenhagen: http://www.gfy.ku.dk/~www-glac/data/grip18o.txt. This dataset contains 55 cm average δ18O values from the GRIP core
on the ss09 time scale. The exponent estimates are from 15 sections of 10 kyr; the uncertainties are the spreads (one standard deviation). Data provided by NCAR/EOL under sponsorship of the National
Science Foundation from http://data.eol.ucar.edu/cgi-bin/codiac/fgr_form/id=106.ARCSS008 (see Dansgaard et al., 1989, 1993; Greenland Ice Core Project, 1993; Grootes et al.,
1993; Johnsen et al. 1997). Deuterium measurements have been performed on three adjacent cores, 3G, 4G and 5G (see Jouzel et al., 1997). Temperature differences with respect to the mean recent
time value (i.e. corresponding departure from the mean deuterium value) were used.

f These data were available interpolated to 50-year resolution from the IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2004–059. NOAA/NGDC Paleoclimatology
Program, Boulder, CO, USA. Located at 75.10� N and 42.32� W, elevation of 2917 m, ice thickness of 3085 m. The NGRIP drilling started in 1996, and bedrock was reached in July 2003 (see
North Greenland Ice Core Project, 2004).

g Based on trapped gas reconstruction of temperatures: www.ncdc.noaa.gov/paleo/icecore/greenland/ngrip/ngrip-data.htm (Huber et al., 2006). The North Greenland Ice Core Project
(NGRIP) site is located at 75.10� N and 42.32� W, elevation of 2917 m, ice thickness of 3085 m. Data from the Centre for Ice and Climate, University of Copenhagen: www.gfy.ku.dk/~www-glac/data/
grip18o.txt. The resolution is nominally 1 year but the spectrum has a strong scale break at about (200 years)–1 where β increases from 1.5 to about 4, which is much too small. On
the other hand, the cascade outer scale is about the same scale so the β and cascade parameters (C1, a) were estimated over different ranges; hence no H estimate is given.

h Data from the University of Copenhagen:: www.gfy.ku.dk/~www-glac/data/grip18o.txt (see Vinther et al., 2008; Johnsen et al., 1992).
i Vostok: data available from the National Climatic Data Center: hurricane.ncdc.noaa.gov/pls/paleo/ftpsearch.icecore. The exponent estimates are from 15 sections of 10 kyr, the uncertainties are the
spreads (one standard deviation) (see Petit et al., 1999).

j The Dome C cores are from Antarctica and cover the period 45–0 kyr BP. The conductivity data are from 100 kHz dielectric profiling measurements from the EDC96 EPICA Dome C core at 2 cm
resolution. From NOAA Paleoclimatology Program and World Data Center for Paleoclimatology, Boulder, CO: hurricane.ncdc.noaa.gov/pls/paleo/ftpsearch.icecore (see Wolff et al., 1999).



potentially quantitatively explain the magnitudes of
the temperature swings between interglacials: the
“interglacial window.”

Similar scaling composites but in Fourier space
were proposed by Pelletier (1998) and, more recently,
by Huybers and Curry (2006), who made a more
data-intensive study of the scaling of many different
types of paleotemperatures collectively spanning
the range of about 1 month to nearly 106 years
(Table 11.6). The results are qualitatively very similar,
including the positions of the scale breaks; the main
innovations are (a) the increased precision on the β

estimates and (b) the basic distinction made between
continental and oceanic spectra including their
exponents. We could also mention the composite of
Fraedrich et al. (2009), which is a modest adaptation
of that of Mitchell (1976), innovating by introducing
a single scaling regime spanning the two orders of
magnitude from � 3 to � 100 years (with β � 0.3),
although surprisingly exhibiting a decrease (rather
than an increase) in variability at frequencies lower
than this.

Fig. 11.16a shows an updated composite where
we have combined the 20CR reanalysis spectra (both
local, single grid point and global) with the GRIP
55 cm and GRIP high-resolution spectra (both for
the last 10 kyr and averaged over the last 90 kyr), the
three surface global temperature series and the mean
post-2003 multiproxies. For reference, we have also
included the 500-year control run of the Institut
Pierre Simon Laplace (IPSL) GCM used in the IPCC
AR4 (Solomon et al., 2007) (using fixed external
forcing at preindustrial greenhouse gas levels),
which is discussed in Section 11.3.2. In Fig. 11.16a
we used difference structure functions so that the

interpretation is particularly simple, although a con-
sequence is that all the logarithmic slopes are > 0.
We therefore also give the corresponding Haar
structure function analysis, which gives correct
exponent estimates over the whole range (Fig.
11.16b and below).

Key points to note in Fig. 11.16a are (a) the use of
annually averaged instrumental data, and (b) the dis-
tinction made between globally and locally averaged
quantities. Also shown is the “glacial/interglacial
window,” which is a rough delineation of the time
scales and amplitudes of the interglacials (Δt is the
half quasi-period, and for a white noise, S is double
the amplitude). The calibration of the paleotempera-
tures is thus constrained so that it goes through the
window at large Δt but joins up to the local instru-
mental S(Δt) at small Δt (see the discussion around
Fig. 11.10). Interestingly, we see that the local month-
to-month temperature variations are of about the
same order as the mean temperature variations
between glacials and interglacials.

In addition, as discussed in Section 11.1.2, since
the last 10 kyr GRIP fluctuations are anomalously
low (in Fig. 11.16a see the nearly flat Holocene curve,
compared with the full 91 kyr curve), the calibration
must be based on this flatter S(Δt). Starting at τc �
10 years, one can plausibly extrapolate the global S
(Δt)’s using H ¼ 0.4 (β � 1.8), all the way to the
interglacial window (with nearly an identical S as in
Lovejoy and Schertzer, 1986), although the northern
hemisphere multiproxy series do not extrapolate
quite as well, possibly because of their higher
intermittency (see Section 11.2.3). The local tem-
peratures extrapolate (starting at τc � 20 years) with
a lower exponent corresponding to β � 1.4, which is

Table 11.6 Comparison of macroweather (βmw) and climate (βc) exponents and transition scales from various instrumental/paleo
composite statistical analyses. The large τc values in the top two rows are from data north of 30� N and are probably anomalously large
(see below).

βmw βc Local τc global τc

Lovejoy and Schertzer, 1986 < 1 (central England) 1.8 (poles) � 400 years � 5 years

Pelletier, 1998 0.5 (continental

North America)

1.7 (Antarctica) � 300 years _

Huybers and Curry, 2006

(tropical sea surface)

0.56 � 0.08 (NCEP

reanalysis)

1.29 � 0.13 (several different

paleotemperatures)

�100 years _

Huybers and Curry, 2006

(high-latitude continental)

0.37 � 0.05 (NCEP

reanalysis)

1.64 � 0.04 (several different

paleotemperatures)

� 100 years _

The climate

404



close to the other Greenland paleotemperature
exponents (Table 11.4), presumably reflecting the
fact that the Antarctic temperatures are better surro-
gates for global rather than local temperatures; these
exponents are all averages over spectra of series of
� 100 kyr or more in length.

Although the Haar structure function composite
(Fig. 11.16b) tells essentially the same story, we
have extended the overall scale range of the

composite by including daily-resolution 20CR data.
In addition, because of its ability to capture the
statistics of fluctuations over a wider range of
H exponents, we can clearly see the transition
scales and can even glimpse the beginning of a low-
frequency climate regime with Hlc < 0 at scales
beyond τc � 100 kyr. (Note added in proof: analysis
of the 800 kyr EPICA Antarctic series shows
Hlc 	 �0.8.)
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Fig. 11.16 (a) Comparison of the RMS
structure function S(Δt) of the high-resolution
(5.2-year) GRIP, IPSL, 20CR mean surface series,
mean of the three post-2003 Northern
hemisphere reconstructions for globally
averaged temperatures (bottom left set) and
the mean at Greenland latitudes (upper set), all
using fluctuations defined as differences (poor
man’s wavelet) so that the vertical scale directly
indicates typical changes in temperature. In
addition, the GRIP data are divided into two
groups: the Holocene (taken as the last 10 kyr,
lower) and the entire 91 kyr of the high-
resolution GRIP series (upper). The GRIP
δ18O data have been calibrated by lining up
the Holocene structure function with the
mean 75� N 20CR reanalysis structure function
(corresponding to � 0.65 K/mil). When this is
done, the 20CR and surface mean global
structure functions can be extrapolated with
exponent H � 0.4 (see the corresponding line)
to the “interglacial window” (box at top right)
corresponding to half pseudo-periods between
30 and 50 kyr with variations (¼� S/2) between
� 2 and� 3 K. This line corresponds to spectral
exponents β ¼ 1.8 (this is exactly the same line
as proposed in Lovejoy and Schertzer, 1986).
Finally, we show a line with slope ξ(2)/2 ¼ 0.2
corresponding to the GRIP β ¼ 1.4; we can
see that extrapolating it to 50 kyr explains
the local temperature spectra quite well.
(b) The equivalent of Fig. 11.16a except for the
RMSHaar structure function rather than the RMS
difference structure function and including
daily-resolution 20CR data (see Fig. 11.17a for
the first-order Haar structure function). At the
left top we show grid-point-scale (2� � 2�)
daily-scale fluctuations for both 75� N and
globally averaged along with reference slope
ξ(2)/2¼ –0.4� H (20CR, 700 mb). On the lower
left, we see, at daily resolution, the
corresponding globally averaged structure
function. Also shown are the average of the
three in-situ surface series (Fig. 10.12) as well as
the post-2003 multiproxy structure function
(Fig. 11.9). At the right we show both the GRIP
(55 cm resolution, with calibration constant
0.5 K/mil) and the Vostok paleotemperature
series. Also shown is the interglacial “window.”
All reproduced from Lovejoy and Schertzer
(2012a).
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11.2.3 Revisiting temporal multifractal
climate intermittency
Up until now we have focused on either the spectrum
or its real-space equivalent, the RMS fluctuations,
although occasionally we have considered the (pre-
dicted) power-law tails of probability distributions of

extreme fluctuations (e.g. Fig. 5.21), although these
may be artificially biased by interpolation or other
data-processing artefacts. Of course, if the climate
process was quasi-Gaussian, then K(q) ¼ 0, ξ(q) ¼
qH and the exponent ξ(2) ¼ 2H ¼ β – 1 would be
sufficient for a complete characterization of the stat-
istics. However, after the introduction of each new

2

–0.5

0.5

20CR grid

Scale, all globe

20CR 75N 

grid scale

(a)

Surface

NH

GRIP

Vostok

0.4

–0.4

–0.5

–0.1

105104

102

10–2

Log10∆t (yrs)

Log10∆T(K)

±2K

±3K
5K

0.1 K

20CR global 

scale

0.4

(b)

Fig. 11.17 (a) A composite showing (calibrated)
Haar structure functions for both the mean
fluctuation (logarithmic slope ξ(1), bottom of
each pair) and the RMS fluctuation (logarithmic
slope ξ(2)/2, top of each pair). On the left we use
the 20CR daily data at one-grid-point resolution
averaged over the longitudes at 75� N (top left),
averaged over all longitudes and over the globe
(bottom left). In the middle, the mean of the
three surface series from Fig. 10.12 and Appendix
10C; at the bottom, the post-2003 northern
hemisphere (NH) reconstructions, and right, the
GRIP 5.2-year resolution series (dashed) back to
91 kyr and the Vostok series, interpolated to
50 years, back to 420 kyr. Solid reference slopes
–0.4, –0.1, 0.4 correspond (ignoring
intermittency) to β ¼ 0.2, 0.8, 1.8 respectively.
Also shown is a dashed reference slope
–0.5 corresponding to Gaussian white noise. The
tendency for the mean and RMS curves to
converge is due to intermittency, the rate of
convergence has exponent ¼ K(2)/2 � C1; see
below. The box indicates the “glacial/interglacial
window” discussed earlier. (b) The same data as
in Fig. 11.17a: this figure attempts to isolate the
intermittency near the mean by estimating the
function F ¼ hΔTiðhΔT 1�Δqi=hΔT 1�ΔqiÞ1=ð2ΔqÞ

with Δq ¼ 0.1: in the small Δq limit, F � ΔtC1.
This exploits the relation Kʹ(1) ¼ C1 ¼ ξ(1) – ξ’(1),
see Eqn. (10.11). Reference lines with slopes 0.03
(left pair) and 0.065 (right pair) are shown. Note
the relatively low intermittency (roughly flat)
lines associated with the surface global average
temperatures and the 75� N 20CR series.
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dataset we have systematically presented flux-based
analyses of the intermittency and we have seen that
generally K(q) > 0 for q>1 for a conservative flux so
that the choice of q ¼ 2 is somewhat subjective.

A drawback of these flux analyses for characteriz-
ing intermittency is that it is hard to get an overall
wide-scale-range picture: each dataset is used to esti-
mate fluxes at its smallest scale, so that in each scaling
regime, the fluxes are physically distinct; one cannot
just superpose trace moment analyses from different
datasets at widely different resolutions. Another conse-
quence of using fluxes (and hence the cascade param-
eters and outer scale) is that they are estimated at the
smallest scales and can be unduly influenced by noise in
the data. This is particularly problematic for proxy data.

It is therefore of interest to develop complementary
ways to quantify the intermittency by directly using the
fluctuations – e.g. via the Haar structure functions.
A straightforward way to quantitatively gauge the
importance of the intermittency is to compare
the RMS and q ¼ 1 moments: hDT2i1=2 compared to
hDTi. In Fig. 11.17a we present the results for many
of the series discussed earlier. Since (hDT2i1=2=
hDTiÞ � Dtξð2Þ=2�ξð1Þ ¼ Dt�Kð2Þ=2 and K(2) > 0, we
see that for each pair of curves there is indeed a
tendency for them to converge as Δt increases.

In order to quantify this in a theoretically more
satisfactory way, we can directly construct a function F
� ΔtC1 where C1¼ Kʹ(1) is the exponent characterizing
the multifractality/intermittency near the mean (q¼ 1):

F ¼ hDTiðhDT1�Dqi=hDT1þDqiÞ1=ð2DqÞ ð11:4Þ

In the small Δq limit and assuming k(1)¼0, it is easy
to see that F � ΔtC1 (here we numerically use Δq ¼
0.1); see Fig. 11.7b. Note that if a ¼ 2, then we have K
(2)/2 ¼ C1 (see Eqn. (3.46)); here, with a somewhat
smaller a, this is still approximately true. Since C1 is
small – roughly in the range 0 to 0.065 – we see that
the curves are very “noisy”: we need very good statis-
tics to clearly discern the relatively small variations in
F. From Fig. 11.17b several points can be made. First,
the behaviours tend to be qualitatively different
in the three different regimes, although there are
exceptions – the 20CR one-grid-point resolution
globally averaged data seem to have a constant inter-
mittency exponent straddling the weather/macro-
weather boundary. Second, at a 2� � 2� scale, the
fluctuations averaged over 75� N are larger in ampli-
tude (Fig. 11.17a) but are less intermittent than the
corresponding globally averaged fluctuations. Third,
the post-2003 northern hemisphere reconstructions
are much more intermittent than the global surface
series. Fourth, the paleotemperatures are quite inter-
mittent (C1 � 0.065; close to the value obtained by
Schmitt et al., 1995, for the low resolution GRIP
core). Fifth, the 20CR 75� N and surface series have
very low slopes (C1) over most of their ranges, giving
some justification for quasi-Gaussian treatments.

For a more complete characterization of the
intermittency, we can estimate the second derivative
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Fig. 11.17 (c) Same as Figs. 11.17a, 11.17b but
for a function G whose exponent is the second
derivative –ξ´´(1) ¼ K´´(1):
G ¼ ðhΔT 1þ2ΔqihΔT 1�2Δqi= hΔTi2Þ�1=ð2ΔqÞ2

, in
the small Δq limit, G � ΔtK´´(1) so that the
logarithmic slope of G is an estimate of K´´(1);
here we took Δq ¼ 0.1. Using Eqn. (3.28), we
can use this to obtain α ¼ K´´(1)/C1, using the
C1 from the exponents estimated in Fig. 11.17b.
Reference lines with slopes 0.045 (left pair) and
0.08 (right pair) are shown, corresponding to
α ¼ 1.25, 1.5 respectively. Note the relatively
low intermittency (roughly flat) lines associated
with the surface global average temperatures
and the 75� N 20CR series.
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ξ´´(1) ¼ –K´´(1) (Eqn. (10.12)), which can be used to
determine a¼ K´´(1)/C1 (from Eqn. (3.28)). By analogy
with the estimate ofC1, we can determine the functionG
(Fig. 11.17c), whose exponent is K´´(1). From Fig.
11.17c we obtain a very similar graph to Fig. 11.17b –

this is exactly as expected for universal multifractals: the
ratio of the absolute slopes is simply a. Doing this, we
obtain a ¼ 1.5, 1.25 (respectively for the macroweather
and climate regimes). The latter may be compared with
the estimate a � 1.6 for GRIP (low resolution) in
Schmitt et al. (1995).

11.2.4 Space-time temperature
variability in the climate regime and
a theoretical composite
In Chapter 10, we saw that the pure weather/macro-
weather model does a very good job at predicting the
temporal statistics up to scale � τc. However, we
pointed out that its macroweather prediction of spatial
homogeneity is completely unrealistic, being contra-
dicted by the strong spatial heterogeneity associated
with climatic zones. We were therefore led – if only in

Box 11.4 Paleocascades

If the paleodata are scaling, then we may anticipate that they will display corresponding cascade structures; we have
already shown this for part of the high-resolution GRIP core in Fig. 11.3, although the intermittency was not much
stronger than that of quasi-Gaussian processes. In Fig. 11.18 we compare the trace moments from four series using a
common length (90 kyr) and common resolution (50 years). Along with the GRIP high-resolution and Vostok data
discussed above, we also show the analysis of the publicly available GRIP 55 cm data and an analysis of the publicly
available series from the North GRIP core which was finished in 2003 and which has a more stable chronology
(North Greenland Ice Core Project, 2004). From the figure we see that there is evidence for cascade structures with
outer scales � 1–2 kyr; the scaling is reasonably good for periods smaller than about 300 years, which is roughly the
scale corresponding to the change in the spectrum (Fig. 11.13a) from βc � 1.4 to βmw � 0.2. The detailed cascade
parameter estimates are given in Table 11.2. It can be seen that the key parameter estimates (C1, a) are fairly stable
(with C1 � 0.11, a � 1.7), the main variation being in the outer scales, which are seen to be sensitive to the
resolution (cf. the difference between GRIP high and GRIP 55 cm).
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Fig. 11.18 The four
paleotemperature datasets
transformed by interpolation (or,
for the GRIP high-resolution
series, by averaging) to 50-year
resolutions: the most recent 90
kyr only. The superposed thick
curves are the envelopes of the
trace moments of the quasi-
Gaussian processes as discussed
in Appendix 4A. It can be seen
that with the possible exception
of the GRIP high-resolution (5.2-
year) data, the data are not close
to being quasi-Gaussian.
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order to understand the macroweather regime – to
introduce a lower-frequency space-time climate pro-
cess, the (multifractal) ecð�r, tÞ. We hypothesized that
this process had strong spatial variability and was
multiplicatively linked with the weather/macroweather
(“w,mw”) process ew,mwð�r, tÞ so that the entire
weather/climate (“w,c”) process could be written:

ew, cð�r, tÞ ¼ ew,mwð�r, tÞecð�r, tÞ � ewð�r, tÞemwðtÞecð�r, tÞ

ð11:5Þ

where we have used the decomposition (Eqn. (10.4))
on the far right (the various factors in Eqn. (11.5) are
appropriately band-limited in the frequency domain).
Using space-time spectra and spatial trace moments,
we showed empirically that this equation was reason-
ably compatible with 20CR temperature reanalyses,
including the additional hypothesis that ecð�r, tÞ is
statistically independent of the other factors. Using
the fact that emwðtÞ is quasi-Gaussian and assuming
that ecð�r, tÞ is multifractal, we estimated the horizon-
tal climate exponents Hc � 0.7, C1,c � 0.11, ac � 1.75.
This successfully predicted the form of the joint
space-time fluctuations in the macroweather regime
(Section 10.3).

Thanks to the temporal analysis of the climate
spectra and structure functions in Section 11.2.2, we
now have an estimate of the temporal climate fluctu-
ation exponent Hc,τ � 0.4 (Fig. 11.16b), and thanks to
the intermittency analysis in Section 11.2.3 we have
an estimate of the temporal intermittency exponents:
C1c,τ � 0.065, ac,τ � 1.5 (Figs. 11.17a, 11.17b).
We thus have enough data to give a rough but full
(horizontal) space-time statistical description of the
atmosphere including the climate regime. Since we
have evidence that the climate process is multifractal
in time and also in space, the main remaining
assumption concerns its nature. Is it a true space-
time scaling process analogous to the weather pro-
cess, or is it more like the macroweather process with
statistically independent spatial and temporal factors?
On the basis of admittedly little theoretical or empir-
ical information, we hypothesize that the former is
the correct model, i.e. that the climate is a genuine
space-time process with corresponding space-time
scale function. With this assumption, we obtain the
bottom line of the following set of equations
governing atmospheric variability:

Sq,wðDr ,DtÞ ¼ ðsq,wÞ
q½½ðDr ,DtÞ
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In Eqn. (11.6) we have expressed the structure
function SqðDr,DtÞ ¼ hDTðDr,DtÞqi first for general
space-time vectors (Δr, Δt) and in terms of general
space-time and spatial scale functions (½½ðDr,DtÞ

,
kDrk respectively) and then given the example of the
simplest canonical scale function in one spatial
dimension. These formulae are valid for Δx < Le*,
where Le* is the effective outer scale – estimated at
45� N to be about 5000 km (compared to the half-
circumference of� 14 000 km). The new climate regime
formula is the bottom row: for completeness we have
included the weather and macroweather formulae as
well (top two rows). Hc, t ¼ Hc=Hc, t is the climate
space-time anisotropy exponent analogous to Hz ¼
Hh/Hv which characterizes the vertical scaling in
the weather regime. The empirical parameters are
summarized in Table 11.7. These are the simplest
equations using canonical scale functions, i.e. we have
ignored mean winds and the vertical and meridional
directions as well as some latitudinal, geographical
variations (all of which can in principle be handled
with generalized scale invariance). With this caveat,
Eqn. (11.6) is compatible with all we know both
theoretically and empirically about atmospheric
fluctuations.

The sq’s are proportionality constants with dimen-
sions K discussed below. The (top) weather regime
equation uses the canonical scale function for
the temperature. For simplicity we used Eqn. (8.16)
with a zero mean advection velocity in the matrix B.
For the weather exponents, we found Hw � 0.51,
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C1w ¼ 0.087, aw ¼ 1.61 (see Chapter 8, Table 8.1).
The (middle row) macroweather structure function
(defined by Haar wavelets, 20CR surface) is discussed
in Section 10.3.2, where we estimated Hc� 0.7, Hmw�
–0.4 and C1,mw,t¼C1,c,t� 0.11, amwt¼a,t� 1.75 (Table
10.2 the 700 mb value Hc � 1.4 is probably spuriously
high). The (bottom) climate-regime formula uses the
canonical scale function for self-affine anisotropic
scaling processes; since the horizontal Hc is much
bigger than the temporal Hc,τ (Eqn. (8.6)), empirically
we have Hc,t � 0.7/0.4 ¼ 1.75. We should note that
strictly speaking, Eqn. (11.6) implies that the ratio of
the spatial to temporal climate C1’s is also equal to Hc,t

� 1.75, indeed the actual C1 values are respectively �
0.1, � 0.065, ratio 1.55, close to Hc,t (Fig. 11.17b).

Let us now consider the constants sq,w, sq,mw, sq,c.
These are constrained so that the structure functions
are continuous at the boundaries between the
regimes. Taking Δx ¼ Le* (or almost equivalently
considering the structure functions of the global aver-
ages), and for simplicity considering only q ¼ 1, we
have at Δt ¼ τw, τc:

hDTðLe , twÞiw ¼ hDTðLe , twÞimw; s1,w � s1,mw

hDTðLe , tcÞimw ¼ hDTðLe , tcÞic; s1,mw

�

tc

tw

�Hmw

� s1, c

ð11:7Þ

Using the 45� N data, 20CR, surface, we find that
these equations work remarkably well. For example,
we verify s1,w � s1,mw � 5 K (e.g. Fig. 10.19 for slightly
larger s2 values) and with τc/τmw � 103, Hmw � –0.4
we obtain the prediction s1,c � 0.06 K, which is indeed
close to the observed value (Figs. 11.16a, 11.16b; see
also Table 10C.2 and Lovejoy and Schertzer, 1986),

nearly the same values for the slightly larger s2,c.
Finally, using Hc � 0.4, and τlc/τc � 30 kyr/30 years
� 103, we find the prediction <ΔT(τlc)> � 5 K,
which is roughly the value of the glacial/interglacial
“window” (Figs. 11.16a, 11.16b).

The above relations do not depend on the type
of the assumed space-time climate relation. However,
if the scale function is of the form hypothesized in
Eqn. (11.6), it has interesting implications because
it predicts the following space-time relations in the
climate regime:

Dx ¼ L∗e

�

Dt

tlc

�1=Hc, t
; tc < Dt < tlc ð11:8Þ

Taking the smallest time scale in the climate regime,
Δt¼ τc, yields a characteristic inner spatial climate scale:

Dxc ¼ L∗e
tc

tlc

� �1=Hc, t
ð11:9Þ

Using τc/τlc � 10�3, Le* � 5000 km, Hc,t � 0.7/0.4 ¼
1.75, we find Δxc � 100 km. Below Δxc, the climate
process is expected to be smooth, homogeneous; this
represents the characteristic size of the smallest cli-
matic zone. Although this conclusion is perhaps sur-
prising, it appears to be compatible with the spatial
analyses in Fig. 10.18.

Perhaps the best way to think about the relation in
Eqn. (11.8) is that for a climate zone (i.e. a multi-
fractal singularity) of a given spatial extent Δx, Eqn.
(11.8) gives us its “lifetime” or typical length of time
before its identity is lost: Dt ¼ tlcðDx=L

∗

e Þ
Hc, t . This

would mean that well-defined climate structures of
size 100 km typically maintain their identity for about
τc � 30 years whereas those 5000 km in size maintain

Table 11.7 A comparison of spatial and temporal exponents and temporal outer scales for the temperature fluctuations in Eqn. (11.6).
The spatial outer scales are of the order of the planetary scale and vary with latitude; at 45� N, they are about Le* � 5000 km. For the
amplitude of the fluctuations in Eqn. (11.6), we have theoretically s1,w � s1,mw with value � 5 K, and s1,c � s1,w(τc/τw)

Hmw � 0.06 K. For the
weather parameters, see Chapter 8, Table 8.1, Fig. 8.5c; for the macroweather, see Section 10.3.2 and Table 10.2; for the climate parameters,
see Table 11.4 and Figs. 11.5b, 11.16a, 11.17a, 11.17b. The macroweather–climate spatial exponent � 0.7 is the estimate from the 20CR
0.995 sigma (near-surface) field, which may be biased due to the reanalysis issues discussed in Chapter 4 (see Table 4.3); the value H � 0.5
(Table 8.2) may be more appropriate.

H C1 a Outer time scale

Regime Space Time Space Time Space Time

Weather 0.51 0.087 1.61 5–20 days

Macroweather 0.7 –0.4 0.1 0 1.4 _ 20 days–40 years

Climate 0.4 0.065 1.5 30–50 kyr
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them for about τlc � 30–50 kyr. This corresponds to
climatic zones with boundaries shifting at rates of
� 3 km/year and � 100 m/year respectively.

If this analysis is correct, then this could lead to
simplifications in climate modelling since there would
be no need to make simulations at much higher reso-
lutions. Similarly, when studying temporal variations
at scales Δt, there would be no need to collect data at
spatial resolutions higher than Dx ¼ L∗e ðDt=tlcÞ

1=Hc, t .
The space-time climate structure function pro-

posed in Eqn. (11.6) – and its extensions to include
meridional variations – is perhaps the fundamental
law of climate variability. Although it is apparently
compatible with all the information we have on the
climate, its exact form must be considered tentative,
being mostly based either on spatial data at reso-
lutions higher than τc, (Section 10.3) or on temporal
paleodata averaged over hemispheric scales (Section
11.1.5) or at single points in space (Section 11.2.2).
Clearly a convincing test would require data with
both high spatial resolution and a significant range
of scales in the climate regime – and, given the large
climate databases which are now available, such veri-
fication may be possible in the near future.

From the theory developed in Chapters 6 and 8 it
is easy to write down the spectra corresponding to the
fluctuation formulae, and we obtain the following
basic spectral densities:

Pwðk,oÞ �
�

ðkLe Þ
2 þ ðotwÞ

2
	�sw=2

; t�1
i >o>t�1

w

Pmwðk,oÞ � ðkLe Þ
�bcðotwÞ

�bmw ; t�1
c <o<t�1

w

Pcðk,oÞ �
�

ðkLe Þ
2 þ ðotlcÞ

2=Hc, t
	�sc=2

; t�1
lc <o<t�1

c

ð11:10Þ

(all are valid for horizontal wavenumber k > Le*
�1,

although Pmw, Pc presumably with the restriction
k < Δxc

�1: see Eqn. (11.9)). For the generalization
to include a mean advection velocity, see Eqns. (8.29),
(8.30): essentially ω ! (ω + mxkx)/sx, where mx sx are
determined by advection, and the outer scale of the
climate regime where a new low-frequency climate
regime begins is τcl. The space-time spectral density
exponents are βc ¼ 1 þ ξc(2), sw ¼ 1 þ βw ¼ 2 þ
ξw(2), sc ¼ βc þ Hc,t (recall Hc,t ¼ Hc,τ/Hc); see Eqns.
(6.60)–(6.66) for this (apparently) self-affine space-
time case. The joint spectral density for the weather
regime is given in the simplified form (with no mean

advection); in the climate regime – as with the corres-
ponding structure function – it is largely a guess (and
ignores complications such as possible “climate advec-
tion”). However, the 1D spectra (which can be
obtained by integrating Pc(kx,ω): see Eqn. (6.66)) can
be given with more confidence: Ec(k) � k�βc, Ec(ω) �
ω
�βc,τ with βc,τ ¼ 1 þ Hc,τ (βc � 1)/Hc – the spatial

behaviour due to the theory and limited empirical
evidence discussed above, and the temporal from the
empirical evidence discussed earlier in this chapter. For
the temperature, the empirical exponents are roughly
βw � 2, βc � 2.2, βmw � 0.2, βc,τ �1.8 (the latter is the
temporal exponent in the climate regime: Table 11.4).

11.3 Climate forcings and global
climate models

11.3.1 The scaling of CO2 concentrations
and solar, volcanic and orbital forcings
Starting at τc, climate variability continues up to scales
of the age of the earth: a factor � 108. Although in this
chapter we have restricted our attention to scales up
to the glacial/interglacial transition scale τlc where a
new “low-frequency climate” (“lc”) regime begins, τlc/τc
is nevertheless a large ratio � 103–104 (� 50–100 kyr/
10–30 years). In general – and in keeping with the
approach used throughout the earlier chapters – we
expect that any basic relevant physical processes over
this range will be scaling. Why then at τc do the stable
macroweather fluctuations with H < 0 give way to
unstable, lower-frequency climate fluctuations with
H > 0? Let us now examine this question.

Mechanisms governing the climate are tradition-
ally classified as either internal or external, although
the usual supposition is that there is a nonlinear
combination of both, e.g. the amplification of external
causation by nonlinear internal “feedback” mechan-
isms. In the literature, the discussion of these issues
has been strongly tinted by the development of GCMs
and their response to various “climate forcings,”
which are introduced as changing boundary condi-
tions, and the focus has been very much on possible
external mechanisms. However, if the supposed amp-
lification factors are large – as we show they must be –
then it will be hard to distinguish nominally external
paradigms from purely internal ones.

Let us begin by considering the various possible
external drivers as functions of scale. These forcings
may be classified according to whether they are

11.3 Climate forcings and global climate models
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scaling or nonscaling This is useful because nonscal-
ing climate forcings – i.e. at well-defined frequencies
– would leave strong signatures in the form of breaks
in the temperature (and other) scalings. However, we
have seen that over the range of time scales between τc

� 10–30 years and τlc � 50–100 kyr, the temperature
is at least roughly scaling; similarly, in Fig. 1.9d, we
saw that the unforced GCM “control runs” are scaling
for all scales greater than τw � 10–30 days, i.e. they do
not have any characteristic time scales (see Section
11.3.3). Since in the previous sections we saw no evi-
dence for any such strong break, we conclude that the
relevant forcings are themselves likely to be scaling.

There is of course an important nonscaling excep-
tion: the narrow-band orbital forcings at scales some-
what shorter but close enough to the upper time scale
τlc so that the break they induce is plausibly compat-
ible with the observations. We are of course referring
to the orbital “Milankovitch” forcings, and we saw

that there is wide consensus that these are responsible
for the observed break at τlc, although even this is not
at all trivial. For example, in Section 11.2.1 we noted
that the strongest of these – the precessional and obli-
quity forcings – have only weak signals in the paleo-
temperature records (Figs. 11.13a, 11.13b). However,
if the internal variability is strong enough – as in
the case of fully developed turbulence discussed in
Chapter 2 – it could, at least in principle, be respon-
sible for a (wide-range) scaling temperature response
at higher frequencies.

Interestingly, the main signal in the temperature
is nearer 100 kyr, corresponding to the weaker orbital
eccentricity variations, yet even this poses a further
problem, since signs of the much stronger eccentricity
variation at about 400 kyr are virtually absent in the
paleoclimate record (these are respectively the “100
kyr” and “400 kyr” problems: see Ganopolski and
Calov, 2011, and references therein). Note that while

Fig. 11.19 Comparison of RMS Haar fluctuations for various solar, volcanic, orbital and CO2 data in units of radiative forcing (RF, units W/m2).
For the solar radiances, the values of estimated total solar irradiance (TSI) were converted into RF using albedo¼ 0.7 and a geometric factor 1/4
(yielding an overall reduction factor of 0.175). The TIMS satellite data is for 8.7 years from 2003 to the present at a 6-hour resolution; the data are
from http://eobadmin.gsfc.nasa.gov/Features/SORCE/sorce_07.php. Note that the Lean (2000) reconstruction includes the 11-year solar cycle
whereas the Wang (2005) curve is only for the background. The Krivova 2007 curve has a 10-year resolution. The Shapiro (2011) curve (the last
8963 years) was degraded to 20-year resolution to average out the solar cycle; the Steinhilber (2009) curve was at a 40-year resolution over the
last 9300 years. The volcanic series were from reconstructions of stratospheric sulfates using ice-core proxies. The Vostok paleo-CO2 series were
converted to RF using 3.7 W/m2 per CO2 doubling (IPCC AR4: Solomon et al., 2007), the solar insolation at the north pole on June 15th was
divided by 20 but is not a true RF. The orbital variation curve was interpolated to 100-yesar resolution and the low- and high-frequency fall-offs
have logarithmic slopes –1, 1, i.e. they are the minimum and maximum possible for the usual (linear) Haar fluctuations. All the structure
functions have been increased by a factor of 2 (i.e. without changing their relative amplitudes) so that the temperature fluctuations are roughly
“calibrated” with the difference and tendency fluctuations as discussed in Section 10.2.2. Reproduced from Lovejoy and Schertzer (2012b).
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this is true for these high-latitude signals, the preces-
sional signal is seen quite strongly in various tropical
climate records such as speleothems (see especially
Wang et al., 2007). Since the overall (global) change
in solar insolation is very small, the exact mechanism
that would link the orbital variations to temperature
fluctuations is still actively researched (see e.g. Berger
et al., 2005). To see the scale dependence, Fig. 11.19
shows Haar structure function analysis of the solar
irradiance variations at the north pole (every June
15th) determined from astronomical calculations
(Berger and Loutre, 1991). Unlike the other structure
functions shown, this does not correspond to a true
radiative forcing; the structure function of this deter-
ministic forcing is shown in order to indicate its
dominant time scales. One sees that the variability is
confined to a fairly narrow range of scales, and in Fig.
11.20 we see that this range is about 3–4 times smaller
than that of the peak in the paleotemperature
variability. This is the 100 kyr problem: a strong
nonlinear feedback mechanism is therefore needed
just to explain the lower-frequency variability out to
(100 kyr)–1.

Even if we accept that the orbital forcing is indeed
the “pacemaker of the ice ages” (Hays et al., 1976),
there remains the higher-frequency issue as to the
origin of the strong continuous (near-scaling)

background spectrum; much higher than the highest
orbital frequency (� (19 kyr)–1: Figs. 11.13a, 11.13b,
Wunsch, 2003; Section 11.2.1). Although proposals
have been made to explain how various higher-
frequency subharmonics and related “combination
tones”might arise (e.g. Ghil, 1994), these mechanisms
at best account for discrete frequencies – only a small
fraction of the continuous spectrum – and hence a
small fraction of the overall variance. This still leaves
us with the need to find a scaling mechanism – or at
the very least one that would yield the observed broad
spectral response.

At first sight, an attractive possibility is to invoke
greenhouse gas forcings. CO2 has indeed varied sig-
nificantly over precisely the same scale range as the
temperature. For example, from the Vostok paleo-
CO2 series we can estimate the implied “radiative
forcing.” The radiative forcing is defined as the effect-
ive change in the balance of incoming and outcoming
energy flux (in W/m2), in this case due to the (loga-
rithmic) change in CO2 concentrations. Using the
value 3.7 W/m2 for a CO2 doubling (recommended
in the IPCC AR4: Solomon et al., 2007), the time
series of paleo-CO2 concentrations can be converted
into an effective radiative forcing series. Fig. 11.19
shows the Haar structure function analysis of this,
indicating typical RMS values of � 1 W/m2 at
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Fig. 11.20 The RMS structure
functions of the main forcings from
Fig. 11.19 were converted into RMS
temperature structure functions using
a unique (and scale-independent)
climate sensitivity l ¼ 4.5 K/(Wm–2).
The reference lines have slopes of –0.1
and þ0.4. It can be seen that the main
orbital insolation fluctuations occur at
time scales roughly 3–4 times smaller
than the main temperature
fluctuations. The CO2 curve is probably
not a true forcing since cross-spectral
analysis shows that the CO2

fluctuations lag the temperature
fluctuations over most of the range.
Reproduced from Lovejoy and
Schertzer (2012b).
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100 kyr scales. To within a constant factor (see
Fig. 11.20) this is very nearly the same as the corres-
ponding Vostok temperature structure function, and
cross-spectral analysis of the Vostok paleotempera-
ture and paleo-CO2 concentrations shows that
over the whole range up to frequencies of at
least � (6 kyr)–1, the temperature and CO2 have
coherences � 0.8–0.9, i.e. near the maximum (¼ 1),
well above the statistically significant level (using four
consecutive 105 kyr sections yields a significance
level ¼ 0.5; see Appendix 6B for definitions). At the
same time, however, for frequencies > (50 kyr)–1, we
find that the phase of the CO2 fluctuations lags by a
fairly constant 70 � 20� with respect to the tempera-
ture fluctuations (the same basic conclusion was
reached by Mudelsee, 2001). We can therefore con-
clude that – contrary to contemporary anthropogenic
CO2 – the paleo-CO2 is essentially a “follower” not a
“driver” In any case, it is sufficient to explain the
temperature variations if the climate sensitivity (see
below) is high enough (� 4.5 K/W/m2, i.e. about 4–5
times larger than the usual estimates). While this
statement is true for the Vostok series, things are
not so simple for the global temperature over the
last 20 kyr (Shakun et al., 2012). In addition, Gano-
polski and Calov (2011) claim that it is needed for
explaining the dominance of the (100 kyr)–1 fre-
quency over both higher and lower orbital forcing
frequencies (i.e. for solving the 100, 400 kyr “prob-
lems”). We may also note that the near constancy of
the phase lag with frequency is compatible with a
scaling mechanism for the temperature–CO2

coupling.
The main external forcings that have been

proposed over the frequency range � (10 years)–1

to � (10 kyr)–1 are thus solar and volcanic (we neglect
here the possible impacts of changing land use and
land cover). Ever since the Chinese discovered
sunspots in 384 BC, the sun has been known to be
variable, but quantifying this is extremely difficult.
Since 1980, a series of satellites have estimated the
total solar irradiance (TSI), yet the relative calibra-
tions are not known with sufficient accuracy to estab-
lish the decadal and longer scale variability.
Amazingly, as recently as 2011, thanks to the Total
Irradiance Monitor Satellite (TIMS) from the Solar
Radiation and Climate Experiment (SORCE),
the absolute solar constant was found to be nearly
5 W/m2 smaller than previously believed (0.36% less;
see Kopp and Lean, 2011). This new estimate was

possible thanks to a more stable (satellite-borne)
measurement technique that yielded a relative preci-
sion as high as one part in 105 per year. In Fig. 11.19,
we show the Haar RMS structure function for this.
Although the data do not yet exist for a full 11-year
solar cycle, we see clearly a maximum near that scale as
well as another near the 27 (earth)-day-long solar “day.”

To go beyond the TIMS data to lower frequencies
requires proxy-based “reconstructions.” To date, the
principal ones are based on either sunspot numbers
or on 10Be from ice cores; Fig. 11.19 shows structure
functions from several of these using both techniques
(surrogates based on 14C from tree rings also exist).
The earliest (Lean, 2000) used a two-component
model, one of which had an 11-year cycle based on
the recorded sunspots back to 1610, while the other
was a “background” based on observations of sun-like
stars. Combining the two results leads to an annual
series featuring an overall 0.21% variation in the
background since the seventeenth century “Maunder
minimum”; this series was used as the forcing in
various simulations in the IPCC AR3 (Houghton
et al., 2001). As can be seen from the structure func-
tions in Fig. 11.19, this reconstruction actually meshes
quite nicely with the TIMS data and indicates that the
fluctuations are roughly scaling out to the limiting
scale (� 390 years), with exponent ξ(2)/2 � 0.4,
i.e. close to the temperature exponent (Fig. 11.20;
all the irradiance series had small intermittencies
so that ξ(2)/2 � ξ(1) � H). This reconstruction is
therefore compatible with a roughly linear relation
between irradiance and temperature fluctuations, i.e.
with a scale-independent amplification mechanism
(see Section 11.3.2).

Unfortunately, the key background irradiance
component of the Lean (2000) series was based on
only a small number of stars. It was therefore revised
(Wang et al., 2005), yielding typical fluctuations
about 4–5 times lower (Fig. 11.19: only the back-
ground was used in this analysis; see Table 11.8 for
a comparison of various parameters). Also shown
in the figure is the somewhat later intermediate (but
still sunspot-based) estimate by Krivova et al. (2007):
this series (at 10-year resolution) yielded a variation
of 0.1% since the Maunder minimum with typical
fluctuations essentially in between the previous two;
again it has roughly scaling behaviour, (again) with
ξ(2)/2 � 0.4 (Fig. 11.19).

With the new intermediate Krivova series, a consen-
sus began to form that the 0.1% Maunder minimum
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variation was realistic, and it was recommended in the
IPCC AR4 (Solomon et al., 2007). However, soon
after this, the situation changed dramatically with
the publication of two long reconstructions (Steinhil-
ber et al., 2009; Shapiro et al., 2011) based on 10Be
concentrations rather than sunspots. Both series
were � 9 kyr long and used ice-core 10Be concen-
trations to estimate the flux of cosmic rays, itself a
proxy for the state of the solar magnetic field and
hence of solar activity. Both were calibrated so as to
be compatible with the satellite observations since
1980 but each involved rather different assumptions,
notably about a hypothetical unperturbed “quiescent”
solar state. The structure function analyses of these
reconstructions (Fig. 11.19) are remarkable for two
reasons. First, they differ from each other by a large
factor (� 8–9: see Table 11.8); second, their varia-
bilities as functions of scale are quite the opposite to
the sunspot-based estimates discussed earlier: rather
than ξ(2)/2 � H � 0.4, they have ξ(2)/2 � H � – 0.3!
While the large factor between them attracted much
attention, the change in the sign of H was not noticed,

even though it is probably more important. Just as an
exponent H � 0.4 could potentially (if appropriate
amplification mechanisms were found: see below)
explain the multicentennial and multimillennial tem-
perature variability, only amplification mechanisms
which increase quite strongly with scale could link
increasing temperature fluctuations with decreasing
forcings. We could also mention the hybrid (partially
sunspot, partially 10Be) reconstructions (Vieira et al.,
2011), but the statistics are those discussed above for
the periods since AD 1610 and before AD 1610
respectively.

The IPCC AR4s recommended reduction of the
amplitude of the hypothetical solar forcing from 0.2%
to 0.1% of the Maunder minimum (i.e. from Lean,
2000, to Krivova et al., 2007) had the effect of pro-
moting explosive volcanism to the status of the most
promising nonathropogenic driver over the last two
millennia. Volcanoes mainly influence the climate
through the emission of sulfates that reflect incoming
solar radiation. When these are lofted into the strato-
sphere they can persist for months or years after

Table 11.8 A comparison of various climate radiative forcings (RF) shown in Fig. 11.19 converted into W/m2. The exponents were
estimated to the nearest 0.1 and the prefactors A are for the formula hðDRFÞ

2i1=2 ¼ ADtξð2Þ=2 . When Δt expressed is in years,
A is in W/m2.

Series

type

Physical basis Reference Series

length

(years)

Series

resolution

(years)

Scale range

analysed

(years)

Prefactor

A (W/m2)

ξ (2)/2

� H*

Solar Sunspot-based Lean, 2000 � 400 1 10–400 0.035 0.4

Solar

Wang et al.,

2005

1 10–400 0.0074 0.4

Krivova

et al., 2007

10 20–400 0.015 0.4

TIMS satellite 8.7 6 hours 1–8 0.04 0.4

10Be Steinhilber

et al., 2009

9300 5 years

smoothed to

40 years

80–9300 0.4 –0.3

Shapiro

et al., 2011

9000 1 year,

smoothed to

20 years

40 – 9000 3.5 –0.3

Volcanic Volcanic Indices, ice

cores, radiance

models

Crowley,

2000

1000 1 year,

smoothed to

30 years

60–1000 2.0 –0.3

Ice-core sulfates,

radiance models

Gao et al.,

2008

1500 1 year,

smoothed 30

years

60–1000 2.5 –0.3

*The solar series all have low intermittencies (C1 < ~0.03) so that ξ(2)/2 � H, whereas the Crowley and Goa et al. volcanic series have high
intermittencies: C1 ¼ 0.16, 0.17, respectively so that H � ξ(2)/2 þ C1 � –0.2 (with a ¼ 1.4, 1.6, τeff ¼ 200, 750 years).
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an eruption. Two main volcanic reconstructions exist
(Crowley, 2000; Gao et al., 2008; Crowley et al., 2008),
and both use proxies based on ice-core particulate
concentrations. The first is 1000 years long at annual
resolution and uses volcanic indices (nonlinearly)
scaled with the historical Krakatao and Tambora
eruptions. First sulfate concentrations are estimated
from the indices and then, with the help of models,
the corresponding global radiative forcings are esti-
mated; the resulting structure functions are shown in
Fig. 11.19. As can be seen, the variability is remark-
ably similar to that of the 10Be solar variabilities with ξ

(2)/2 � –0.3, i.e. the fluctuations decrease with scale
and nearly coincide with the Shapiro et al. (2011)
solar forcing structure function. Similarly, we show
the analysis of the slightly longer (1500 years) series
(Gao et al., 2008). This was originally given in terms
of the total mass of stratospheric sulfates (in units of
Tg); but for illustration purposes we have converted
this to an equivalent radiative forcing by scaling it to
the Crowley (2000) series so that they both have the
same means (the series have essentially 30-year reso-
lutions since a “background” was removed using a 31-
year running average). The RMS Haar structure func-
tion results for the two series are very similar. Once
again, since the volcanic forcing decreases rapidly with
time scale, any mechanism responsible for tempera-
ture variations must on the contrary involve an ampli-
fication which strongly increases with scale. Note that
here the intermittency is fairly strong (Table 11.8).

11.3.2 Stochastic and scaling
climate sensitivities
To make these analyses even more quantitative, we
can transform the radiative forcings into temperature
variations by using the “climate sensitivity” l, which
in this section is not a ratio but rather the proportion-
ality constant between the radiative forcing (RF, in
Wm�2) and the climate response:

DT ¼ lDRF ð11:11Þ

Here we have only considered temperature sensitiv-
ities, but the concept is more general. To avoid con-
fusion, it is useful at this point to mention that
the climate modelling community often uses an alter-
native definition of climate sensitivity in order to
compare the performance of individual climate
models. In this more restrictive sense, the climate

sensitivity is the global mean temperature increase
in response to a doubling of the atmospheric CO2

concentration from a preindustrial value.
The definition (Eqn. (11.11)) is usually interpreted

deterministically to refer to a change ΔT caused by a
specific radiative forcing ΔRF. While this definition
is convenient in the case of deterministic GCM
modelling, it is quite problematic for empirical stud-
ies because at best we have statistical correlations
between observed (typically paleo) ΔT and (inferred)
ΔRF records (e.g. Chylek and Lohmann, 2008). To
interpret our forcing and temperature statistics it
is therefore convenient to introduce a stochastic def-
inition of climate sensitivity:

DT¼
d
lDRF ð11:12Þ

where, as usual, ¼
d
means equality in probablity distri-

bution (i.e. the random variables a, b satisfy a¼
d
b if

and only if Prða > sÞ ¼ Prðb > sÞ for all s). Notice
that while both deterministic and stochastic defin-
itions (Eqns. (11.11), (11.12)) predict that the statis-
tical moments are related by the equation
hDTqi ¼ lqhðDRFÞ

qi, the stochastic definition does
not actually require that RF and T are even correlated.
A convenient interpretation is therefore that the sto-
chastic (Eqn. (11.11)) be regarded as an upper bound
on the deterministic l with equality in case of full
correlation.

The advantage of adopting a stochastic l is that by
fixing its value wemay convert Fig. 11.19 into equivalent
temperature fluctuations: Fig. 11.20 shows the resulting
superpositions when a value l ¼ 4.5 K/(Wm�2) is used
throughout. To put this value in perspective, let us
estimate l0 determined from the simplest energy bal-
ance model involving a homogeneous atmosphere and
radiative equilibria (i.e. without feedbacks). We have:

sT4 ¼ ð1� aÞQ ð11:13Þ

where s is the Stephan–Boltzmann constant, a � 0.3
is the albedo, T the earth absolute temperature and
Q the solar radiative forcing. These values imply
l0 � 0.3 K/(Wm�2) so that a large “feedback factor”
(amplification) of factor f ¼ l/l0 ¼ 4.5/0.3 � 15
is necessary to justify the overlaps shown in the
figure.

From Eqn. (11.11), and for simplicity only con-
sidering the mean (q ¼ 1) behaviour, we see that if
hDTðDtÞi / DtHT and hDRFðDtÞi / DtHRF , then the
sensitivity is also a power-law function of time scale:
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lðDtÞ ¼ hDTðDtÞi=hDRFðDtÞi / DtHl ;

Hl ¼ HT � HRF ð11:14Þ

If we take HRF � –0.3 (volcanic and 10Be solar esti-
mates), HRF � 0.4 (sunspot-based solar) and
HT � 0.4, then we find Hl � 0.7 and � 0 respectively.
From Fig. 11.19 we see that while the volcanic and
(Shapiro et al., 2011) solar forcings require a feedback
factor f � 0.3 at 30-year scales, this would increase
60-fold to roughly a factor of 20 at 10 kyr. If we
consider instead the scale-independent amplification
factors (Hl � 0), i.e. the Krivova and Wang recon-
structions, we find the large factors f � 15, 30 respect-
ively. However, for this to apply at multimillennial
scales, it assumes the continued growth of solar vari-
ability, which would reach the order of several Wm�2

at 10 kyr scales (Fig. 11.19).
Our method of estimating the climate sensitivity

requires a stochastic definition of l (Eqn. (11.12))
rather than the usual deterministic one which postu-
lates sustained (at least slowly varying, deterministic)
forcing. This difference should be borne in mind
when comparing estimates of l with the more clas-
sical estimates based on the latter assumptions (see
e.g. Ganopolski and Schneider von Deimling, 2008,
and references therein, for discussion and debate on
this). We should note that a theoretical consequence
of power-law sensitivities is that the corresponding
time-dependent energy balance models must be either
strongly nonlinear or of fractional order (rather than
linear and integer order, as is usually assumed).

With the help of our scaling framework, we can
also consider the recent proposal that changes in
cloud cover amplified by the Pacific Decadal Oscilla-
tion (PDO) might explain a large part of the climate
variability at least in the twentieth century, i.e. up to
centennial scales (Spencer and Braswell, 2008).
According to this hypothesis, the key low-frequency
driver is the PDO; however, analysis of the PDO
(Zhang et al., 1997; Figs. 10.8, 10.14) shows that at
climate scales its variability is very close to that of the
classical (atmospheric) North Atlantic Oscillation
index (without even much of a peak at decadal
scales!). Indeed, Fig. 10.14 shows that the PDO tracks
the SST fluctuations quite closely (although it is about
a factor of 2 larger). However, the most important
point is probably that the PDO and SST only track the
global average temperature up to � 10 years. At
longer time scales, they diverge, and only reconverge
at � 80 years (SST) and perhaps (by extrapolating

Fig. 10.14) for the PDO at � 300 years. Viewed
from the point of view of its decadal to centennial
scale-by-scale variability, the PDO is thus unable to
explain the low-frequency variability – at least not
without again invoking a strong scale-dependent
amplification mechanism.

While we are on the topic of scaling solar forcing
and scaling atmospheric temperature responses, we
could mention the papers of Scaffeta and West
(e.g. 2005, 2007, 2008). After estimating scaling expo-
nents of various solar and temperature anomaly series
and finding that they are similar to each other,
they argue on the basis of a speculative principle of
“complexity matching” that the series are related,
concluding for example that much of the 1980–2002
global warming is due to solar variability. While this
and other specific empirical claims have already been
criticized (e.g. Lean, 2006), the scaling aspects of their
work have not been addressed. The basic problem is
that rather than simply statistically analyzing the data
using standard multifractal analysis they use a very
indirect data analysis technique. Their motivation
(Scafetta and Grigolini, 2002) is the surprising claim
that all existing analysis methods assume a finite
variance (i.e. they ignore multifractals and the corres-
ponding analysis methods). They then adopt a purely
additive scaling framework to analyze random walks
constructed from the original time series (rather than
the time series themselves). Deviations of these
random-walk exponents from quasi-Gaussian ones
are then taken as evidence of the existence of under-
lying Lévy distributions. Although they thus make the
strong claim that the series have qD < 2 (hence infinite
variance), it is significant that they do not actually
estimate any empirical probability distributions (see
e.g. Scafetta and West, 2003), so their anomalous expo-
nents presumably are simply symptoms of multifrac-
tality; indeed, we saw in Fig. 5.21 that temperature
series may have long tails (qD � 5), but that their
variances are apparently finite.

11.3.3 The unforced low-frequency
variability of GCM control runs
We have argued that the variability of the atmosphere
out to τc is dominated by weather dynamics, that
there are neither significant new internal mechanisms
of variability nor important new sources of external
forcing. This enables us to objectively define the
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“climate state” of a given atmospheric field as its
average over the whole range of weather (H > 0)
and the stable (H < 0) macroweather scales up to τc.
Whereas macroweather corresponds to our idea of
“long-term weather,” the even lower-frequency
changes of such relatively stable “climate normal”
states correspond to our idea of “climate change.”
The transition between the macroweather regime
and the climate is thus a transition from a stable
regime where fluctuations decrease with scale to an
unstable regime where on the contrary they increase
with scale. In this section we discuss to what extent
GCMs are consistent with these two scaling regimes.

We have already mentioned that the expression
“GCM” originally denoted “general circulation model,”
i.e. a model of atmospheric dynamics designed to
reproduce meteorological variability. Later, as ambi-
tions grew, the usage gradually changed to mean
“global climate model.” However, for predicting cli-
mate scales, at a minimum, atmosphere models must
be coupled to ocean circulation models; hence the
term “atmosphere–ocean general circulation model”
(AOGCM). However, today’s models are typically
further coupled with carbon cycle models as well as
with ice and land-use models, so that the term
“climate forecasting system” is increasingly used even
though such systems in fact constitute “global climate
models.” In the following, we will refer to the latter
with the traditional expression GCM, and Table 11.9a
gives some of the technical details of the GCMs
discussed in this section.

In order to model climate and climate change,
GCMs must therefore adequately reproduce the rising
low-frequency variability at time scales> τc; otherwise,
their claim to model the climate is unjustified. In
Fig. 1.9d we have shown that the IPSL GCM “control
run” – with essentially constant “forcing,” i.e. with
constant orbital and solar parameters, no volcanism,
constant greenhouse gases and fixed land use – gen-
erates a macroweather spectrum all the way to its low-
frequency limit, (500 yr)–1. Fig. 11.21a shows RMS
Haar structure functions from this 500-year IPSL
control run as well as from a 3000-year control run
of the Ensemble Forecasting System (EFS: Table
11.9a; Jungclaus et al., 2010), along with the low-
frequency extension of the stochastic FIF cascade
model discussed in Section 10.1. These structure func-
tions are compared to the corresponding empirical
functions for surface temperatures, reanalyses and
multiproxies (all at global resolutions). We can clearly
see a strong divergence between the empirical and
model S(Δt) for Δt > ~10–30 years. With the excep-
tion of a spurious 2–4-year scale “bump” in the EFS
S(Δt), the models do a reasonable job over the macro-
weather regime (i.e. from about 1 month up to τc �
10–30 years). Beyond that, however, their RMS fluc-
tuations continue to decline whereas the empirical
fluctuations start to rise. The grid-point-scale analyses
of the control runs (see Fig. 11.21c, discussed below)
lead us to exactly the same conclusion; indeed, the
low-frequency exponents are all near the same value,
corresponding to β � 0.2.

Table 11.9a Some of the details of the various climate simulations systems whose outputs are analyzed here.

Model system Model components and references GCM

characteristics

Experiment Series length

ECHO-G (von

Storch et al.,

2004)

ECHAM4 (Roeckner et al., 1996);

HOPE-G, (Wolff et al., 1997)

19 vertical

levels, T30,

(3.75�

resolution)

“Erik the Red,”

AD 1000 to

present, � 0.25%

solar forcing

1000 years

Ensemble

Forecasting

System (EFS)

(Jungclaus et al.,

2010)

ECHAM5 GCM MPIOM ocean model,

(Jungclaus et al., 2006); carbon cycle

module HAMOCC5 (Wetzel et al., 2006);

land surface scheme JSBACH (Raddatz

et al., 2007)

19 levels,

T31 (3.75�

resolution)

Millennium, solar

forcing 0.1%,

0.25%, AD 1000

to present

1000 years

with full forcing,

3000-year

control run

IPSL climate

system model:

IPSL-CM4

LMDZ GCM (Hourdin et al., 2006);

ORCA2 ocean model (Madec et al.,

1998); LIM sea-ice model (Fichefet and

Morales Maqueda, 1997); ORCHIDEE

land-surface model (Krinner et al., 2005)

19 level 2.5�

x3.75� grid

Control run,

1910–2410, for

IPCC AR4

500 years
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The strong divergence of the GCM control runs
and empirical (surface data, reanalysis, multiproxy) S
(Δt)’s raises the question as to whether or not current
GCMs are at all capable of reproducing the climate
regime. Are they missing either a critical new source
of (slow) internal variability or a new coupling with
the external forcings? In the latter case the corres-
ponding feedbacks must be large and quite likely
increasing with scale. Since we are searching for
scaling mechanisms that generate fluctuations over a
wide range of scales, it is almost certain that the
mechanism would involve spatial interactions over a
wide range such that the lifetimes of structures grow
with scale. As mentioned in Section 11.1.1, a possible
candidate (not included in standard coupled GCM–

cryosphere models) is land ice.
Before describing our own analyses further, let us

review the relevant literature on long-term GCM stat-
istics (Table 11.9b). There have been several studies of
the low-frequency behaviour of GCMs, including
some on “ultra-long” 10 kyr runs. The basic conclu-
sions have been pretty uniform: the low-frequency
behaviour was scaling, predominantly with 0 < β <

0.6 (roughly –0.5 < H < �0.3, i.e. in the same range
as our control runs) and with ocean values a little
higher than for land. The exponents were also found
to be robust: for example, with a fixed scenario they
were insensitive to the use of different models, in the
same model, to the addition of greenhouse gases
(Fraedrich and Blender, 2003), or in the last 1000
years in the northern hemisphere, to constant or to
historically changing drivers (Rybski et al., 2008).
Finally, models with sophisticated sea-ice rheology
also had similar scaling (Fraedrich and Blender,
2003). Although the authors did not pose this ques-
tion, in no cases and at no geographical location was
there evidence of an end to the low-frequency
macroweather regime. Apparently, the global-scale
IPSL and EFS control-run analyses in Figs. 11.21a
and 11.21c are typical.

The above is a summary of the overall (global)
situation, but – as expected – due to the strong spatial
intermittency (Sections 10.3, 11.1.4) there is quite a
lot of regional variability. Before considering the
forced runs, let us therefore consider the distribution
of low- and high-frequency β’s in the IPSL GCM to

Table 11.9b A summary of scaling studies of temperatures in GCMs. All the estimates were made using the DFA method; the spectral
exponent β was determined from β¼ 2a – 1 where a is the conventional DFA exponent (this expression ignores intermittency corrections).

Model Model

characteristics

Series length Range of

scales in

analysis

βmw

Fraedrich and Blender, 2003

(with IPCC scenario IS92a

greenhouse gas emissions)

ECHAM4/ OPYC 19 levels, T42

OPYC ocean

model includes

sea ice with

rheology

1000 years 240 years �0

continents,

�0.3 coasts,

� 1 for

oceans

HadCM3 19 levels, 2.5�

x3.75�
1000 years 240 years Same to

within �0.2

Zhu et al., 2006

(preindustrial control runs)

GFDL 31 levels, T63 500 years 500 years �1

ECHAM5/MPIOM 24 levels, 2�x2�

(land), 1�x1�

(ocean)

500 years 500 years �1

midAtlantic

overturning

Blender et al., 2006; Fraedrich

et al., 2009

CSIRO

atmosphere-ocean

model under

present-day

conditions

9 levels, R 21

horizontal

resolution

10 000-year

simulation

3 kyr 0.2 – 0.8

depending

on location

Vyushin et al., 2004; Rybski

et al., 2008 (one control

simulation, one with

historical drivers)

ECHO-

G¼ECHAM4/

HOPE-G

19 vertical levels,

T30

1000-year

simulated

temperature

records

� 200

years

Land 0.2–0.4,

ocean 0.4–0.7
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see how closely the geographical variations of the
simulations and the reanalyses agree. Figs. 11.4
and 11.5a show the results for the IPSL model with
β’s defined for low (ω < (25 years)–1) and high
((3 years)–1 < ω < (3 months)–1) frequencies (bottom
rows); they are in many ways the opposite of that of
the 20CR reanalysis (top rows). Whereas the distribu-
tion of high-frequency β‘s corresponds reasonably
well to the continents, it is rather the low-frequency
20CR β’s that have (limited) land/ocean correlations.
Whereas the 20CR β’s show a marked increase as
we pass from high to low frequencies, the IPSL β’s
do exactly the opposite, tending instead to decrease to
very low values at low frequencies. This inversion is
also evident in Fig. 11.5a, which shows the latitudinal
variations. A final point is that unlike the low-
frequency β 20CR reanalysis which is fairly north–
south asymmetric, the IPSL β’s (both low- and high-
frequency) are roughly symmetrical with respect to
maxima near the equator. Table 11.10 summarizes the
exponent estimates, including the fairly small changes
introduced when linear trends (series by series) were
removed (this was done in an attempt to quantify the
sensitivity of the analyses to twentieth-century
warming trends). As expected, this trend removal
only affects the low β results, but hardly at all the
20CR results, which have higher β. For these local β
estimates, the IPSL is very close to the other GCMs;
the β’s for the globally averaged series can be esti-
mated from Fig. 11.21a: β � 1.8, 0.2 for low-
and high-frequency empirical series, and β � 0.2 for
ω < (2 years)–1 for IPSL. From this clear global model/

data comparison we again conclude that without
special forcing, the current GCMs appear to model
macroweather rather than the climate.

11.3.4 Do (forced) GCMs predict the
climate . . . or macroweather?
If control runs do not correctly reproduce the
low-frequency variability, what about forced runs
with more realistic low-frequencies? To answer this
question, we consider simulations from the Last
Millennium project whose aim was to reproduce the
climate since AD 1000. We focus on two different
models, the ECHO-G “Erik the Red” simulation (von
Storch et al., 2004) and the results of two experiments
on the more recent Earth Forecasting System model
(EFS: Jungclaus et al., 2010; see Table 11.9b).

Since the earth’s orbital parameters have changed
little in the last 1000 years, if we exclude the twentieth
century, the key forcings are volcanic and solar vari-
ability. Both EFS and ECHO-G simulations used
similar volcanic forcings. In comparison, as discussed
above, the correct solar forcing is much less certain,
and in these two models it is deduced indirectly since
1627 from correlations between the solar constant
and the observed sunspot numbers. Before this, the
total solar irradiance (TSI) was estimated from the
abundance of 14C isotopes found in tree rings (in a
manner somewhat similar to that of 10Be, discussed in
Section 11.3.1). The amplitudes of the solar forcings
are thus described in terms of percentages of variation
of the solar constant since the seventeenth-century
“Maunder minimum”: this value fixes the calibration
constant. Values of 0.1% and 0.25% are considered
respectively low and high solar forcing values (see
Section 11.3.1, and Krivova and Solanki, 2008, for a
recent review). In these terms, the ECHO-G simulations
were “high,” close to 0.25%, whereas the EFS simula-
tions were run at both 0.1% and 0.25% levels.

We considered the full simulation (to the present,
Figs. 11.21b, 11.21c) as well as only the pre-1900
variability so as to focus on the natural variability
without strong anthropogenic effects (Figs. 11.21d,
11.21e), considering both globally averaged tempera-
tures (Figs. 11.21b, 11.21d) and grid-scale averages
(Figs. 11.21c, 11.21e). The key conclusions are:

(a) The EFS global-scale full series analyses have
significant spurious high-frequency variability in
the 2–4-year range, but the effect disappears in the

Table 11.10 Local β estimates: low is ω < (25 years)–1,
high is (3 months)–1 > ω > (3 years)–1. Change in low-frequency
exponents due to detrending: IPSL: –0.50 � 0.54; 20CR:
0.08 � 1.17. All were monthly series, periodically detrended for
annual and subharmonics down to 3 months. The trend removal
indicated here is a linear trend for the entire length of series,
different for each pixel from first to last element in each series.
The IPSL is more sensitive to trend removal precisely because of
its lower β value.

IPSL 20CR

Low frequency 0.18 � 0.52 1.72 � 1.28

Low frequency

(trend removed)

0.68 � 0.56 1.80 � 1.27

High frequency 0.82 � 0.62 0.33 � 0.37

High frequency

(trend removed)

1.03 � 0.65 0.44 � 0.32
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pre-1900 series analysis. Similarly, the EFS 0.25%
(but not 0.1%) multidecadal, multicentennial scale
variability (global and grid scales) is too high, but
this disappears completely in the pre-1900
analyses. In fact, the latter have overall variability
very close to the corresponding control run

(Figs. 11.21a, 11.21c), which is much too weak.
The strong variability of the 0.25% EFS run is thus
presumably an artefact of the strong twentieth-
century warming. The fact that the twentieth
century can give a strong contribution to the
variability was underscored by the analysis of
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Fig. 11.21 (a) Comparison of the
RMS Haar structure functions for
temperatures from instrumental
(“data”, daily 20CR, monthly surface
series), multiproxies (post 2003, yearly
resolution) GCM control runs (thick,
monthly) and the FIF stochastic model
(thin). The data are averaged over
hemispheric or global scales (except
for the 20CR 2� � 2� grid-scale curve
added for reference). The surface curve
is the mean of three surface series
(NASA GISS, NOAA CDC and
HadCRUT3, all 1881–2008); the 20CR
curves are from the 700 mb level
(1871–2008). The IPSL is a 500-year
control run, the EFS is from a 3000-year
control run; the “bump” at 2–4 years is
a broad model quasi-periodic artefact.
The multiproxies are from the three
post-2003 reconstructions: two curves
are shown, the top from 1500–1980,
the bottom from 1500–1900, showing
the effect of the twentieth-century
data. The reference lines have slopes
ξ(2)/2 so that β ¼ 1 þ ξ(2) ¼ 0.2, 0.4,
1.8. The amplitude of the Haar
structure functions has been calibrated
using standard and tendency structure
functions and is accurate to within �
25%. At the upper right we have
sketched the Vostok and GRIP
paleocurves (see Fig. 11.16b) and have
indicated the likely glacial/interglacial
mean temperature contrast
(difference) by the arrows.
(b) Comparison of the RMS Haar
structure functions of global-scale
ECHO-G and EFS GCM simulations
(the latter with both 0.1% and 0.25%
solar forcing levels), with the models
analyzed over their entire ranges
including the twentieth century. Also
shown are the 20CR, surface and
multiproxy curves as in Fig. 11.21a.
Although the 0.25% solar forcing curve
has very large multidecadal,
multicentennial variability, this is due
to high simulated twentieth-century
temperatures (see Figs. 11.21d, 11.21e,
the analyses before 1900). It can be
seen that the ECHO-G simulation is
quite close to the northern
hemisphere multiproxy
reconstructions. Again the reference
lines show slopes ξ(2)/2 ¼ �0.4.
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IPSL simulations of various future greenhouse
gas emission scenarios, with the corresponding
S(Δt) showing strong responses starting at about
Δt > ~10 years with exponents H equal to the
theoretical maxima (i.e. H ¼ 1 for the Haar,
H ¼ 2 for the quadratic Haar) structure

functions – i.e. they dominate the natural
variability.

(b) The full-length ECHO-G global- and pixel-scale
simulations have S(Δt)’s that are close to
the empirical (either 20CR or multiproxy) curves.
However, whereas the empirical S(Δt)’s seem to

–0.5

0.520CR grid

Scale

(c)

0.4

-0.4

1000100
10–2

Log10∆t (yrs)

Log10 <∆T2>1/2 (K)

5K

0.1 K

1 K ECHO-G

10

EFS

control

EFS

0.1%

solar

weather Macroweather

EFS

0.25%

solar

Northern

Hemisphere 

IPSL

control

0.2 K

10–1

Vostok

GRIP

Glacial/

interglacial

amplitude

–0.5

0.520CR grid

Scale

(d)

Surface

Northern 
Hemisphere

1000100
10–2

Log10 ∆t (yrs)

Log10 <∆T2> 1/2 (K)

5K

0.1 K

20CR global

scale 

–0.4

1 K

10

weather Macroweather

EFS 0.1%

EFS

0.25%

ECHO-G

1500–1900

10–1

0.5 K

Models

Multi-

proxies

Data

Vostok

GRIP

Glacial/

interglacial

amplitude

Fig. 11.21 (c) As Fig. 11.21b except
for the grid-scale (2� � 2�) variability.
The main difference is the wide range
of scaling of all the models with ξ(2)/2
¼ –0.4 (see the reference line). Also
shown are the ξ(2)/2 ¼ �0.4 reference
lines; again ECHO-G is quite close to
the reconstructions. (d) As Fig. 11.21b
(i.e. global averages) except that only
pre-1900 model data are analyzed.
Note in particular that the strong
variability of the 0.25% EFS simulation
in Fig. 11.21b has disappeared
completely; before 1900, the different
levels of solar forcing are not very
consequential, the overall variability of
the EFS models is too low. Note also
that the ECHO-G simulation (shown
only from 1500–1900 to avoid both
early “spin-up” and later twentieth-
century effects) is more realistic than
the EFS but has lost most of its low-
frequency variability.
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be robust (i.e. they continue to displayed strong
variability in the pre-1900 period with only a small
reduction), the ECHO-G 1500–1900 global series
has overly weak variability. This is also true of the
grid-scale analyses (Fig. 11.21e): indeed, the large
Δt value of S(Δt) of the grid-scale ECHO-G
series is about the same as that of the northern
hemisphere multiproxy S(Δt) (which is from data
smoothed over a much larger area); it is much
lower than the 20CR grid-scale variability.

(c) The pre-1900 grid-scale low-frequency variability
of all the GCMs (with the possible exception of the
ECHO-G model) decreases with increasing Δt and
the EFS S(Δt) � Δt�0.4, i.e. the predicted low-
frequency scaling behaviour (β � 0.2).

We have noted in Figs. 11.21b and 11.21c that the
full-length ECHO-G simulation has relatively realistic
multicentennial variability (close to the post-2003
multiproxies). The simulation has roughly the same
τc and H as the data and the northern hemisphere
multiproxies. So what is special about the ECHO-G
simulation? In the IPCC AR4 (Solomon et al., 2007),
12 different Millennium simulations are compared
and it is noted that indeed the ECHO-G has signifi-
cantly stronger low-frequency variability than any of
the others (however, of these, only two were full-blown

GCMs). This outlier status prompted Osborn et al.
(2006) to perform a special study using a simplified
energy-balance-based climate model in order to deter-
mine the reasons. These authors concluded that there
were two problems with the ECHO-G simulations:
(a) they had questionable initialization, so that the
first two centuries (� AD 1000–1200) had spuriously
high temperatures; and (b) they did not include
anthropogenic sulfates (which tend to lower the tem-
peratures) so that their twentieth-century climate was
also spuriously warm (this is why in Figs. 11.21d and
11.21e we only show the ECHO-G for the period
1500–1900, which is free of both of these problems).
(Note added in proof: recent GISS-E simulations
substantiate these conclusions (G. A. Schmidt et al.,
in preparation, Lovejoy et al., 2012.)

If, as we have argued, the high-variability scenario
is more likely, how is it that several studies success-
fully empirically validated – even ultra-long – GCM
scaling using unique macroweather scaling regimes?
Part of the answer is a consequence of a limitation of
the detrended fluctuation analysis (DFA) technique
which they all used. Unlike the poor man’s (and to
a lesser extent) Haar wavelets, whose fluctuations
are easy to interpret, DFA fluctuations are defined
with respect to RMS deviations from polynomial
regressions with respect to integrals of T. In addition,
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Fig. 11.21 (e) As Fig. 11.21d except
for grid-scale analyses. Again, the EFS
model has low frequencies that are
too weak, but even ECHO-G has weak
variability and the low-frequency
tendency is not clear (i.e. is it starting
to rise at Δt � 500 years?).
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there is no indication that the authors realized the
strong implications of the β< 1 result: that the fluctu-
ations in T tend to decrease rather than increase with
scale. Indeed, these papers weremostly intent on estab-
lishing the existence of long-range statistical depend-
ency, which for Gaussian processes implies β 6¼ 0.
Finally, they apparently did not expect to find a new
low-frequency climate regime.

A more concrete reason that the τ> τc regime was
missed in the empirical analyses was perhaps that the
typical scale range of the data analyses was restricted
to only one-quarter of the available time series length
and was thus too short. For example, Eichner et al.
(2003) used station series up to 155 years long, yet the
DFA analyses were limited to lags only up to τ < 40
years, which were too close to τc to allow the new
regime to be detected. The failure to detect the climate
regime was also a consequence of the fact that most of
the long series were from the anomalous region north
of 30� N. This northern anomaly – probably caused
by the large fraction of land at these latitudes – made
the low-frequency regime more difficult to detect
than with global data (see Fig. 11.5a, which shows
that τc is quite a bit larger north of 30� N). Finally,
when paleodata were analysed, they were from Green-
land sites, which as we saw already in Section 11.2.1
were exceptional in that the β � 0.2 behaviour con-
tinues up to � 2 kyr, which is apparently not at all
representative of the hemisphere.

To conclude, it would seem then that there are two
opposing hypotheses about the variability in the last
millennium: a low- and a high-variability hypothesis.
The low-variability hypothesis relies on the low-
variability pre-2003 proxies supported by the GCM
models and standard internal couplings and forcings.
Since the low variability is postulated to continue to at
least many thousands of years, the glacial/interglacial
transitions are explained purely by orbital forcings
whose effects are implicitly only over relatively
narrow ranges of scales, especially near (100 kyr)–1.
This hypothesis thus has difficulty explaining not only
the broad-spectrum variability of the paleotempera-
tures but also the observed natural variability on
centennial and millennial scales.

In contrast, the high-variability hypothesis relies
on a scaling framework for the climate variability –

including the relative constancy of the exponents
βc � 1.8, Hc � 0.4 as measured from several different
sources. This includes the multidecadal, instrumental
data, the post-2003 multicentennial multiproxies but

also the multimillennial paleotemperatures (with the
caveats about the Holocene and geographic variability
of the transition scale τc). This high-variability
hypothesis can also cautiously appeal to the existence
of at least one GCM reconstruction (ECHO-G) with
apparently comparable low-frequency variability,
indicating that GCMs may be compatible with this
(although the 1500–1900 part of the ECHO-G simula-
tion is still too weakly variable). Interestingly, this
high-variability hypothesis implies that anthropogenic
effects at scales Δt > ~10 years may be much
stronger . . . or much weaker than otherwise expected.
This is because, depending on the relative sign of the
strong natural variability, either it could mask an other-
wise very strong anthropogenic effect, or on the contrary
it could artificially enhance a much weaker one.

11.4 The atmosphere in a nutshell:
a summary of emergent laws
in Chapter 11
In Chapter 10 we defined the climate as the
regime with time scales beyond macroweather where
new dynamics and/or forcings became dominant.
In this chapter, we covered some of the issues this
raises:

(a) The (inner) transition scale τc: what is it,
and how does it vary (in space and from epoch
to epoch)?

(b) The climate outer scale τlc where a new
low-frequency climate zone begins.

(c) The nature of the temporal variability (the scaling
and scaling exponents).

(d) The constraint on the exponents and the scaling
imposed by the glacial/interglacial window
(i.e. the amplitude of the temperature variations
at the end of the climate regime at τlc).

(e) The proposal of a fundamental space-time scaling
law governing the climate variability (in real and
Fourier space).

(f) The scaling of the various possible forcings
(including solar and volcanic).

(g) A stochastic definition of climate sensitivity,
its interpretation and its empirical evaluation,
including its scaling exponents.

(h) The (macroweather) scaling of unforced GCMs.
(i) We attempted to answer the question: do forced

GCMs predict the climate or macroweather?
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From the point of view of emergent laws, the most
important contribution from this chapter is the pro-
posal of a precise law for the space-time variability
(Section 11.2.4):

Sq, cðDr ,DtÞ ¼
�

DTðDx,DtÞq


c

¼ ðsq, cÞ
q½½ðDr,DtÞ



qHc�KcðqÞ

c

½½ðDx, 0, 0,DtÞ

c, can ¼

�

Dx

Le

�2

þ

�

Dt

tlc

�2=Hc, t
0

@

1

A

1=2

;

tlc > Dt > tc

Hc, t ¼ Hc=Hc, t ð11:15Þ

(we have given the general formula in terms of space-
time scale functions, and then the 1D canonical scale
function). For the temperature, the empirically esti-
mated parameters are: Le

* � 5000 km, s1,c � 0.06 K,
τlc � 30–50 kyr, Hc � 0.7, Hc,t � 0.4, Hc,t � 1.75,
C1,c � 0.11, ac � 1.75. From the earlier chapters of the
book, it is clear that although Eqn. (11.15)
displays only the simplest canonical space-time scale

function ½½ðx, tÞ

 ¼
�

ðDx=Le Þ
2 þ ðDt=tlcÞ

2=Hc, t
	1=2

with a single spatial coordinate, it is not restricted to
this form and – if they are needed – generalizations
which maintain the observed scalings are straightfor-
ward. We deliberately chose to write this simplest
space-time law explicitly so that the basic structure
is as accessible as possible. Note that the spectral
density corresponding to Eqn. (11.15) is easy to deter-
mine: see Eqn. (8.16).

Although, due to its very definition, the theoretical
framework for understanding the climate-regime
variability is more tenuous than for the higher-fre-
quency weather and macroweather regimes, we never-
theless justified Eqn. (11.15) on the basis that the
climate shared certain key features with the weather
regime, in particular:

(a) A large number of degrees of freedom.
(b) That scaling holds over wide range (τlc/τc� 103–104).
(c) That the energy flux (modulated by the weather/

climate processes) is still the dynamical driver,
that there other coupled processes (which are
needed to account for the observables other than

the wind) which have analogous mathematical
structure.

(d) Basing ourselves on empirical evidence of
multifractal cascade statistics in space and in time,
we argued that the climate-regime dynamics were
again governed by multiplicative cascades and that
the full weather/climate process was the product
of a weather/macroweather process (out to τc) and
a climate process (from scale τc to τlc):
ew, cð�r, tÞ ¼ ew,mwð�r, tÞecð�r, tÞ(recall from Chapter
10 that the weather/low-frequency weather flux
itself factors: ew,mwð�r, tÞ ¼ ewð�r, tÞemwðtÞ).

(e) The assumption that the climate process is a
true space-time process like the weather, that
space and time are not disconnected as they are
in the macroweather regime, hence that a space-
time scale function exists. Eqn. (11.15) displays
only the simplest (canonical) version of this.

We have come full circle. We have systematically
investigated the space-time variability of the atmos-
phere over the full range of scales from seconds to
hundreds of thousands of years, from centimetres to
the size of the planet. To complete the theoretical
description, we display the weather (top) and macro-
weather laws (bottom) corresponding to Eqn. (11.15):

Sq,wðDr ,DtÞ ¼ ðsq,wÞ
q½½ðDr ,DtÞ
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The parameters (again for the temperature)
are: Hw � 0.5, C1w ¼ 0.087, aw ¼ 1.61, Hmw � –0.4,
s1,w � s1,mw � 5 K, τc � 40 years (at 45� N), and τi

< 1 s. Although these are somewhat simplified
(e.g. see Chapter 6 for the vertical, Chapter 8 for the
effects of advection) Eqns. (11.15) and (11.16) never-
theless capture in a nutshell the basic space-time
variability of the atmosphere over huge ranges of
space-time scales.
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Box 11.5 Summary of the main results of this book

We are living in a golden age of atmospheric data, models and theory; this manna has finally made it possible to
understand the basic space-time variability of atmospheric fields over wide ranges of scales. The key development is
the finding that the vertical stratification is scaling over much of its range, but with exponents quite different from
those in the horizontal. By (theoretically) eliminating the “meso-scale gap” predicted by isotropic turbulence theory,
it removes the last obstacle to recognizing the wide-range horizontal scaling of the atmosphere. A model which well
reproduces the empirical statistics involves dynamics which are governed by energy flux cascades in the horizontal
and buoyancy variance flux cascades in the vertical. This paradigm is a generalization of the classical higher-level
“emergent” turbulence laws of Kolmogorov, Obukhov, Corsin and Bolgiano; it implies that the solar energy flux
(modulated by clouds, water vapour and gases) drives the atmosphere up to planetary scales, and it predicts that
the lifetime of the largest structures is about 10 days. According to extensive statistical analysis of atmospheric
reanalyses (including the ECMWF, ERA40 and interim products and forecast models including GFS and GEM) this
and conventional modelling share many features including wide-range scaling and cascade structures with very
similar parameters.

When this model is extended beyond� 10 days (τw from the weather into the macroweather regime), it predicts
a “dimensional transition” resulting in a spectral plateau: a wide range with a roughly flat frequency spectrum
(although with long-range statistical dependencies – not a white noise!). Macroweather is thus a stable intermediate
regime (with fluctuations decreasing with scale, H < 0) whereas both weather and climate regimes are unstable
(with H > 0). This basic prediction has been statistically verified on very large-scale reanalyses (every 6 hours from
1871 to 2008) and on high-resolution paleotemperature series from ice cores; indeed, even the simplest model with
only three fundamental parameters reproduces the statistical variability of the temperature quite well up to time
scales of the order of decades (τc).

This scaling paradigm thus directly unifies both weather and macroweather dynamics. In addition, the physical
principle upon which it is based – scale invariance – can be used to extend the picture to include the even lower-
frequency climate regime: the three-regime model extending to about 100 kyr. The overall weather/climate model
is the product of a weather/macroweather process (flux) and a climate process, and the observables such as the
wind and temperature are obtained as fractional integrals of this flux. We have thus obtained fundamental high-
level emergent laws for the statistics of all orders, of the space-time fluctuations in all three regimes: the
“atmosphere in a nutshell.” With the exception of the weak intermittency temporal macroweather statistics, all
the variability was multifractal with parameters we estimated using a wide variety of data, reanalyses and paleodata.
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b model, 62
100, 400 kyr “problems”, 414
10Be, 420
solar reconstructions, 414, 415

14C
solar reconstructions, 414

18O, 391, 396
20CR, 103, 105, 279, 294, 374, 375, 405

See 20th century reanalysis
temperature example, 342
trace moments, 292

20CR data, 405
reanalysis 290, 291, 296, 342, 420
Levy collapse, 349
tw, 283

20th century
exception, 390
reanalysis, 15, 86
warming, 421

23/9D model, 186, 187, 213, 223
empirical status, 187
prediction, 216

2D turbulence
and weather, 275

3D isotropic turbulence
buoyancy subrange, 185
Obukhov and Bolgiano buoyancy

subrange, 185
var, 6

4D var, 6, 87, 100

absorption, 7, 107, 108
acausal, 168
simulations, 170

accelerometers, 288
activity
atmosphere, 60
small scale, 127

additive increment
notation, 67
process, 76, 144

“admissibility” condition, 154
advection, 95, 274, 302
EOLE, 225
horizontal, 302
operator, 29, 274
velocity, 306, 327
waves, 324

advection–dissipation equation, 36

aerosol, 11, 12, 99, 107, 211, 212, 216,
311, 428

density, 12, 211
empirical spectra, 12

age models, 402
aileron, 228
air density, 284, 286
resistance, 205
vertical, 209

aircraft, 6, 12, 42, 90, 134
biases, 90
campaigns, 201
commercial, 40, 201
critical distance, 40
data, 10, 119
drag, lift, 204
exponents, 205, 222
fluxes
divergence, 131

isobars, 40
measurements, 5, 90
cascade structure, 96

motion, 83, 159
NASA’s ER-2, 42
orientations, 97
scientific, 201
spectra, 10, 40
statistics
small scale, 94

trajectories, 43, 99
isobaric, 204

turbulence measurements
anisotropic scaling, 201

albedo, 412
surface, 7

algorithmic
complexity, 23

altimeter
satellite, 287

altitude dependence, 206
Altocumulus, 261
AMDAR, 41
amplification, 114, 411
factors, 411

AMV. See Atmospheric Motion
Vectors

analysis
scaling, 184

analytical approaches, 21

anemometer, 134, 298
hot-wire, 135

angle averages, 217
integrated exponent, 222

anisotropy
spatially varying, 262
trivial, 304
zonal/meridional, 87

Anisotropic Scaling Analysis
Technique, 211, 213

scaling systems
spectral scaling, 217

annulus, 339
anomaly
northern, 424

ansatz, 190
Antarctica, 42
anthropogenic effects
perturbation, 385

approximation
Boussinesq, 186

Arctic low, 347
ASAT, See Anisotropic Scaling

Analysis Technique
aspect ratio, 12, 190, 218, 222, 303, 309
horizontal, 218
precipitation, 103
structures, 100

astronomical forcings, 400
asymmetry parameter
Lévy, 142

asymptotic approximation, 323
Atlantic, 345
atmosphere–ocean
coupled models, 383

atmospheric convection, 215
dynamics, 185
fields
empirical spectra, 9

Atmospheric Motion Vectors, 305
science, 274
variability, 4
composite, 396
equations governing, 409

waves, 13, 318
attenuation, 323
attraction
domain, 76

attractor, 77

454



geometric, 140
Lorenz, 139
universal, 76

attractors
strange, 139, 140

Australia, 305
autocorrelation, 75, 81
cascades, 167
function, 256
normalized, 368

generator, 168
low frequency weather, 367
normalized, 75, 168
qth order, 75
usual, 75

autopilot, 43, 121, 227, 228
auxiliary variable, 143
avalanches, 130
AVHRR, 107, 260
cloud pictures, 262
image
infra red, 263

Azores high, 348

back-of-the envelope, 286
backscatter, vi, 11, 12, 21, 43, 46, 99,

107, 110, 211, 212, 213, 216,
222, 311

ratios, 214
ball
circular, 235
family of, 229
linear GSI, 232
polynomial, 234
quadratic, 234
quartic, 260
schematic, 238
unit, 192, 229

balloon, 2, 38, 39, 187, 225, 430, 441
constant density, 225
satellite tracked, 225

bare
properties, 70, 76

baroclinic instabilities, 282
barotropic, 21, 30
Barrow
Australia, 299

Barrow island, 300
basin of attraction, 74, 77
universal multifractals, 83

bathymetry, 17, 249
simulated, 255

bedrock, 396
behaviour
emergent, 23
wavelike, 304

binomial, 67, 114, 123
bins
logarithmically spaced, 178

biology, 77
biota, 391
bisectrix, 117, 220, 233
black body
thermal emission, 7

black-body radiation, 35
BO, 186. See Bolgiano–Obukhov
theory, 186

BO law
isotropic, 187

Bolgiano, ix, 11, 21, 46, 99, 132, 185,
186–189, 202–204, 301, 426,
440

Bolgiano–Obukhov, 99, 132, 188,
203, 301

empirical spectra, 188
exponent, 202, 216
law, 186, 187
length, 186
scaling, 189

Boltzmann equations, 23
boundary condition, v, 4, 15, 19, 37,

95, 99, 109, 274, 296, 302
anisotropic, 184
atmospheric, 106
cyclic, 221
forgotten, 184
layer, 276, 313, 318
quasi–constant flux, 131
vorticity, 31

Boussinesq approximation, 185, 186,
318, 320

box counting, 66, 165
functional, 66

Bragg scattering, 46
branch cut, 317
Brownian motion, 23, 65, 67, 76, 100,

145, 147, 450
Brunt–Väisälä, 193, 197
frequency, 198, 200, 282, 320

Bunde, 161
buoyancy, 185, 198
effects, 185
force, 43, 184, 185
flux, 184, 211, 216, 223
isotropic, 186
subrange, 190
variance, 186

butterfly effect
multifractal, 130

c(g)
locally characterized, 117
rain gauge data, 120
schematic, 116
universal, graph, 121

C1

laitude dependence, 96
variation, 297

calibration, 350
issues, 67
paleotemperatures, 404
statistical, 350
structure functions, 179

CAM, 133. See Correlated Additive
and Multiplicative

Canadian Global Environment
Model, 90

Cantor set, 199
capillary waves, 46
temporal, 291
weather, 288

cascade
phenomenology, 55
structures
definition, 87

catastrophic events, 130
Cauchy probability distribution,

198
causality, 275, 315, 317, 366, 367
CDC, 354
CDF. See cumulative probability

distribution function
Central England series, 396
central limit, 341
convergence, 79
theorem, 23–24, 80–81, 83, 111,

145, 367
multiplicative, 77, 79

Centre for Ice and Climate, 403
centred difference, 208
CH4, 403
chaff, 28
chaos, v, ix, 3–4, 23, 60, 77, 130, 139,

242, 333, 335, 428, 429
deterministic, 115
low dimensional, 329
revolution, 3

characteristic function, 73, 82, 363
second, 72, 93, 142

characterization
global, 80

Chernobyl fallout, 134
chlorophyll, 18
chronology
ice core, 396
variable resolution, 397

circumflex, 329
cirrus cloud, 242
civilization, 385
classical SOC, 130
turbulence, i, ix, x, 7, 11, 45,

94
wave equation
propagator, 315

climate
change, 338, 385
anthropogenic, 383
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climate (cont.)
definition, 337
statistical tests, 365

Climate Prediction Center, 103
continental, 344
definition, 337, 338
dynamics, 383
factor
lower frequency, 364
nonscaling, 412

forcings, x, 14, 400, 411, 412
index, 347
intermittency
geographical/spatial, 360, 387
maritime, 344

power law, 417
process
inner scale, 339
outer scale, 339
stochastic, 359

range, 176
regime, 362
beginning, 345
canonical scale function, 410
dynamics, 425
empirical scaling, 15
failure to detect, 424
formula, 409
instrumental records, 385
low frequency, 399, 405
outer scale, 411

scaling, 385, 416
simulations systems, 418
stochastic, 385, 416
transition to, 337

Climate Research Unit, 354
sensitivity
alternative definition, 416
deterministic, 416
restrictive sense, 416
stochastic definition, 416
stochastic, empirical, 413

transition scale
empirical, 389

transition time
latitudinal dependence, 391

variability
epoch to epoch, 385
fundamental law, 411
geographic, 387
Holocene, 385

closure theories
analytic, 21
error growth, 332
statistical, 3, 144

cloud
cover, 400
field, 106
scaling, 48

fraction, 67
liquid water density, 7, 108
examples, 248, 249
multifractal, 244

radiance field, 256, 262
surface, 108
morphology, 229, 260
picture, 8, 260
radiancy, 150
empirical spectra, 8

type, 256, 260
reflectivity, 216
simulation
example, 242, 251, 252
radiation field, examples,

250–253
sphero-scale, 253
unit ball, 250
3D, 245, 248; increasing sphero-

scale, 247, radiative transfer,
246, thermal IR, 247

CloudSat, 20, 211, 215
image, 215
scaling, 215
vertical cross-sections, 215

codimension
formalism, 115
function, v, 4, 113, 117, 128,

129, 138, 139, 143, 165,
299, 437

combination tones, 413
complex conjugate
eigenvalues of G, 231

component
along-track, 97

compressibility, 300
computer
fastest, 22
power, 22
resources, 384

conceptual models, v, 38, 59
conductivity, 403
conservation
canonical, 65, 68
constraint, 67
energy flux, 26
exponent, 93
flux, 114
mass, 26
microcanonical, 70
principle, 79

constraints
conservation, 83

continuity
equation, 29, 30

continuous scales
cascade process, 143
limit, 79
simulations, 167

spectrum, 413
contour integration, 316
contraction
group, 231
isotropic, 229

control runs, 339
GCM, 412

convection, 215
two-scale theory, 20

convective cell, 215
image, 215

convexity, 73, 82, 129, 137, 139
cascades, 83

convolution, 314
antisymmetric, 169
definition, 34
kernel, 143, 169
numerical, 175
periodic, 172
power law, 133
routines, 169

coordinate transformation
nonlinear, 191, 211, 213

Coriolis force, 29, 30, 31, 95, 183, 282,
296

correction
factors, 179
finite size effect, 172
scale dependent, 17

Correlated Additive and
Multiplicative, 372

processes, 131
correlated additive noise, 372
correlation functions, 34, 427
long range, 338, 345
spurious, 177

Corrsin–Obukhov, 13, 99, 133
law, 51, 211
anisotropic, 301

passive scalar, 10
CPC, 103, 105, 279, 295, 296, 355
network, 291

Cressman
modified scheme, 103

cross-correlations
altitude, pressure, 203
wind, altitude, 203

cross-over
spectral, 289

CRUTEM3, 290
data, 286

CSIRO, 419
cumulant, 72, 78
cumulative probability distribution

function, 115
Cumulus, 261
current
spectral exponents, 287
empirical, 287
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currents and winds
coupling, 378

curvature, 117
cycles
annual, 162
diurnal, 162

cylindrical projection, 9, 87, 219

D. See deuterium
Daisyworld, 383
Dansgaard events, 397
data
analysis, 150
assimilation, 6, 86, 383
3D or 4 D variational, 383

irregularly spaced, 351
daughter
eddies, 141

decorrelation bursts, 335
deformation rate, 282
delocalization, 317
DEM. See Digital Elevation Models
trace moments, 109

dendrochronology, 392
densification of scales
schematic, 79

density, 185
optical, 108

depth and chronology
relation, 396

depth dependency, 288
derivative
convergence, 27
fractional, 145
material, 36

deterministic
chaos, 330
forecasting, v, 1, 3, 21, 23, 25–26, 62,

71, 77, 115, 130, 139, 141,
193, 244, 274, 302, 329–330,
333, 335, 383, 413, 416–417,
436, 446

detrended data, 159, 279
Fluctuation Analysis, 159, 354, 423
Multifractal Fluctuation Analysis,

158
detrending, 14, 291, 351
annual cycle, 362
periodic, 354

deuterium, 396, 402
paleo temperatures, 395

deviation
percentage, 87

DFA, 289. See Detrended Fluctuation
Analysis

method, 345
diabatic processes, 95
diagnostic products, 371
diagonalization, 237

diagonalizing matrix, 234
differentiation operator
time, 274

diffusion
EOLE, 225
normal, 99

diffusive transfer, 108
Diffusive Filtering Theory, 200
diffusivity, 29, 38, 185, 429
molecular heat, 185

digital cameras, 8
digital elevation model, 17, 263
dilations
isotropic, 233

dimension of dressing effective, 131
dimensional analysis, 31, 37, 99, 184,

185, 186, 188, 193, 204, 222,
301, 324

transition, 4, 339, 340, 341, 344, 363,
366, 378, 379

3D/2D, 11
double, 341, 378
model, 379
schematic, 340
weather, 13

Dirac, 74, 137, 154, 157, 314
delta (d) function, 154, 157, 314

Direct Numerical Simulations, 21
DIRTH, algorithm, 46
disaggregation, 193, 194
discrete cascade, 79
continuous-in-scale limit, 81
models
particularities, 78

dispersion laws
emergence of, 322

dispersion relation, 315–317, 323, 325,
328, 336

classical, 324
gravito-turbulent, 324
gravity wave, 321, 325
scaling, 324

dissipation, 89, 106, 275
equation, 28
hyperviscous, 86
large scale energy flux, 39
length scales, 38
molecular, 32
range, 85, 110
fluid elements, 4

rate of energy, 136
scale, 29, 135, 198, 363
term, 28
viscous, 85

distribution
minerals, 70

diurnal cycle, 275, 291
chemical processes, 279
peak, 358

removal, 279
spike, 308
variation, 15, 277

divergence
dressed moments, 128
exponential, 142
logarithmic, 143
low frequency, 35
of moments, 125
statistical moments, 70, 165
empirical, 130, 134

theorem, 28
DNS. See Direct Numerical

Simulations
Dome, C, 403
Doppler shift, 45
double trace moment, 162, 163
wind data, 163

downscaling, 193
isotropic, schematic, 194
schematic, 194

DR. See dissipation range
drag, 204
drainage network, 63
dressed, 70, 76
complications, 70
fully, 125
partially, 125, 130, 165
properties, 70

dressing, 131
drifters, 288
driver
dynamical, 425

drop sonde, 45, 188, 189, 197, 198,
200, 201, 208, 216, 223, 321,
402

acceleration, 209
outages, 205
pairs, 209, 321
trajectories, 321

drops, 11
drunkard’s walk, 23, 33
illustration, 24

DTM. See double trace moment
dust layers, 396
dye, 28
dynamic equations, 106
variables, 204
structure functions, 207

dynamical equations
climate, 384
fields
trace moments, vertical, 210

meteorology, 21, 197, 444
systems
deterministic, 383
stochastic, 383

theory, 329
dynamics
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dynamical equations (cont.)
climate, 338
internal, 338

E(k), 5
Eady growth rate, 282
Earth
curvature, 101
curved surface, 195
rotation, 29, 31
simulator, 47

Earth Forecasting System, 1, 329, 335,
412, 415, 418, 419, 420, 423

eccentricity, 272, 399, 412
ECHAM4, 415
ECHAM5, 418, 419
ECHO-G, 418–420, 422–423
Haar, 421, 423

ECMWF, 8, 50, 86, 87, 89, 90, 95, 102,
103, 104, 105, 110, 222, 281,
282, 284, 293, 296, 303, 308,
310, 346, 349, 426, 427, 428,
431, 434, 441, 445, 446,
448

ECMWF interim, 45, 94, 279, 286,
295, 347

exponents, 291
multifractal parameters, 223
trace moments, 292
reanalysis, 9, 48; fields
spectra, 283

econometrics, 392
eddy
active, 62
anisotropic, 193
daughter, 62
hierarchy, 31
kinetic energy, 288
mother, 62
number, 63
parent, 70
probability, 63
sub, 62, 141
turnover time, 31, 32, 37, 57, 274,

288, 331
definition, 32
planetary scale, 284

effective scale function, 303
effective dimension of space
exponent, 366
extinction coefficient
spectrum, empirical, 281

schematic, 118
EFS. See Earth Forecasting System
bump, 418
global scale, 420
Haar, 421, 423

eigenspace, 19
eigenvalue, 195, 231, 234

complex, 237, 240
G, 233

eigenvector
G, 233
of G, 255

Einstein
summation convention, 53

EKE. See eddy kinetic energy
El Nino, 289, 345, 371, 372
Electra aircraft, 40
ellipses, 233
integrals around, 9

ellipsoid, 191, 231, 306
elliptical dimension, 36, 187, 192, 193,

195
ellipticity, 272
oscillations, 236

embedding space
dimension, 63, 65

emergent laws, i, vi, x, xi, 4, 81, 223,
274, 301, 314, 318, 322, 337,
338, 424–426

prototype, 301
turbulence laws, v, vi, 1, 21, 23, 27,

109, 162, 223, 274,
338, 363, 426

weather, 274
emission, 107, 108
black body, 7
scenarios
Greenhouse gas, 422

Empirical Orthogonal Function, 372
See principal component

energy
budget, 7, 106, 109
cascade
3-D, 32
indirect, 38

conservation, 36
conversion, 284
correlated, 331
dissipation, 32
lognormal, 77

eddy kinetic, 288
equation, 29, 30
forcings, 106
sinks, 106
sources, 106
sources and sinks, 29
transfer, 31
flux, 185
definition, 27
density, 67
direction, 48
estimate, 284
fundamental role, 284

Fourier-space, 31
incoming and outcoming, 413
ocean, 287

rate density. See energy flux density
sink
in 2D turbulence, 37

solar, 426
sources and sinks, 7
spectrum
decorrelated, 331
decorrelated/error, 333
local, 56

time series, 163
transfer
upscale, 48

transport
waves, 325

troposphere, 203
Ensemble Forecasting Systems,

xi, 1, 329
enstrophy
cascade
schematic, 36, 37

conservation, 36
definition, 36
flux density, 36, 51
Fourier-space, 36
sources, 39
spectrum, 44, 54

envelopes, 112
EOLE, vi, 38, 39, 225, 430, 441
EPICA Dome C core, 403
epistemological difficulty, 19
equality
in the sense of random variables,

187
sense of random variables, 416

equation
dynamic, 106
functional, 315
homological, 265
of the atmosphere and oceans, 26
parametric, 323
rescaling, 26
scaling, 187
Taylor–Goldstein, 318
thermodynamic, 185

equator, 217
equilibrium, 198
equipartition, 32
equivalent potential temperature,

208
ER-2, 203
aircraft, 132
Stratospheric spectra, 41
trajectory, 201

ERA 4, 40, 45, 90, 92, 294, 309, 426
Erik the Red, 420
error, 109
doubling time, 331
estimates, 87
growth, 330
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inverse cascade of, 372
phenomenology, 331
power law, 332
quasi-normal closure, 332
time, 331, 332

estimate
G, 256, 258

ETOPO5, 17, 109
Euler equations, 27
European Medium Range Weather

Forecasting Centre, 8
evolution of life, 383
exceedence probability distributions,

115
sets, 67

exception
20th Century, 390

exceptionalism, 394
expansion
asymptotic, 115
Taylor, 265

exponent
altitude dependence, 206
geographical distribution, 345
hierarchy, 65
linear, 144
moment scaling, 115
paleo, 387
scaling function, 144
spatial and temporal, 404
variability, 255

exponential decay, 226
external forcing, 411
functions of latitude, 297
scale, 87, 361

extinction coefficient, 244
effective, 279

extrapolation, 214
planetary scale, 214

extreme behaviour
fluctuations
precipitation, 101
scaling of, 132
wind, 132, 299

nonclassical, 70
events, 131, 136

extremely asymmetric, 80

factorization, 356, 361
hypothesis, 359

factor
slowly varying, 119

fall speeds, 101
farming
invention of, 385

Fast Fourier, 350
fat tailed distribution, 129, 130
fBm. See fractional Brownian motion
simulation, 148

feedback, 411, 419
factor, 417
mechanism, 413
negative, 383

Feigenbaum, 3, 77, 427
FIF. See Fractionally Integrated Flux
localized, 322
model, 301, 316, 341, 363, 370

numerical simulations, 342
on the sphere, 174
partial differential equations, 317
simulations, 146
space-time, 312
weather model, 279

filamentary, 244
filter
power law, 145

finite differences
cascades, 167
fluctuations, 153
sample, 129
size effects, 144, 167, 298, 307, 319
variance, 23, 145

first principles, 284
Fischer, 3
fixed point, 265
flash lamps, 13
flight corridors, 41
fLm. See fractional Lévy motion
simulation, 148

flops, 22
fluctuating variables, 318
fluctuation, 4, 150, 175
absolute differences, 84
analysis
joint space-time, 360

anomalously low, 404
Bursts of, 333
decadal and centennial, 352
decrease with scale, 339, 350
decreasing with scale, 175
definition, 4, 350
density, 28, 284
inviscid, 28
vertically stratified, 185

difference, 153, 350
eccentricity, 399
extreme, 129

exponent, 93, 117
DFA, 159

Haar, 179, 353
hybrid, 180, 353
increase with scale, 350
isotropic, 186
MFDFA, 178, 179
nth order Haar, 154, 176
poor man’s, 154, 179
potential temperature, 185
pressure, 185

quadratic Haar, 176, 361
rescaled, 190
Reynolds number, 321
saturations, 179
small, 185
space-time, 312
stable, 177, 339
structures, 87
symmetric, 317
tendency, 157, 179, 350
definition, 175

typical, 180
unstable, 177
velocity, 26
vertical, 96, 109

flux
climatological value, 84
conserved, 84
coupling, 379
dissipation scale, 85
dressed, 125
ECMWF, 291
effective, 85
empricial spectrum, 76
Fourier space, 27
nondimensional, 84
normalized, 85
of differences, 376
probability distributions, 93
scaling range, 84
variance, 185
vertical scaling, 206
zonal analysis, 90

foraminifera, 391
forcing
anthropogenic, 338
atmospheric, 106, 184
deterministic, 413
external, 417
fixed, 404
greenhouse gas, 413
mechanism, 14
narrow band, 400
obliquity, 412
orbital, 14
precessional, 412
radiative, 413
renormalized, 21
solar, 400
volcanic, 400

forecasting, vi, xi, xii, 1, 3, 22, 290,
314, 329, 371, 372, 428, 436,
438, 445

climate, 373
impossibility, 21
multifractal errors, 332
stochastic, 111, 275, 330

formalism
multifractal, 115, 140
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Fourier space, 5
generator, 256
GSI, 255
scaling, 29, 304
spherical shells, 11

Fourier transform
d-dimensional, 53
definition, 34
inverse, 34, 53
locality, 25, 31
numerical, 50, 222
Weierstrass function, 25

fractal
aircraft trajectories, 42
coastlines, 63
codimension, 65, 81
density of points, 64
dimensions, 16
embedding, 201
unique, 71

geometry, 65, 71
hierarchy, 74
interpolation, 402
set
codimension, 63
geophysical models, 63
marginal, 65
sparse, 74

river basin, 63
layer structure, 200
networks, 347
processes
Weierstrass, 25

support, 61
topography, 63
trajectory, 96

fractional
Brownian motion, 147
Brownian noise, 144
derivative, 314
asymmetric, 314
symmetric, 314

differential equation, 314
integral, 426
integration, 142, 145, 177, 222,

332, 369
cascade process, 27, 145
causal, 323
convolution, 27
Riemann–Liouville, 314
space-time, 312

Laplacian, 316
Lévy motion, 145, 147
Lévy noise, 144
Liouville, 314
on a sphere, 174
over waves, 325
propagators, 323
wave equation

empirical, 330
fractionally integrated flux, vii, 14,

15, 27, 76, 145, 147, 153,
162, 163, 195, 222, 317,
359, 371

causal, 317
fragmentation ratio, 72
free atmosphere, 86
fronts, 21
frozen turbulence, 274
fuel consumption, 40, 42
function
characteristic, 142
generalized, 74
monofractal, 65

functional box counting, 66, 67

Gage–Lilly, 39
model, 37

Galilean, 21, 31, 300, 302, 430
invariance, 300, 302
transformation, 302

gamma function, 314
gap
meso-scale, 275

GASP, 38, 39, 40, 47, 183, 429,
440, 441

spectrum, 39, 40
Gaussian, 24, 80, 142
limit, 364
processes, 111, 345
quasi, 4
white noise, 9, 355, 371

GCM, xi, xii, 14, 15, 109, 194, 338, 346,
384, 385, 389, 391, 392, 399,
404, 411, 415, 416, 418, 419,
423, 424, 447, 449
See Global Climate Models

characteristics, 420
complex, 383
control run, 339, 412, 417
simulations, Haar, 421
unforced, 412, 417

GEM, 90, 91, 92, 291, 294, 295
See Canadian Global
Environment Model

data
trace moments, 293

GEMS, 426
General Circulation Models, 383
generalized scale invariance, 4, 19, 20,

215, 229, 258, 409, 427, 437,
438, 441–443

generalized
climate, 409
function, 74
notion of scaling, 2

generalized scale, 229
unicity, 230

generator, 19, 20, 63, 72, 74, 79, 80, 93,
122, 125, 141, 143, 150, 163,
168, 169, 177, 187, 191, 195,
219, 223, 231, 232, 237, 258,
259, 260, 301, 304, 312, 313,
314, 317, 323, 324, 328, 332,
339, 363, 366, 372, 379, 435

autocorrelation, 367
CAM, 373
dual, 256
effective, 302
FIF, 318, 373
infinitesimal, 263, 270
infinitesimal scale change, 263
Levy, 122, 163
low frequency weather, 341
nonlinear polynomial, 192, 265
scale changing group, 230, 268

geographical distribution
multifractal, 385
scaling exponents, 388
sets, 71
variability, 357

geomorphological features, 146, 148
geophysical flows
dimensionality, 36

geopotential, 95, 133, 280, 282
anomalies, 134
height, 9, 96, 298
horizontal spectrum, 218
problematic, 222
spectrum, 10

geostatistics, 65, 66, 67
geostrophic equilibrium, 287
turbulence, 3, 427, 429, 440

geosystems
fractal, 3

GFDL, 419
GISP, 399
GISP2, 399
GISS, 354, See Goddard Institute for

Space Studies
glacial/ interglacial
transitions, 383
window, 406, 410, 424

global, 355
description, 74
Climate Model, 338, 383, 411, 418

Global Forecasting System (GFS), 90,
91, 92, 291, 294, 295, 426

trace moments, 293
Historical Climatology Network, 289
models, 5
scale fields
gridded, 10

surface series
instrumental, 394

temperature, 404
warming, 383
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Goddard Institute for Space Studies,
374

golden age, 4, 5, 426
resolution revolution, 4

GPS, 41, 188, 201, 440
gradient operator, 30
vector, 85

graphical construction, 65, 70, 74
Grassberger–Procaccia algorithm, 3
gravito-tubulence
dispersion relation, 324, 325

gravity, 11, 26, 29, 183, 184, 186, 189,
193, 198, 200, 212, 321, 325,
329, 432, 441, 442, 446

centre of, 202
direct effects, 185
linear, 197
quasi-linear, 188, 213, 324
standard linearization, 318
theory, 324
wave, 189, 318

Green’s function, 314, 315, 323, 340,
357

greenhouse gas, 404, 413, 418
emission scenarios, 422

Greenland, 343, 390, 405, 424
core, 386
Holocene, 385
Ice core Project, 396

grid
active, 185
passive, 185
spherical harmonic, 86

GRIP, 15, 387, 388, 397, 402, 403, 405
See Greenland Ice core
Project

data
examples, 386, 408

calibration, 405
high resolution ice cores, 385, 387

ground network
temperature, 291

group
one-parameter, 229
saturation, 324
semi, 229
velocity, 323–326

growth
nonlinear, 31

GSI, 195, 309 See generalized scale
invariance

axiomatic definition, 229
basic elements, 229
data analysis, 255
definition, 229
elements, 229
Fourier space, 255
linear, 232
linear approximation, 266

linear, 262
nonlinear, 262, 263, 268
nonlinear system, 265
quadratic, 265, 266, 268
system, 232

GSI Ball Parameters, estimation of,
259, 261

contours,
in 2D
linear
fourth order, 269
nonlinear illustration, 266
scale functions, 236

system, 231
GTOPO30, 17
Gulfstream, 4, 40, 48, 59, 188, 343
4 aircraft, 188, 343

gust, 279, 298
spectrum, empirical, 281

H
horizontal wind, 189

Haar, 422
calibration, 353
definition, 353
examples, 178
fluctuation, 5, 353
orthogonal decomposition, 353
quadratic, 353, 410
examples, 181

structure function, 157, 175, 178,
345, 353

temporal, 361
trends, 181

Haar wavelet, 364, 394
interpretation, 157

HadCM3, 419
HADCRUT data, 286
HADCRUT3, 289, 354,

374, 375, 395
HAMOCC5, 418
Hann windowing, 50
hard statistical behaviour, 130
harmonics, 277
Harrison, 294
Hausdorff dimension
measures, 165
negative, 71

heat diffusion
equation of, 393

Heaviside function, 169, 171, 314, 317,
319, 324, 335, 366

heavy water, 396
helicity, 215
heterogeneity
strong, 6

hidden density, 127
factor
schematic, 127

high altitudes, 189
high variability hypothesis, 424
histograms, 119
scale dependency, 121

historical overview, 23
isotropy, 183
records, 391

hockey-stick, 391
“Hölder” exponent, 137
hole, 65, 148
Lévy, 123, 150
simulation, 148

Holocene, 385, 386, 387, 388
anomalous, 399
exception, 385
Greenland, 14
exceptionalism, 386
stability, instability, 385, 387, 391

homological equation, 265
HOPE-G, 415
horizontal scaling, 6
horizontal–vertical analysis, 211, 212, 214
horizontal and vertical cascades
lidar, 213

horizontal anisotropy, 218, 221
convergence, 279
wind, 320
vertical, 209

hot wire anemometer, 162
probe, 134

humidity, 9, 91, 97, 159, 204, 208,
222, 338

aircraft spectrum, 10
divergence of moments, 134
horizontal spectrum, 218
spectrum, empirical, 280

hummer, 298
hurricane, 275
Hurst
exponent, 26, 94
Harold E., 94

hybrid
structure functions, 179, 180,

329, 354
hydrology, 315
surface, 15

hydrostatic equilibrium, 21, 36, 38,
94, 320

hyper–viscosity, 85, 220
hyperbolic distribution, 129, 130
functions, 235

hypersurface, 259
hyperviscosity, 37, 47, 284
artefact, 89
coefficient, 85
effects, 50

ice flow and compression, 396
ice ages, 383, 413
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ice core, 134, 347, 351, 383, 391, 396
calibration, 396
composite, 399
particulate concentrations, 416

ice layers, 396
ice melt stratigraphy, 391
Iceland, 347
Icelandic low, 348
ideal gas, 29, 185
equation, 185

identity, 234
matrix, 190, 191

impulse response function, 314, 315
In situ measurements, 5
networks, 5

incompressibility
equation, 28
Navier–Stokes equations, 26

independent identically distributed,
67, 79

processes
mixing, 79

indicator function, 144, 391
inequality, 72
triangle, 230

inertia
atmosphere, 184
drop, 12
probability distribution, 136
range, 2, 7, 26, 27, 32, 44, 48, 50,

135, 136, 184, 201, 433
Inertial Navigation System, 201
infinitely divisible, 79, 125, 143

See continuous in scale
infrared catastrophe, 35, 56
injection rate
energy, 32

inner
viscous, 27

INS. See Inertial Navigation System
insolation, 413
instability, 3, 130, 177, 282
baroclinic, 282
convective, 198
internal, 62
numerical, 177

instrumental records
climate, 385

instruments
towed, 287

integral D dimensional, 232
integral operator
Hth order, 314

integration, 145
defining, 231
fractional orders, 145

interacting processes, 80, 340
interface, 63
interglacial, 14, 390, 396, 404

Holocene, 390
window, 396, 404, 405

Intergovernmental Panel on Climate
Change, 337

interim ECMWF, 8
intermittency
analyses, 354
climate, 406
correction, 7, 10, 39, 43, 177,

211, 228, 277, 282, 303,
332, 415

DFA, 161
exponent, 350
layers, 209

low, 341
multiproxy, 394
ocean, 288
oceanic induced, 379
on/off, 62, 81, 100
outages, 207
rain, 100
resolution, 402
space-time, 301
spatial, 365, 419
spotty, 62
temporal, 384, 406

internal structure
simulation, 144

interpolation, 402
artefacts, 208
fractal, 402

intersection theorem, 65, 72, 74
invariants
rotational, 233

inverse gaussian, 143
visibility spectrum, empirical, 281

inversion algorithms, 6
inviscid flow, 318
IPCC, 338
AR3, 392, 414
AR4, 413, 415

IPSL, 405, 419, 420, 422
climate system, 418
control run, 390

IPSL GCM, 15, 418
IR. See inertial range
IR radiances
MTSAT, 305

irradiance, 414
irregular resolutions, 205
irregularly spaced data, 175
irrotational components, 86
flow, 318

isobaric, 47
aircraft legs, 10
exponents, 204
surfaces, 47, 222

isobars, 38, 97, 159, 201
aircraft, 11

fractal, 42, 43
fractality, 43
sloping, 10, 94, 201
statistics, 41

isoheight, 10, 41, 42, 43, 50, 95
contours
fractal, 18

distinguishing isobars, 41
exponent, 223
theoretical exponent, 42

iso-lines, 190
isomachs, 42
isopycnals, 38
isotope records, 396
isotropy
2D/3D models, 183
assumption, 183
ball, 230
empirical status, 184
historical overview, 183
horizontal, 190
local, 190
quasi, 11
scale reduction, 190
scaling turbulence
paradigm, 183

simulations, 197
spectrum, 3D, 11, 217
terms
hierarchy, 184

theory, 187
three-dimensional, 183
turbulence, 2, 3, 10, 21, 33, 37,

39, 55, 58, 185, 187, 212,
213, 221, 225, 276, 400, 426,
430, 441, 446

Jacobean, 232, 263, 272
Jensen’s inequality, 165
jet streams, 21, 189
Jimsphere, 186, 219
Jordan matrices, 231
JSBACH, 418

K(q)
schematic, 129

Kadanoff, 3, 437
Kalman filter, 86
Karmen–Howarth equations, 21
Kelvin waves, 329
kinetic energy
spectrum, 46

“Koch” curve, 63
Kolmogorov, 2
equation, 32
law, 2, 4, 21, 26, 27, 29, 35, 59, 77,

84, 144, 186, 222, 284, 301
scale, 135
spectrum, 41
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Kolmogorov–Bolgiano–Obukhov
model, 187

Kraichnan, 3, 21, 37, 51, 183, 332, 430,
440, 441, 446

law, 37
Krakatao, 416
Kriging, 5, 65, 100
Krivova series, 414
Kurtosis, 175, 351

laboratory applications, 135, 183
lag, 201

vertical plane, 41
Lagrangian, 301, 303, 308, 312, 326
derivative, 32
frame, 323
statistics, 301
temporal scaling, 302

lake varves, 391
land mass, 64
distribution, 64
use, 418

Lander, 294
LANDSAT, 8
land–sea difference, 345
Laplace transform, 35, 72, 116, 142
Lévy, 142

Laplacian, 72, 88, 102, 145, 291, 311,
345

finite difference, 85
fractional, 145, 316
horizontal wind, 106

lapse rate
dry adiabatic, 197

large–scale effects, 167
latent heat, 71, 198
latitude, 355
latitudinal dependence, 296
RMS Haar, 355
variations, 279
land/ocean, 296

law of proportional effect, 77, 79
climate, 338
weather, 338

layer
intermittent, 209
logarithmic, 188
stable, 188, 197
thin, 188

Lebesgue measures, 5
Legendre polynomial, 174
transformation, 116, 119, 123, 162
schematic, 116

twice iterated, 116
lens cap, 19
level of activity, 4, 74
Lévy, 122, 142
collapse, 93, 348
error, 349

time, 349
distribution
extremely asymmetric, 80

flights, 145
index
holes, 124, 150
noise, 145, 318, 340
convolution, 143
fractionally integrated, 167

processes, 100
additive, 145
precipitation, 105
trace moments, 112

random variable, 317
extremal, 142

variables
extremal, 148

a, 65
l’Hopital’s rule, 74
lidar, 310
aerosol backscatter, 211, 216, 311
backscatter, 12, 99, 107, 222
horizontal analysis, 213
vertical analysis, 213

lifetime, 284, 410
eddies, 13
planetary structures, 284
structures, 308

lift, 204
Lincoln, 294
linear approximation, 321
linear GSI
balls, schematic, 232
limitations, 262
trajectories, schematic, 232

Liouville, 314
liquid water, 101, 107
divergence of moments, 135

lithosphere, 70
Ljundquist, 393
local
anisotropy, 189

localization
Fourier, 175

logarithmic corrections, 37
Log-Gaussian, 125
log-Lévy, 93
distributions, 93

log-normal, 70, 77, 122
approximate, 79
criticized, 78
model, 59, 138
pure, 80

log-Poisson, 101, 123
models, 101

long range statistical correlations, 61, 338
dependencies, 112

long–term statistics
weather, 14

longitudinal wind, 202, 204
Lorenz, 3, 139, 330, 332, 428, 446
model, 330

low frequency variability pre-1900,
423

autocorrelation, 341
function, 367

bare behaviour, 366
dressed behaviour, 366
exponent, 341
fundamental law, 362
intermittency, 341, 358
plateau, 15, 153
process, 356
space–time fluctuations, 409
space–time relations, 360,

365
spatial variability, 356
spectral density, 358
spectral exponents, 403
trace moment analyses, 360
transition scale, 279, 281

low frequency weather, 404
emergent laws of, 337
outer limit, 350
temporal variability, 350

low variability hypothesis, 424
Lower Saxony, 109
topography, 17

Lumley–Shur model, 188, 326
Lyapunov exponent, 331
divergence, 331

Mach number, 43, 300
macroscopic laws, 23
Magneto-Hydrodynamic, 125
Mandelbrot, 3, 16, 63, 65, 71, 77, 78,

100, 139, 400, 428, 432, 433,
435, 451

illustration, 24
set, 23

manifolds, 262
map, 77, 274
factor, 87
period doubling, 3
projection, 50

Maritime–Continent
model, 379, 380

maritime exponent, 396
markers
in ice cores, 396

Markov process, 291, 400
Markov-Switching Multifractal, 142
mass conservation, 318
Mathematica, 172
code, 169, 172, 319

mathematical structure, 425
matrix, 191, 230
effective, 304
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matrix (cont.)
rotation, 235
stretch, 235
symmetric part, 234

Maunder minimum, 414, 415, 420
Max Margules, 21
maximum likelihood, 131
measurement
defining, 231
mathematical, 231
multifractal probability, 28
network, 331
analysis, 64

singular, 140
mechanisms
amplification, 415
external, 411
internal, 411

Medieval Warm Period, 392, 393
memory, 319
long-term, 345

meridional
trace moments, 88
winds, 50

meso beta scale, 47
Mesoscale convective complex,

261
mesoscale gap, 275, 276, 426
empirical, 276

MET. See Multiplicative Ergodic
Theorem

violation, 331
meteorological fields
divergence of moments, 134
measuring network, 64

meteorology
dynamical, 197

metric
Euclidean, 229

Mexican hat, 154, 158, 175, 350
wavelet, 157

MFDFA. See MultiFractal Detrended
Fluctuation Analysis

examples, 178
quadratic, 178, 181
Haar comparison, 180
technique
examples, 178

Mg/Ca variation in shells, 391
microcanonical, 70, 116, 129
constraint, 129, 137
definition, 70
most extreme, 70
rain, 101

micrometeorology, 2
microwave, 108
channels, 7
empirical spectra, 7
passive, 106

Microwave Sounding Unit, 348
Mie scattering, 7
MIES sensor, 18
Milankovitch, 14, 398, 400, 412, 444,

448, 450, 451
frequencies, 400
theory, 400

Millenium project, 420
simulations, 423

mils
definition, 396

Mitchell, 400
model toy, 141
phenomenological, 215

MODIS, 8, 18, 428, 434
radiances
empirical spectra, 18

modulus
cross-spectral, 227
maximum, 158

molecular diffusivity, 28, 85
velocity, 137

moment scaling exponent, 72
definition, 72
function, 81
properties, 73

moments, 159
bare, 125
collapse, 93
converge, 131
critical, 125
divergence, 65, 125, 130, 175
divergence of, 351
dressed, 125
negative, 81
trace, 128

momentum, 26, 318, 321
conservation, 318
equation
linearized, 321

Monin, 2, 75, 185, 186, 281, 284, 428,
432, 441, 445

monofractal, 113, 145, 341
approximation, 73
DFA, 161
models, 67

Monte Carlo differential rotation
method, 258
simulations, 368

monthly surface temperature, 374
Montreal, 8, 277
Moore’s law, 22, 146, 195
morphology, 19, 20, 146, 195, 233,

244, 251, 328
cloud, 229, 256
land surface, 256
simulation, 257
waves, 325

mountain chains, 148

mountainous regions, 8, 255
MOZAIC, 38, 40, 48, 183
radar, 102
spectra, 40

MPIOM, 418, 419
Mt. Multi, 255
Mt. Washington, 298
wind, 299

MTSAT, 13, 14, 105, 106, 107, 291, 296
horizontal space and time, 294
images, 291
space-time diagrams, 311
thermal IR, 294, 305
trace moments, 307
waves, 328

Multi Fractal Detrended Fluctuation
Analysis, 176

multicentennial, 14, 339, 385, 391,
393, 412, 415, 421, 423, 424

variability, 385
multidecadal, 14, 339, 385, 412,

421, 424
scaling, 383

multifractal, 67, 172, 407
anisotropic, 167, 271
butterfly effect, 130
calm, 137
cascade equation, 83
classification, 137
cloud
stratified, schematic, 194
self-similar, self-affine

comparison, 196
clouds, 19
compound Poisson processes, 131
conditionally hard, 131
continuous in scale, 141
anisotropic, 20

data analysis problems, 255
Detrended Fluctuation Analsysis,

153, 161
discrete in scale simulation, 141
Explorer, 239
fields
co-evolution, 334
geometric, schematic, 137, 140
Isotropic, 148
nonconservative, 145
nonlinear GSI, 267
numerical, 102
phase transition, 119, 128, 130,

159, 162
second order, 129

process
divergence of states, 332
extremes, example, 243

predictability decay, 334
quadratic GSI, 269
resolution dependencies, 109
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self-similar, 167
simplest example, 70
simulation on a sphere, 148, 151,

155, 174
singular limit, 74
solutions, 28
unconditionally hard, 130
universal, 70
varying G, 237
unit ball, 237

waves, 324
multimillenial, 14, 339
scaling, 383
variability, 385

multiple scaling regime
model, 14, 400
scattering, 244

multiplicative cascade, 110
direct results, 76
discrete in scale, 61
models, 22, 59, 77, 101
pure, 84
signature, 110

Multiplicative Ergodic Theorem, 330,
335

increment
notation, 67

processes, 77
without scaling, 93

scaling
climate, 384

multiplicity, 114
multiplier, 70, 72, 75, 113
constrained, 76
method, 72

multiproxy, 383, 390, 393, 394, 395
calibrations
extrapolation, 392

intermittency, 394
northern hemisphere, 404, 423
post 2003, 405, 421
pre-2003, 396
series
the original, 391

trace moment, 395
multiscaling regime model, 338
multivariate, 111

NAO. See North Atlantic Oscillation
NASA GISS, 289, 354, 375, 395
Nastrom-Gage, 44
spectrum, 44

National Academy of Science
US, 337

National Climatic Data Center, 374
National Weather Service, 90
natural variability, 385, 424
Navier–Stokes, 26, 27, 31, 36, 50, 51,

184, 331

equations, 26, 27, 50, 184, 331
NCAR/EOL, 403
NCDC. See National Climatic Data

Center
NCEP reanalysis, 374
network
holes, 347
of gauges, 100
probability, 65
sparse, 63, 65

NGRIP, 388, 403 See North GRIP
Nimbostratus, 261
Nîmes, 120
NOAA, 103
CDC, 354, 356, 395
NCDC, 289, 290, 375
temperatures, 286

NOAA-9 satellite, 260
noise, 143
Lévy, 142
white, 143

nonathropogenic driver, 415
nonconserved processes
schematic, 117

nondegeneracy, 137
nondiagonal G, 234
nondimensionalization, 305
nonlinear
equations, 77
fits, 87
generators, 192
GSI
simulation, 267
spirals, 267

interactions, 95
mixing, 79
models, 3
revolution, 3, 23, 383
system, 3
terms, 28, 31, 36, 47, 58, 185, 186, 321
transformations
structure functions, 212

nonstationarities, 251
MFDFA, 161

normalization, 341, 366
cascade, 166
causal, 319

normalization constant, 272
3D, 273
factor, 169
multifractal simulations, 271

North Atlantic Oscillation, 347, 348, 417
North GRIP, 408
northern hemisphere, 355, 390
multiproxy, 404

notation
codimension, 140
turbulent, 140

Novikov, 60, 62, 70, 77, 432

numerical
algorithm, 1
efficiency, 182
forecast model, 87
integration, 21, 330, 368
models
fluxes, 84

simulations, 144, 169, 342
causal processes, 319
truncations, 22

weather models, 6, 47
weather prediction, 21

Nyquist wavenumber, 10, 14, 218, 220

obliquity, 14, 398, 412
band, 398

observables, 76
observer, 67
Obukhov, ix, 2, 7, 11–13, 21, 26,

29, 31–32, 46, 51, 59, 77, 85,
99, 107, 132, 186–189,
202–204, 216, 301, 426, 428,
430, 432, 441

Obukhov and Bolgiano buoyancy
subrange, 185

ocean, 198, 355
atmosphere model, 344, 379–381
cascades, 287
circulation, 345
colour, 18, 99, 428
empirical spectra, 18

core, 396
current energy flux, 288
spectrum, 287

drifters, 288
energy flux, 287
intermittency, 288
land fraction, 297
LO09–14, 386
midlatitude, 280
plateau
model, 378–381

quasi-geotrophic (QG) theory, 287
regime
outer scale, 288

spectral plateau, 286, 288
surface, 18, 301
turbulence, 18, 291
velocity spectrum, 287
wave spectra, 183

oceanic
intermittency, 379
spectrum, 47

“ocean-weather” – “ocean-climate”,
287, 290

transition time, 288
octave, 31, 32, 36, 37, 39, 45, 50,

55, 356
Oklahoma, 107
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Olivia
tropical storm, 299

operator
difference, 351
fractional, 145
Haar, 176
infinitesimal, 263
summation, 351
time derivative, 314

optical density, 244
thickness, 108

optimal interpolation, 65, 100
“optimal” range, 97, 161
OPYC, 419
OR, 111, See Ornstein–Uhlenbeck
OR process, 112
orbit averages, 215
orbital
forcing, 338, 385, 412
scaling of, 411

frequency, 413
Haar, 412
radar, 102
TRMM, 102

Ornstein–Uhlenbeck, 89, 111, 286,
289, 344, 349, 356

Fourier, 371
generalization, 372
hierarchy of, 338, 400
spectrum, 341

ores, 70
orientation, 233
orographic process, 255
oscillations, 318
OU structure function, 356
outages, 205, 208
outer scale, 97, 360
cascade, 31
climate, spatial, 409
effective, 84, 110, 214, 409
empirical, 84
precipitation, 103
temporal, 366

overbar notation, 157

p model, 70
pacemaker, 413
Pacific Decadal Oscillation, 289, 348,

356, 372, 417
Pacific Ocean, 46, 59, 106
Pacific Winter Storm 2004, 10, 41,

97, 201
pair method, 205
pairs
of points, 139

paleo
cascades, 408
climate
data sets exponents, 403

data, 383, 402
Holocene, 388
ice core, 351
reconstruction
Vostok, 397

temperature, 396
Antarctic, 351
Arctic, 351
calibration, 404
composite spectrum, 14
divergence of moments, 134
exponents, 405
geographical distribution,

385
Greenland, 343

variability
peak, 413

parachute drag, 209
paradigm, 426
isotropic turbulence, 21

parameter
critical, 266
infinity, 76

parametrization
rain, 100
subgrid, 338

particle
large numbers, 23
trajectory, 63

particulate concentrations
ice core, 416

partition function, 86, 139
passive microwave, 296
passive scalar, 7, 28, 85, 95, 107, 108,

211, 213, 223
clouds, 7
density, 85
fields
modelling, 317

simulation, 19, 142
variance, 28–31

patch, 12, 317
Pauli matrices, 232
payloads, 187
PC. See principal component
PDMS. See probability distribution

multiple scaling
method
thermodyanmic variables, 120
wind, 120

PDO, 356, See Pacific Decadal
Oscillation

Haar, 348
Peano curve, 63
periodicity, 181
artificial, 343
removal, 279

perturbation, 76, 318, 355
empirical, 322

nonscaling, 181
techniques, 27

phase
cross-spectral, 227
function
scattering, 20

relations, 204
altitude, wind, pressure, 228

space, 139
densities, 140

transition, 76, 118, 130, 159, 431, 439
first order, 128, 130
multifractal, 118

phenomenological fallacy, v, 19, 215
phenomenology, 215
photography, 8, 11, 13, 107, 108
phytoplankton, 18, 435
plane parallel
clouds, 109

planetary scales, 2, 109
structures, 284

planktonic, 399
plateau, 339
spectral, 284, 338

Pleistocene, 383
Poincaré, 265
theorem, 266

points
triplets, 206

Poisson, 125
bracket, 265
statistics, 12

polar angle, 211
generalized, 271
coordinates
spherical, 272

polarization, 7, 106, 107
relations, 321

pole, 217, 317
political implications, 393
pollen, 391
pollution, 43, 134, 438
Poor Man’s
Structure functions, 175
wavelets, 394

potential temperature, 10, 97, 133, 159,
185, 198, 204, 205, 320, 325

equivalent, 198
profile, 324
variance, 185
vorticity, 200

power law, 5
convolution, 133
correction, 169
error growth, 332
filter, 145
geopotential, 131
molecular velocity, 137
rainrate, 133
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transformation, 103
truncated, 169
velocity differences, 131
vorticity, 131
wind, 133

power spectrum, 19, 35, 51, 217
anisotropic scaling fields, 221
empirical, cloud, 257
simulations, 167

precession, 14, 398, 412
precessional bands, 398
precipitation, 7, 99, 108
cascade structure, 100
CPC data, 100
field
climate transition scale, 390

Haar structure function, 355
products, 291
properties of, 100
radar, 106, 107
rate, 279
temporal trace moments, 293

predictability, 275, 314, 329, 332
in turbulence, 331
limits, 329
multifractal cascades, 333
spectral analysis, 333

prediction
GCM, 424
multifractal, 333

prefactors, 179
logarithmic, 114

pre-industrial, 404, 416
pressure
gradient
vertical, 197

proxy, oceans, 287
spectra, empirical, 280
systems, 281

primitive equations, v, 21, 28, 29
Principal component, 348, 355,

356, 383
analysis, 392
SST, 355

probability, 113
algebraic, 70, 129
conditional, unstable layer, 200
densities
Fourier transforms, 72

distribution
exceedence, 115

exponents, 65
fat tails, 101, 131
laboratory velocity differences, 136
long tails, 101
power law, 129, 131
thin tails, 101

probability distribution multiple
scaling, 119

power law, 130
velocity, 136
space, 118
infinite dimensional, 4

tail
algebraic, 175, 351
extreme, 70, 121

process
binomial, 67, 114
causal, 167
coupled, 425
erosional, orographic, 255
periodic, 400
quasi-periodic, 338
universal multifractal, 145
weather/low frequency weather, 425

prognostic
equations, 274

projection
cylindrical, 219

propagation
vertical, 324

propagator, 315, 326, 366, 371
causality, 316
fractional wave equations, 323
localized, 323
mixed turbulence and fractional

wave, 317
scaling, 319
singular, 315
space-time, 325, 336
turbulence, 316
turbulent, 327
wave, 327
wave equation, 315, 316
wavelike, 324, 336

properties
bare, 70
dressed, 70

proxy data, 385
estimates, 392
geographically representative, 392

pseudo-proxy, 392
pseudo-scaling, 364, 369, 378, 379
spectral, 368

pulse in pulse, 60
pushback transforms, 31
PV. See potential vorticity

QG. See quasi-geostrophic
quadratic
balls, 234, 260
forms, 233, 234
Haar, 176, 353
fluctuation, 176

invariant, 36, 185
map, 23
mechanics, 1, 23
MFDFA, 178

quasi-Gaussian, 51, 341, 363
framework, 94
processes, 111, 286, 344, 386

quasi-Geostrophic
surface turbulence, 287

quasi-normal approximation, 21
trace moments, 112

quasi-geostrophic, 21, 31, 36, 47, 184,
188, 287, 444

equations, 184
oceans, 287

quasi-steady state, 185
quaternion
decomposition, 270
pseudo, 232, 234

QuickScat, 47, 48, 50, 431
quiescence, 60

radar
clear air, 45
ground, 101
networks, 102
reflectivity, 101
space, 101

radar reflectivity, 67
box counting, 66

Radar reflectivity of Rain
CloudSat, 211
divergence of moments,

135
radiance, 307
downward, 8
empirical spectra, 7
long, 106
microwave, 347
remotely sensed, 6
satellite, 67
short, 106
spectra, 7
wide range scaling, 8

radiance fields
cloud, 262

radiation
outgoing, 345

radiative fluxes, 221
radiative forcing
climate, 410
comparison, 412
volcanic, 416

Radiative Forcing Effects
Committee on, 337

radiative transfer
emitting. absorbing, 244
fractal, 108
modelled, 242
multifractal, 108
multifractal clouds, 244
radiative transfer, 20
simulations, 242
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radiosonde, 134, 187
dataset, 11

rain
CPC
spectrum, 281

20CR, 293
spectrum, 281

ECMWF, 293
spectrum, 281

fractal, 100
Haar structure function, 355
analysis, 281

holes, 101
NOAA’s CPC, 293
outer scales, 103
passive scalar, 101
power law probability tails, 133
satellite, 103
spectrum, empirical, 280
stratiform, 103
TRMM radar, 293

raindrop
distributions
empirical spectra, 13
nondimensional, 131
probability distributions, 133

volumes
of moments, 135

rain gauge, 121
hourly, 120
probability distribution, hourly,

133
Rain rate, 100, 102, 133, 333
divergence of moments, 135

rainfall
areal, 99
record, 300

random
Dynamical Systems, 383
factors, 114
measures, weak limit, 78
seed, 148, 150
variable
Lévy, 142
multiplying, 111

rare events, 130
Rayleigh scattering, 108
rays, 323
reanalysis, 6, 45, 86, 134, 217, 426
cascade structure, 87
data simulation, 342
details, 8
ECMWF, 222
fields
empirical spectra, 9

NCEP, 345, 390
pioneering studies, 86
products, 86
scale, 50

spectral exponents, 218
statistics, 10

recentring, 80
recipe
MFDFA, 161

reconstruction, 154
criticism, 392
drops, 12
multiproxy, 421
post-2003, 393, 395
pre-2003, 393
raindrop, 3D, 13
solar, 414
the attractor, 3
volcanic, 416

record
rainrates, 300
wind speed, 298

red noise, 392
reflectivity
radar, 101
TRMM, 102

regime
subcritical, 198
supercritical, 198

regional data, 363
regressions
multivariate, 194
nonlinear, 178

regularity, 115
assumptions, 86
mathematical, 28

reinterpretation
aircraft statistics, 44, 83

remote sensing, 6, 287
SST, 287

Renland, 403
renormalization, 79, 114, 125
rescaled range technique, 400
residuals, 209
resolution, 265
as functions of age, 402
dependencies
multifractal, 109

dimensional, 65
independent algorithms, 6
intermittent, 402
irregular, 205
issues, 399
power law, 6
space-time, 274
variable, 208

return to isotropy, 184
revolution
atmosphere, 1

Reynolds number, ix, 3, 11, 21, 59,
135, 197, 287, 318, 321, 330,
427, 430, 432, 440

definition, 27

large, 25
Richardson, 22
4/3 law, v, 1, 2, 11, 16, 22, 23,

38, 59, 63, 77, 199, 428,
430, 442

convergence, 198
dream, 21
empirical, 199
flux, 198
L.F., ix, 21
number, 198

ridges, 146
Riemann–Liouville, 314
river basin, 63
river flow, 315
rain, comparison, 315

river gauges, 135
Roman warm period, 393
Rossby waves, 329
rotation dominance, 236, 266
rotation matrix, 233
of structures, 231

rotational
components, 86

roughening
scale invariant, 150
simulation, 146

roundish, 97, 187
rudder, 228
rules of thumb, 274

sampling, 118
intervals
intermittent, 205

sandpile, 130
satellite
altimeter, 46
winds, 45

calibration, 348
gauge, 103
geostationary, 106
imagery, 10
cross-correlations, 305
IR, 305
visible, 305

pictures, 67
radiance, 106
radiances, 6
winds, 45. See Atmospheric Motion

Vectors
Saturated Cascade Theory,

200, 324
scalar advected, 185
scale
analysis, 184
break, 8, 190
changing operator, 187, 191,

230, 237
dissipation, 106
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equation, 233, 301
generalized, 229
generator, 191
notion, 229

schematic, 230
transition, 97
viscous, 130

scale function, 147, 168, 187, 191
3D example, 244
anisotropic, 193
canonical, 187, 191, 219, 237, 268,

302, 409
climate, 357
convenient, 192
effective, 303, 313
Eulerian, 326
example, 242, 243, 250
Fourier space, 302, 304
gravito-turbulence, 324
isotropic, 190
local, examples, 267
meteorological, 337
partial differential equation, 265
schematic, 239
self-affine, 223
space-time, 300, 312
spectral transition, 201
trivially anisotropic, 191

scale height, 10, 36, 38, 39, 40,
187, 320

scale invariance, 5, 62, 71, 426
best, 213
boundary conditions, 4
deterministic, 244
equations, 29
formal, 31
statistical, 244
versus isotropy, 183

Scale Invariant Generator technique,
258, 259

invariant lag technique, 202
smoothing, 142

ratios
countable infinity, 141

reduction
anisotropic, 191
isotropic, 190, 191

separation, 36, 185, 186, 190, 274,
302, 371

symmetries
atmosphere, 25
time, 274

transformation
infinitesimal, 231, 263
space-time, 312

scaling
anisotropic, 97, 183, 191
asymptotic, 366
Bolgiano–Obukhov, 187, 204

breaks, 276
temporal, 282

broken, 251
clouds, 107
ensemble, 248
exponent
and boundary conditions, 221
linear, 358
geographical distribution, 388

Fourier space, 26
transforms, 34

function
dressed exponent, 129

horizontal, 99
Kolmogorov, 187
primary paradigm, 183
pseudo, 341
regime
H<0, 339

self-affine, 217
short range, 111
SST, 287
temporal, 13, 274

scattering, 20, 107, 108
geometric, 7
Mie, 7
multiple, 7
photon, 244
Rayleigh, 7
single, 108

scatterometer, 45, 46, 48
wind spectra, 46

SCF. See second characteristic
function

Schwartz inequality, 82
SCT. See Saturated Cascade Theory
sea ice rheology, 419
sea surface height, 287
sea surface paleotemperatures, 387
temperature, 18, 99, 106, 111, 355,

374, 444, 445
anomalies, 371
spectra, 287

winds
spectra, 46

SeaSat, 46, 429
second characteristic function, 74,

168
Lévy variables, 142

second derivative, 119
discontinuity, 129

sediments
lake and ocean, 393

seed, 68
self-affine, 25, 141, 191, 217, 223,

236, 269
simulation, 196, 197
statistics, 256
stratification, 195

self-affinity, 229
schematic, 130

Self-Organized Criticality, 3, 70, 130,
163, 427, 436

self-interactions, 76
self-similarity, vi, 19, 141, 146, 217,

229, 428, 432
semi-empirical, 123
semi-group, 230
sensitivity
initial condition, 330
instrumental, 7
temperature, 416

series
reversed, 177

Seveso pollution, 134
shapes
convoluted, 244

shear, 26, 31, 198, 204, 282, 321,
433, 442

mean and perturbation, 322
shelf, 338
spectral, 400

shells
Mg/Ca variation, 391

Sierpinski carpet
schematic, 193

SIG, 258, 263 See Scale Invariant
Generator

error function, 259
simplicity
emergence, 23
wavelet, 175

simulation
acausal, 170
anisotropic, schematic, 238
artificial, 141
causal, 170
code, 172
continuous in scale, 141
examples, 177
isotropic realizations, 124
Multifractal, 122
nested, 238
Nonlinear GSI, 268
passive scalar cloud, 326, 328
techniques improved, 168
three dimensions, 242
unit balls varying, 328
variable anistropy, 239, 241
vertical cross-sections of

simulated passive scalar,
326, 327

wave phenomenology, 326
singular
small scale cascade limit, 70

singular measures, 158
singularity, 60, 242, 298
bounded, 114
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singularity (cont.)
critical, 129
dressed, 129
empirical, 60
Mt. Washington, 299

extreme, 248
geometrical, schematic, 138
localize, 158
maximum, 114, 125, 137
observable, schematic, 137
order, schematic, 118, 125, 137

mixed order, 114
phase diagram, schematic, 138
probability density, 115
sampling, 118
schematic, 115, 117
superposition, 179
unbounded, 123, 125
upper bound, 130
Wild, 138
incipient, 137

size/duration relations, 274
skewness, 175, 351
sky, 108
SKYHI model, 47
SLF. See Stochastic Linear Forcing
model
fractional extension, 372

small-scale limit
structures
disappearance of, 333

singular, 70
smallest scales, 11
smoothing
scale invariant, 150

smoothness
assumptions, 86

soap films, 37
SOC. See Self-Organized Criticality
soft processes, 130
soil, 99
soil moisture, 106
indices, 18

solar
activity, 415
energy flux, 185, 338, 426
absorbed by the earth, 284

forcing, 338, 385, 399, 400
scaling of, 411
structure function, 416

Haar, 412
magnetic field, 415
quiescent state, 415
heating, 44, 48, 106
irradiance, 413
radiation
reflection, 415

Radiation and Climate Experiment,
414

variabilities
10Be, 416

solar day, 414
solution
canonical, 219

sonde
fall speed, 205
GPS, 188
measurements, 5
simultaneous, 205
vertical velocity, 205

SORCE. See Solar Radiation and
Climate Experiment

southern hemisphere, 390
space
infinite dimensional, 71
observing, 130

space–space diagram, 214
CloudSat, 215
ECMWF, 309

space–space relations, 220
horizontal, empirical, 220

space-time, 312, 318
anisotropy, 14, 304
causality, 315
fluctuations joint, 363

climate, 409
diagram, 217, 299, 308, 309,

310
ECMWF, 309
lidar, 310
localization, 316, 317
relations, 13, 311
low frequency weather, 360

scale function, 300
definition, 301

spectra, 409
structures, 192
temperature, low frequency

weather, 358
temperature variability, 408
trace moments, 310
transformation, 291
speeds, 310

turbulence, 300
spaghetti plate
schematic, 34

sparse
structures, 118

sparseness, 150
absolute, 72

spatial intermittency
climate, 387

spatial scales
continuum, 70

specific heat, 185
humidity, 95

spectra, 9, 75
20CR, 345

angle integrated, 45, 217,
221, 222

continental, 404
east–west, 219
GRIP high resolution, 398
meridional, reanalyses, 220
north–south, 219
oceanic, 404
simulations, 170
space-time, 409
temporal, 170
Vostok paleotemprature, 398
zonal, reanalyses, 220

spectral
analysis, 4, 89
anisotropy, 221
break, 221
coherence, 97, 227
density, 5, 217
diverges, 368
energy
transfer, 50

energy density
enhanced, 261

exponent
as a function of latitude, 392
current, 287
definition, 32
empirical, 346
latitude dependence, 391
reanalyses, 218
spatial distribution, 390
vertical, 43

leakage, 218
maximum, 397
plateau, 276, 282, 344, 426
empirical, 280
evidence, 344
exponent, 369
ocean, 288, 339
ocean, atmopshere, 286
theoretical, 369
wind, 277

power density
GSI, 260

response
broad, 413

slope, 5, 217
techniques, 383
transfers, 58
broad, 400
compensated Vostok, 399
corrected causal, acausal, 170
decorrelated energy, 332
ensemble of differences, 376
error energy, 335
GRIP, 397
horizontal wind, 276
periodically detrended, 278
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radiances, 257
SST, 289

speed of sound, 298
sphere
fractional integrals, 174
multifractal simulations, 174
simulations, 150

spherical harmonic, 44, 87, 148, 174
polar coordinate, 243
shell, 27, 32, 217

sphero-scale, 19, 20, 41, 97, 187, 191,
192, 194, 195, 202, 211, 212,
214, 216, 219, 223, 230, 232,
234, 237, 244, 249, 253, 267,
268, 302, 311, 324, 325, 327

CloudSat, 215
convection, 215
empirical, 203, 212, 214
graphical, 216
horizontal, 244
lidar, 214
schematic, 195
vertical, horizontal, 244

sphero-time, 302, 303, 313
sphero-wavenumber, 219, 220
empirical, 218

spikes, 68, 74
amplitude, 74
spectral, 14, 338
temperature, 60

spiral, 267
pattern
GSI, 268

SPOT, 8
spottiness, 150
spurious break, 11, 201, 249
squashing, 217, 231, 306
sructure function
Poor Man’s, 175

SST, 356, See sea surface temperature
cascade, 376
cascade analysis, 286
index, 348
paleo, 386, 387, 399
reconstructions, 386
Holocene, 386

scaling, 287
spectra, empirical, 286
temporal cascades, 290

St Lawrence, 18
stability
conditional, 199
convective, 199
criterion, 199
drop sonde, 199
dynamical, 198, 199
under addition, 142

stable
layer, 197, 198

Levy, 112
weakly variable, 14

stalagmites, 391
standard model
schematic, 39

stars
sun-like, 414

state variables, 99, 106
summary, 99

state-of-the-art
lidar, 11

static stability, 36, 198, 199
statification
vertical, 183

station, 64
further analysis, 65
number density, 64
pairs, 65

stationarity, 161
stationary
components, 86
definition, 32

stationary phase
method of, 323

statistical translational invariance,
150

mechanical arguments, 32
statistical moments
blow up, 72
divergence, 70
moments
divergence, 165

scaling
sensitivity, 181

stationarity, 21, 32, 75
statistically homogeneous, 75
statistics
asymptotic, 24
Eulerian, 302
one point, 75
quasi-Gaussian, 144

steepest descents, 115
step-function
transition, 397

stereographic
triplets, 13

stereophotography, 13, 135
stochastic, 1
climate sensitivities, 385
forecasting, 330
Linear Forcing, vii, 89, 131, 286,

289, 338, 342, 356, 371
parametrizations, 329, 335

stochastic process
additive, 144
classical, 111

Stokes number, 12
Stommel See space-time diagram
Stommel diagram, 299

storage, 315
storms, 13
active cores, 65
intermittency, 60

straight lines
converging, 87

strange attractor, 3, 139
stratification, 185, 189, 204
comparison, 216
dominance, 236
EW/NS, 217
exponent, 30
illustration, 12
ocean, 287
power law, 183
scaling, 150, 214
scaling, schematic, 195

stratified multifractals
simulations, 195

stratified turbulence
empirical, 41

stratosphere, 415
spectra, 41

stratospheric
sulfates, 416

stratus, 261
stream flow
divergence of moments, 135

stretched exponential, 123
stretching, 242
striations, 19
structure, 214
coherent, 31
elliptical, 193, 256
elongation, 218
filamentary, 239
filament-like, 125
localized, 158
roundish, 183
space-time, 275
squashed, 19
stratification, 183
wispy, 241

structure function, 35, 150
classical, 175, 350
CloudSat, 215
comparisons, 405
compensated, 211, 212, 361
daily and annual, 351
difference, 175
EOLE, 225
exponent, 35, 147
generalized, 158
global, 352
Haar, 157, 175, 178, 385, 387, 404
composite, 406
CO2, 413
global temperature, 354
multiproxy, 394
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structure function (cont.)
horizontal, 204
hybrid, 179, 180, 353
joint horizontal–vertical, 42
poor man’s, 157, 179
qth order, 164, 206
saturation, 175
second order, 51
tendency, 153, 175, 179, 351
third order, 48
usual, 157
vertical, 205
wind, 159

subcodimensions, 114
subexponential, 115, 358
subgenerator, 317, 332, 335, 340
extremality, 169
illustration, 143
statistically independent, 332

subgrid
parametrization, 3

subharmonics, 413
sublayer, 199
submultiplicities, 114
sulfate, 415, 416
anthropogenic, 423
mass, 416

summation operator, 176
Summit Greenland, 386
sunlight
reflected, 7

sunspot, 414, 420
discovery, 414

support, 63, 73
precipitation, 100
raining areas, 102

surface
drag, 39
layer
ocean, 288

Quasi Geostrophic turbulence, 287
reflectance, 108
rough, 19
temperature
global monthly averaged, 180, 354
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Fig. 1.7 (c) Zoom of Fig. 1.7b showing that at the small scales, structures are beginning to show vertical (rather than horizontal) “stratification”
(even though the visual impression is magnified by the 1 : 40 aspect ratio, the change in stratification at smaller and smaller scales is visually
obvious). Reproduced from Lilley et al. (2004).
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Fig. 1.7 (b) Typical vertical–horizontal lidar cross-section acquired on August 14 2001. The scale (bottom) is logarithmic: darker is for
smaller backscatter (aerosol density surrogate), lighter is for larger backscatter. The black shapes along the bottom are mountains in the
British Columbia region of Canada. The line at 4.6 km altitude shows the aircraft trajectory. The aspect ratio is 1 : 96. Reproduced from
Lilley et al. (2004).



Fig. 1.13 A self-affine simulation illustrating the
“phenomenological fallacy”: upper and lower images look quite
different while having the same generators of the scale-changing
operator G (see Chapter 6; G is diagonal with elements 0.8, 1.2)
and the same (anisotropic) statistics at scales differing by a
factor of 64 (top and bottom blow-up). The figure shows the
proverbial geologist’s lens cap at two resolutions differing by a
factor of 64. Seen from afar (top), the structures seem to be
composed of left-to-right ridges, but closer inspection (bottom)
shows that in fact this is not the case at the smaller scales.
Reproduced from Lovejoy and Schertzer (2007).
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Fig. 1.8 (a) An example of a drop reconstruction. For
clarity only the 10% largest drops are shown, only the relative
sizes and positions of the drops are correct, the colours
code the size of the drops. The boundaries are defined by the
flash lamps used for lighting the drops and by the depth of
field of the photographs. Adapted from Lovejoy and
Schertzer (2008).
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(c) (d)

(e) (f)

Fig. 5.13 Isotropic realizations in two dimensions with α ¼ 0.4, 1.2, 2 (top to bottom) and C1 ¼ 0.05, 0.15 (left to right). The random seed is
the same so as to make clear the change in structures as the parameters are changed. The low α simulations are dominated by frequent
very low values, the “Lévy holes”. The vertical scales are not the same. Reproduced from Lovejoy and Schertzer (2010a).



Fig. 5.32 (b) Isotropic (i.e. self-similar) multifractal simulations showing the effect of varying the parameters α and H (C1 ¼ 0.1 in all cases).
From left to right, H ¼ 0.2, 0.5 and 0.8. From top to bottom, α ¼ 1.1, 1.5 and 1.8. As H increases the fields become smoother, and as α
decreases one notices more and more prominent “holes” (i.e. low smooth regions). The realistic values for topography (α ¼ 1.79, C1 ¼ 0.12,
H ¼ 0.7) correspond to the two lower right-hand simulations. All the simulations have the same random seed. Reproduced from Gagnon
et al. (2006).

Fig. 5.32 (a) The upper left simulation shows fBm, with H ¼ 0.7, lower left fLm with H ¼ 0.7, α ¼ 1.8, and the right the multifractal FIF with
H ¼ 0.7, α ¼ 1.8, C1 ¼ 0.12 (close to observations for topography, adapted from Gagnon et al., 2006). Note the occasional “spikes” in the
fLm which are absent in the fBm; these are due to the extreme power-law tails. (In this fLm positive extremal Lévy variables were used, so there
are no corresponding “holes.”).



Fig. 5.32 (c) A simulation of an (isotropic) multifractal topography on a sphere using the spherical harmonic method discussed in the
appendix (both sides of a single simulation are shown, using false colours). The simulation parameters are close to the measured values:
α ¼ 1.8, C1¼ 0.1, H ¼ 0.7 (see Chapter 4). The absence of mountain “chains” and other typical geomorphological features are presumably due
to the absence of anisotropy. We thank J. Tan for help with this simulation, adapted from Quattrochi and Goodchild (1997).

Fig. 6.8 A schematic diagram showing the change in shape of average structures which are isotropic in the horizontal (slightly curved to
indicate the earth's surface) but with scaling stratification in the vertical; Hz increases from 0 (upper left) to 1 (lower right); Del ¼ 2 þ Hz. In order
to illustrate the change in structures with scale, the ratio of tropospheric thickness to earth radius has been increased by nearly a factor of 1000.
In units of the sphero-scale (also exaggerated for clarity) here, ls ¼ 1/10 the tropospheric thickness (i.e. about 103–104 times the typical value),
the balls shown are ½, 1, 2, 4, 8, 16, 32 times the sphero-scale (so that the smallest is vertically oriented, the second roundish and the rest
horizontally stratified). Note that in the Del ¼ 3 case, the cross-sections are exactly circles; the small distortion is an effect of perspective due to
the mapping of the structures onto the curved surface of the earth. Reproduced from Lovejoy and Schertzer (2010).



Fig. 6.7 (b) A zoom (downscaling, disaggregation) sequence for an isotropic cloud with the same multifractal parameters as for the
anisotropic simulation in Fig. 6.7a, from upper left to lower right. Each image is an enlargement by a factor 1.7 of the previous. As in Fig. 6.7a,
the grey shades are “renormalized” separately in each image.

Fig. 6.7 (a) A sequence from a zoom (downscaling, disaggregation) of a stratified universal multifractal cloud model with α ¼ 1.8, C1 ¼ 0.1,
H ¼ 1/3, Hz ¼ 5/9. From top left to bottom right each successive cross-section represents a blow-up by a factor 1.31 (total blow-up is a factor
� 12 000 from beginning to end). If the top left simulation is an atmospheric cross-section 8 km left to right, 4 km thick, then the final
(lower right) image is about 60 cm wide by 30 cm high; the sphero-scale is 1 m, as can be roughly visually confirmed since the left–right
extent of the simulation second from bottom on the right is 1.02 m, where structures can be seen to be roughly roundish. Reproduced from
Lovejoy and Schertzer (2010).
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Fig. 6.11 The stability of the atmosphere as determined by a dropsonde using the stability criterion Ri > 1/4 where the Richardson number
(Ri) is estimated using increasingly thick layers: 5, 20, 80, 320 m thick (black, red, blue, cyan respectively). The figure shows atmospheric
columns, the left one from the ocean to 11 520 m (just below the aircraft), while the right is a blow-up from 8000 to 9000 m. The left of each
column indicates dynamically unstable conditions (Ri< 1/4) whereas the right-hand side indicates dynamically stable conditions (Ri> 1/4).
The figure reveals a Cantor set-like (fractal) structure of unstable regions. Reproduced from Lovejoy et al. (2008).
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Fig. 6.19 (d) Contour plot of S1 with different nonlinear transformations in polar coordinates with radius ¼ log10r
0 and the polar angle ¼ θ0 .

Upper left: isotropic turbulence (no transformation, Hz ¼ 1); upper right: 23/9D model (Hz ¼ 5/9); bottom: gravity waves (Hz ¼ 1/3). Note that
although the x0 (left–right) and z0 (up–down) coordinate directions show the distance from the centre of the plot in the corresponding
direction, they are not Cartesian coordinates of the plot. Pacific 2001 0815t6, vertical–horizontal cross-section. If Hz is such that Eqn. (6.50) is
satisfied, then the spacing between the contours is constant in all directions (close to the upper right, Hz ¼ 5/9 case), this criterion does not
imply that the contours have shapes independent of scale. Reproduced from Radkevitch et al. (2008).
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Fig. 6.24 Contour plots of log P. Left–right is kx, vertical direction is ky. Upper left is the specific humidity, upper right is the temperature,
middle is the zonal (left) and meridional (right) winds. Lower left is the vertical wind, and lower right is the geopotential. Contours of the
logarithm of the theoretical canonical scale functions (blue) all have Hy ¼ 0.8 (except for v, which has Hy ¼ 1/0.8) and the sphero-wavenumbers
are ks ¼ 60, 30, 60, 30, 60, 30 respectively for hs, T, u, v, w, z. Due to the Nyquist frequency, the largest ky is 30 cycles/90� corresponding to
2 pixels. Due to the 2 : 1 aspect ratio (which compensates for the 2 : 1 change in range of kx with respect to ky), a circle the diameter of the
square in the figure corresponds to isotropy at a 2-pixel scale. Reproduced from Lovejoy and Schertzer (2011).

Fig. 7.13 (c) The top (single-scatter) radiation field corresponding to A, B, C, D with mean optical thickness = 10 and the sun incident at
45� from the right.



Fig. 7.10 (d) Same as Fig. 7.10c except viewed from the bottom.Fig. 7.10 (c) The top view with single scattering radiative transfer;
incident solar radiation at 45� from the right, mean vertical optical
thickness = 50.

Fig. 7.10 (e) Same as Fig. 7.10d except for a false-colour rendition
of a thermal infrared field (assuming a constant extinction
coefficient and a linear vertical temperature profile).



Fig. 7.14 (b) The top is the visible radiation field (corresponding to Fig. 7.14a) looking up (sun at 45� from the right); the bottom is a side
radiation fields (one of the 512 � 128 pixel sides), average optical thickness = 10, single scattering only.

Fig. 7.14 (d) The top is the visible radiation field (corresponding to Fig. 7.14c), looking up (sun at 45� from the right); the bottom is a side
radiation fields (one of the 512 � 64 pixel sides), the average optical thickness = 5, single scattering only.



Fig. 7.17 (d) A cloud radiance field in the thermal IR from the
NOAA AVHRR satellite off the coast of Florida (512 � 512 pixels, 1.1
km resolution). Various cloud morphologies are visible, although
there is a dominant southwest/northeast alignment of large-scale
structures. Reproduced from Schertzer and Lovejoy (1996).

Fig. 7.17 (d) The power spectrum P(k) of Fig. 7.17a, showing
Fourier-space structures roughly perpendicular to the real-space
ones in Fig. 7.17a. Reproduced from Schertzer and Lovejoy (1996).
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Fig. 7.17 (c) The isotropic power spectrum of the radiances
displayed in Fig. 7.17a (the spctral density field, Fig. 7.17b, integrated
around circular annuli, cf. Eqn. (6.58)). The spectral slope determined
by linear regression is given by β = 1.77. Reproduced from Schertzer
and Lovejoy (1996).

Fig. 7.17 (c) A multifractal FIF model simulation with c = –0.1,
f = –0.15, e = 0.15, d = 1. Compare this with Fig. 7.17a and notice that
much of the NE/SW texture/morophology is reproduced, but that
there are clearly regions of Fig. 7.17a where the morphology is
different and where the simulation (which assumes the type of
anisotropy is constant across the region) does a poor job.
Reproduced from Schertzer and Lovejoy (1996).



Fig. 7.18 Real-space (top left), spectral energy density (top
right), enhanced spectral energy density (bottom left) and
spectral energy density with estimated GSI contours (bottom
right). This is for a simulation with parameters s = 2.64, c = 0.1,
f = 0.1, e = 0.5; the measured parameters are s = 2.63, c = 0.05,
f = 0.08, e = 0.51. Reproduced from Lewis (1993).

Fig. 7.19 In real space (top left), spectral energy density
(top right), enhanced spectral energy density (bottom left) and
spectral energy density with estimated GSI contours (bottom
right). From AVHRR cloud pictures taken at visible wavelengths;
estimated parameters are s = 2.34, c = –0.05, f = 0.12, e = –0.12.
Reproduced from Lewis (1993).



(c)

Fig. 7.24 (c) Same as Fig. 7.24a but for ls = 1.

(a)

Fig. 7.24 (a) A multifractal simulation of quadratic GSI (with g given
by the cubic h, Eqn. (7.122)) with a = 1.8, C1 = 0.1, H = 0.33 and
sphero-scale = 256 pixels (the simulation is 512 � 512 pixels).
The effect of the varying G is quite subtle.

(b)

Fig. 7.24 (b) Same as Fig. 7.24a but for ls = 1, H = 0.



Fig. 9.11 Eight time steps in the evolution of the vertical cross-section of a passive scalar component from the zero wind case of
Fig. 9.10. The structures are increasingly stratified at larger and larger scales and display wave phenomenology. Reproduced from
Lovejoy et al. (2008).

Fig. 9.10 A multifractal simulation of a passive scalar in (x,z,t) space with the observed multifractal parameters (α ¼ 1.8, C1 ¼ 0.05) and
theoretical values Ht ¼ 2/3, Hz ¼ 5/9. The simulations show the vertical wind increasing from 0 (left) to 0.25 to 0.5 pixels/time step (only a
single time step is shown). The top row shows the dispersion relation (contours), group velocity (arrows), the second is an (x,z) cross-section,
and the third row is a (t,z) cross-section. The numerical simulation techniques are based on those described in Chapters 5 and 8. Reproduced
from Lovejoy et al. (2008).
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Fig. 9.18 The top two rows (a–b) show successive snapshots (t ¼ i � τ, i ¼ 3, 6, 9,. . ., 27; τ being the eddy turnover time of the smallest
structures) of two simulations (256 � 256 in space) that are identical until time t ¼ 0, when their fluxes at small scales become progressively
independent step by step due to the sudden independence of the subgenerators at that time. Most of the difference between the two
realizations is concentrated in a few “hot spots”. The bottom row (c) shows a forecast based on the “memory” of the evolution up to t ¼ 0 of
(a), i.e. it has the same stochastic subgenerator until time t ¼ 0, then defined in a deterministic manner to preserve the mean of the flux.
Note the more rapid disappearance of small-scale structures. Parameters are α ¼ 1.5, C1 ¼ 0.2, H ¼ 0.1 (close to those of rain), and the colour
scale is logarithmic. The anisotropy of space-time is characterized by Ht ¼ 2/3. Reproduced from Schertzer and Lovejoy (2004a).
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Fig. 9.19 Simulation of multifractal predictability
decay for rain field. (a) and (b) are identical up to
t0 ¼ 64, after which their fluxes become independent.
(c) displays the forecast based on their common past
and the deterministic conservation of the flux
afterward. Singularities of the fields (i.e. their log
divided by the log resolution), as well as of their
absolute differences (d–f), are displayed according to
the following palette: white for negative singularities;
green to yellow for singularities contributing to
statistics up to the mean; red for singularities
contributing to second- and higher-order moments.
Reproduced from Schertzer and Lovejoy (2004b).
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Fig. 11.4 The spatial distribution of the spectral exponents for the reanalyses (top row) and the IPSL control run (bottom row). The left-hand
side shows the distribution of the high-frequency exponents, the right-hand side, the low-frequency β’s. In all cases the contour lines were at
β ¼ 0.5 (dark blue), 1, 1.5, 2 (white). One can see that Greenland has exceptionally small low-frequency β’s (< 0.5) although about 20� to the
east the values are quite high (> 1.5: the white area to the right of Greenland). The mean β’s and one-standard-deviation spreads are also
indicated. The high-frequency 20CR β map is very similar to that of Huybers and Curry (2006) (although they determined β from NCEP
reanalyses from 2 months to 30 years).

Fig. 9.14 The effect of increasing Hwav with Hwav þ Htur ¼
H ¼ 0.33, Ht ¼ 0.66; clockwise from the upper left we have
Hwav ¼ 0, 0.33, 0.52, 0.38 (i.e. Htur ¼ 1/3, Hwav ¼ 0.33, 0, –0.19, –
0.05), C1 ¼ 0.1, α ¼ 1.8. There is a small amount of differential
anisotropy characterized by G ¼ ð 0:95 �0:02

0:02 1:05
Þ The horizontal unit

ball is characterized by ΘðθÞ ¼ 1þ aCosð2θ� 2θ0Þ with
a ¼ 0.65, with θ0 ¼ 0. The random seed is the same in all cases
so that one can see how structures become progressively
more and more wave-like while retaining the same scaling
symmetries, close to observations. Reproduced from
Lovejoy et al. (2008).
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